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Abstract: The model for organizing railway transportation on a long stretch
of road between two node stations connected by a large number of intermediate
stations is investigated. It allows to predict dynamics of load of the stations
and flows arising in transport network at the set procedure of the movement
of freight traffic. Such model is given by a system of differential equations
with discontinuous right parts and satisfying the conditions setting resource
restrictions. The numerical realization of this system is carried out. Depending
on the ratio of the intensity of sending goods to the initial node station and the
intensity of the distribution of goods from the final node station, three types of
solutions of a given system are identified.
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1. Introduction

The correct organization of the movement in transport network assumes the
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use of control systems. Their algorithms are based on mathematical models,
one of the main functions of which is modeling of traffic flows. A large number
of publications is devoted to mathematical modeling of traffic flows. The works
[1], [2], [3] describe “analog models” in which the movement of the vehicle is
similar to any physical flow (hydro - and gas - dynamic models). There is a class
of models in which solved the problem of optimization of transportation routes,
generating optimal network configuration, etc (see [4], [5], [6], [7]). One of the
approaches to modeling and research of traffic flows is based on the theory
of competitive non-coalition equilibrium (see [8], [9], [10], [11]). It allows to
describe a fairly adequate mechanism for the functioning of road networks.
We also note the approach associated with the use of simulation and cellular
automata described in [12], [13], [14], [15]. A number of publications are devoted
to the modeling of rail transportation and flows arising in their process (see [16],
[17], [18], [19], [20], [21], [22]). In particular, in works [19], [20], [21], [22] a model
of organization of rail freight between two node stations connected by a railway
line which contains a certain number of intermediate stations is investigated.
It is assumed that between arbitrary stations there is interexchange railway
track, where part of the cargo can be temporarily stored. Such model allows to
predict dynamics of load of the stations and flows arising in transport network
at the set procedure of the movement of freight traffic. The procedure of the
movement of freight traffic uses two technologies uniform for all stations. The
first technology is based on interaction of the neighboring stations and is formed
by a certain rule. According to this rule, each of stations has to take the cargo
from the previous station if the quantity of the involved roads on it are less
than at the previous station, and to send on the next station if the quantity
of the involved roads on it are more than at the next station. In this case,
both the intensity of reception, and intensity of shipment cargo is proportional
to the difference of numbers of the involved roads at the neighboring stations.
The second technology uses technical capabilities of the station and is based on
interaction of the station with the neighboring railway tracks. In these models it
was supposed that capacities of railway tracks are unlimited. The modification
of model considering limitation of railway tracks is given in this article.

2. Description of model

The movement of goods is carried out in one direction. The traffic flow diagram
is shown in Fig. 1.
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Fig. 1. The traffic flow diagram

In this figure, the circles indicate the stations, and the squares indicate the
railway tracks. As can be seen from the figure, cargo can arrive at an arbitrary
intermediate station both from the previous station and from the railway track,
and sent from it either to the next station or to the railway track.

Let the number of intermediate stations be equal to m. Denoting by 0 and
m+1, respectively the numbers of the initial and final nodal stations, we obtain
the following set of station numbers: {0, 1, ..,m,m + 1}.

Let us move on to the numbering of the railway tracks. The railway track
located between stations with numbers i and i + 1 is denoted by number i.
Thus, we obtain the following set of railway track: {0, 1, ..,m}. Each station
and each railway track at any time are characterized by the number of involved
roads. Denote by zi(t), i = 0, 1, ...,m+1 and yi(t), i = 0, 1, ...,m, respectively,
the number of roads involved at i - th station and i - th railway track at time t.
The maximum number of involved roads at the stations, at which the mode of
increasing the number of roads at the expense of goods from the railway track,
is functioning, we denote by ∆. If the number of involved roads exceeds this
value, part of the cargo is temporarily sent to the railway track. It is assumed
that the number of roads on all railway tracks is equal to V .

The organization of cargo traffic is carried out using two technologies.

The first technology is based on the interaction procedure of neighboring
stations. Each station with number 1 ≤ i ≤ m must take the cargo from the
previous station with an intensity equal to α(zi−1 − zi) if zi−1 > zi and send
the cargo to the next station with an intensity equal α(zi − zi+1) if zi > zi+1.
If the first condition is violated, the station with number i sends the cargo to
the railway track with number i with intensity α(zi− zi−1) if yi < V , and if the
second one is violated, it receives the cargo from the railway track with number
i − 1 with intensity α(zi+1 − zi) if yi−1 > 0. Initial node station (i = 0) takes
a cargo with intensity ψ1(t) ≥ 0 and sends it to the next station with intensity
α(z0 − z1) if z0 > z1. Otherwise, the initial node station additionally takes the
cargo with the intensity α(z1 − z0). Final node station (i = m+1) accepts the
cargo from the previous station with intensity α(zm − zm+1) if zm > zm+1 and
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distributes it with intensity ψ2(t) ≥ 0. If zm < zm+1, then the final station
additionally distributes the cargo with intensity α(zm+1 − zm).

The second technology is designed to use the infrastructure capabilities of
the stations and to ensure uninterrupted movement of cargo. It is based on the
procedure of interaction of the station with neighboring railway tracks located
on opposite sides of it. The second technology for all stations, except the initial
one, allows us to increase the number of involved roads (if it does not exceed
∆) and to reduce it (if it exceeds ∆). The function ϕ(.), setting the speed of
change of number of involved roads within this technology has the following
properties: on a half-line (−∞, 0) it is identically equal to zero, on an interval
(0, xopt) is increasing, in a point xopt accepts the maximum value, on a half-line
(xopt,+∞) is decreasing, in a point ∆ accepts zero value, and on a half-line
(∆,+∞) is linear. Thus, within the second technology, the station with the
number i = 1, 2, ...,m accepts cargo with (i−1) - th railway track with intensity
ϕ(xi) if xi < ∆ and yi−1 > 0 and sends the cargo to i - th railway track with
intensity ϕ(xi) if xi > ∆ and yi < V . Final node station (i = m + 1) within
the second technology accepts cargo with m - th railway track with intensity
ϕ(xm+1) if xm+1 < ∆ and ym > 0 and additionally distributes the cargo with
intensity ϕ(xm+1) if xm+1 > ∆.

For the initial node station (i = 0) the second technology is used only for
unloading. The function ϕ0(.), setting the speed of change of the number of
involved roads at this station within this technology, has the following proper-
ties: on a half-line (−∞,∆) it is identically equal to zero, and on a half-line
(∆,+∞) it is linearly decreasing. Thus, the initial node station (i = 0) sends
the cargo to 0 - th railway track with intensity ϕ(x0) if x0 > ∆ and y0 < V .

Thus, the dynamics of numbers of the involved roads at stations is set by
the system of the differential equations

ż0(t) =ψ1(t)− α(z0 − z1)

+ ϕ0(z0) sign(z0 −∆) sign(V − y0), t ∈ [0,+∞), (1)

żi(t) =α(zi−1 − zi) sign(zi−1 − zi)

+ α(zi−1 − zi) sign(zi − zi−1) sign(V − yi)

− α(zi − zi+1) sign(zi − zi+1)

+ α(zi − zi+1) sign(zi+1 − zi) sign(yi−1)

+ ϕ(zi) sign(∆− zi) sign(yi−1)

+ ϕ(zi) sign(zi −∆) sign(V − yi),

i = 1, 2...,m, t ∈ [0,+∞), (2)

żm+1(t) =α(zm − zm+1)− ψ2(t)
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+ ϕ(zm+1) sign(∆− zm) sign(ym)

+ ϕ(zm+1) sign(zm −∆) sign(V − zm), t ∈ [0,+∞). (3)

The function sign(.) involved in equations (1)− (3) is defined as follows:

sign(t) =

{

1, if t > 0
0, if t ≤ 0.

We investigate the dynamics of capacities of railway track. Determine with
what intensity cargo come on the railway tracks and with what intensity leave
them. Within the first technology, on a stage with number 1 ≤ i ≤ m−1 cargo
arrives from the station with number i with intensity α(zi−zi−1) if zi > zi−1 and
yi < V and goes to the station with number i+ 1 with intensity α(zi+2 − zi+1)
if zi+2 > zi+1 and yi > 0. On an initial railway track (i = 0) within the first
technology cargo does not arrive, goes from it to the station with number 1
with intensity α(z2 − z1) if z2 > z1 and y0 > 0. At last, on a final railway track
(i = m) within the same technology cargo arrives from the station with number
i = m with intensity α(zm− zm−1) if zm > zm−1 and ym < V . The cargo is not
sent from the final railway track within this technology.

Within the second technology, on a railway track with number 0 ≤ i ≤ m

cargo arrives from the station with number i with intensity −ϕ(zi) if the number
of the involved roads at the station with number i exceeds value ∆ and yi < V

and goes to the station with number i+1 with intensity ϕ(zi+1) if the number
of the involved roads at the station with number i+1 is less than value ∆ and
yi > 0 (the station with number i+ 1 accepts cargo from a railway track).

Thus, the dynamics of the number of the involved roads on a railway track
is described by the following system of differential equations

ẏ0(t) =− α(z2 − z1) sign(z2 − z1) sign(y0)

− ϕ(z0) sign(z0 −∆) sign(V − y0)

− ϕ(z1) sign(∆ − z1) sign(y0), t ∈ [0,+∞), (4)

ẏi(t) =α(zi − zi−1) sign(zi − zi−1) sign(V − yi)

− α(zi+2 − zi+1) sign(zi+2 − zi+1) sign(yi)

− ϕ(zi) sign(zi −∆) sign(V − yi)

− ϕ(zi+1) sign(∆ − zi+1) sign(yi),

i = 1, 2...,m − 1, t ∈ [0,+∞), (5)

ẏm(t) =α(zm − zm−1) sign(zm − zm−1) sign(V − ym)

− ϕ(zm) sign(zm −∆) sign(V − ym)



632 L.A. Beklaryan, N.K. Khachatryan, A.S. Akopov

− ϕ(zm+1) sign(∆− zm+1) sign(ym), t ∈ [0,+∞). (6)

Besides, the inequalities have to be carried out:

0 ≤ yi(t) ≤ V, i = 0, 1, ...,m, t ∈ [0,+∞). (7)

These inequalities are imposed by restriction for number of the involved roads
on railway tracks.

Thus, the model for organization cargo transportation investigated by us is
described by a system (1)-(7).

The analytical research of solutions of system (1)−(7) extremely difficult, as
the right parts of the differential equations (1)−(6) are discontinuous functions.
In this regard, the system (1) − (7) was investigated numerically. We present
the results of a numerical research.

3. Results of numerical experiments

For periodic functions ψ1(t) = d+γcos(ωt), d ≥ γ > 0, ψ2(t) = λψ1(t), λ > 0
and functions ϕ(.) and ϕ0(.) defined as follows

ϕ(x) =







0, if x < 0
ax(∆− x), a > 0 if x ∈ [0,∆]
−c(x−∆), c > 0 if x ∈ (∆,+∞),

ϕ0(x) =

{

0, if x ≤ ∆
−c0(x−∆), c0 > 0 if x ∈ (∆,+∞),

numerical solutions of a system (1)− (7) were received.

Depending on parameter λ, participating in definition of function ψ2(.), we
receive three types of solutions of system (1) − (7). They define three types
of dynamics of the involved roads at stations and railway tracks. Before we
pass to detailed studying of each of three types of solutions of system (1)− (7),
we will note the property of solutions of this system characteristic of all three
types. Numerous experiments showed that there is a point in time t0 such that
the condition

z0(t) > z1(t) > ... > zm(t) > zm+1(t), t ∈ [t0,+∞)

is satisfied.

The first type of the solution of a system (1)-(7) (0 < λ < 1):
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This type of solution is characterized by existence of point in time t1 > t0
such that for all t ≥ t1 and any initial values, the components of the solution
of a system (1)− (7) satisfy the following conditions:

zi(t) > ∆, i = 0, 1, ...,m + 1, yi(t) = V, i = 0, 1, ...,m.

Let us note that the value of t1 increases both at increase in value of V , and
at increase in value of λ. This type of solutions can be seen in Fig. 2. The
dynamics of the number of involved roads at the stations (the number of stations
is equal to 10) is shown above, and the dynamics of the number of involved roads
at the railway tracks (the number of railway tracks, respectively, is equal to 9)
is shown below. The value of ∆ is equal to 10 and the value of V is equal to
15.

Fig. 2. The first type of solution of system (1)− (7)

As shown in Fig. 2, starting from a certain point in time, the number
of involved roads at all stations in turn, starting from the initial, exceeds the
value of ∆ and parallel with it, also in turn, the number of involved roads on
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all railway tracks since the initial reaches the maximum value V . After that,
according to the rules of organization of cargo transportation, the process of
organization of cargo transportation is carried out only within the first tech-
nology without involving railway tracks (since the number of involved roads at
each next station is less than at the previous one).

The second type of solution of system (1)-(7) (λ = 1):

This type of solution is characterized by existence of point in time t2 such
that for all t ≥ t2 the components of the solution of a system (1) − (7) satisfy
one of the following conditions:

zi(t) > ∆, i = 0, ..., m̄, zi(t) < ∆, i = ¯̄m, ...,m+ 1, (8)

yi(t) = V, i = 0, ..., m̄, yi(t) = 0, i = ¯̄m, ...,m, (9)

where

0 ≤ m̄ < ¯̄m ≤ m+ 1,

or

zi(t) < ∆, i = 0, ...,m + 1, yi(t) = 0, i = 0, ...,m, (10)

or

zi(t) > ∆, i = 0, ...,m + 1, yi(t) = V, i = 0, ...,m. (11)

Feasibility of this or that condition ((8)− (9), (10) or (11)), and also values
of numbers m̄ and ¯̄m depend on initial values of system (1) − (7) and on the
value of V . Independently of the value of V , the condition (10) is satisfied for
small initial values of the system (1)− (7) (Fig. 4), the condition (11) – at large
(Fig. 5), and conditions (8)− (9) – at intermediate (Fig. 3).
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Fig. 3. The second type of solution of the system (1) − (7) (case 1)

Fig. 4. The second type of solution of the system (1) − (7) (case 2)
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Fig. 5. The second type of solution of the system (1) − (7) (case 3)

The third type of solutions of the system (1)-(7) (λ > 1):

This type of solution is characterized by existence of point in time t3 such
that for all t ≥ t3 and any initial values the components yi(.) of solutions of the
system (1)− (7) satisfy the following conditions:

yi(t) = 0, i = 0, ...,m, (12)

and components zi(.) infinitely decrease (Fig. 6). Let us note that the value of
t3 increases both at increase in value of V , and at reduction of value λ.
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Fig. 6. The third type of solutions of the system (1)− (7)

Let us analyze the received results for each of three types of solutions of
system (1)− (7). The first type of solutions defines dynamics of number of the
involved roads at stations and railway tracks in case the intensity of distribution
of goods from the final node station is less than intensity of supply of goods
on the initial node station. In this case over time there is a full filling of
railway tracks, stations become strongly loaded and, as a result, the second
technology is disconnected. The further movement of cargo flow is carried out
only within the first technology. However, if the difference in intensities of
supply of goods at the initial node station and distribution of goods with the
final node station is small, it is possible to state that throughout all horizon of
planning of transportations the second technology will remain involved.

The second type of solutions determines the dynamics of the number of
involved roads in the stations and railway tracks in the case where the intensity
of distribution of goods from the final node station is equal to the intensity of
supply of goods to the initial node station. Recall that in this case, depending
on the load of the stations at the initial time, there are three types of this
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dynamics. If at the initial moment of time the stations are involved slightly, then
over time the stocks of goods on all railway tracks come to an end, the stations
are loaded to a level below the optimum and it also leads to the shutdown of
the second technology. Let us note that shutdown of the second technology
after freeing the railway tracks is more preferable than shutdown after their
overflow, since in the latter case it is necessary to connect additional resources
for unloading cargo from the railway tracks. Opposite degree of fullness of the
stations in the initial moment of time (critical overflow) in practice is extremely
unlikely. Finally, at the most probable average degree of fullness of stations at
the initial time, the most optimal station loading occurs, corresponding to the
most efficient use of the stations infrastructure capabilities. At the same time,
there is an overflow of the railway tracks close to the initial node station and
the freeing of the railway tracks close to the final node station.

The third type of solutions determines the dynamics of the number of in-
volved roads in the stations and railway tracks in the case where the intensity
of distribution of goods from the final node station exceeds the intensity of sup-
ply of goods to the initial node station. In this case, over time, railway tracks
are released, the second technology is turned off, and the load of stations is
reduced to its complete inactivity. However, if the difference in the intensity
of distribution of goods from the final node station and supply of goods to the
initial node station is small, it is possible to state that throughout all horizon
of planning of transportations the second technology will remain involved.

4. Conclusion

The model for organizing railway transportation between two node stations at
limitation of capacities of the railway tracks located between stations is inves-
tigated. The movement of cargo is carried out by means of the set technologies
describing interaction of the neighboring stations with each other and with
railway tracks. Such a model is given by a system of differential equations
with discontinuous right parts and satisfying the conditions that determine the
boundedness of the railway tracks. Finding of the analytical solution of this
system is extremely difficult, which leads to the need for its numerical realiza-
tion. It is possible to describe the dynamics of number of the involved roads at
stations and railway tracks depending on the ratio of the intensity of supply of
goods to the initial node station and the intensity of distribution of goods from
the final node station.
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