International Journal of Applied Mathematics

Volume 32 No. 4 2019, 603-622

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v32i4.5

CHARACTERIZATIONS OF γ - P_S -REGULAR AND γ - P_S -NORMAL SPACES

Nazihah Ahmad¹§, Baravan A. Asaad², Zurni Omar³

^{1,3}School of Quantitative Sciences

College of Arts and Sciences

Universiti Utara Malaysia

06010 Sintok, Kedah, MALAYSIA

² Department of Computer Science, College of Science

Cihan University-Duhok, IRAQ

² Department of Mathematics, Faculty of Science University of Zakho, IRAQ

Abstract: This paper defines some types of γ - P_S - separation axioms called γ - P_S -regular and γ - P_S -normal spaces using γ - P_S -open and γ - P_S -closed sets. Some relations, properties and characterizations of these spaces are discussed. Several examples are given to illustrate some of the results.

AMS Subject Classification: 54A05, 54D15, 54D10 Key Words: γ - P_S -open set, γ - P_S -closed set, γ - P_S -regular space, γ - P_S -normal

space

0. Introduction

Kasahara [12] introduced the notion of an α operation approaches on a class τ of sets and studied the concept of α -continuous functions with α -closed graphs and α -compact spaces. After this, Jankovic [10] introduced the concept of α -closure of a set in X via α -operation and investigated further characterizations of function with α -closed graph. Later, Ogata [15] defined and studied the concept of γ -open sets, and applied it to investigate operation-functions and operation-separation axioms. Since that, γ operation on τ has attracted the

Received: June 2, 2019

© 2019 Academic Publications

[§]Correspondence author

attention of many researchers. Among them are γ -regular-open sets [6], α - γ -open sets [11], γ -preopen sets [13] and γ -semiopen sets [14]. Using some of these sets, several separation axioms such as γ -pre-regular and γ -pre-normal [8] were defined. In 2018, Haxha and Gjonbalaj [9] defined the concept of γ^* -operation in the topological product of topological spaces and they also introduced some γ^* -separation axioms. Ameen, Asaad and Muhammed [16] considered properties of δ -preopen, δ -semiopen, a-open and e^* -open sets in topological spaces.

Recently, the notion of γ - P_S -open sets had been defined by Asaad, Ahmad and Omar [4]. This set is stronger than γ -preopen set and weaker than γ -regular-open set. Besides that, they also introduced γ -locally indiscrete, γ -hyperconnected and γ -extremally disconnected spaces [6]. In addition, Asaad and Ahmad [1] studied further characterizations of γ -extremally disconnected spaces and investigated some relations of functions of γ -extremally disconnected spaces. Furthermore, Asaad, Ahmad and Omar ([3], [7]) introduced and studied the notion of γ - P_S - T_i spaces for $i=0,\frac{1}{2},1,2$.

The aim of this paper is to introduce some types of γ - P_S - separation axioms called γ - P_S -regular and γ - P_S -normal spaces using γ - P_S -open and γ - P_S -closed sets. Some relations and characterizations between these constructed γ - P_S -spaces with other existence γ - P_S - separation axioms as well as their properties have also been investigated.

1. Preliminaries and main definitions

In this paper, the pairs (X,τ) and (Y,σ) (or simply X and Y) always mean topological spaces on which no separation axioms assumed unless otherwise mentioned. An operation γ on the topology τ on X is a mapping $\gamma \colon \tau \to P(X)$ such that $U \subseteq \gamma(U)$ for each $U \in \tau$, where P(X) is the power set of X and $\gamma(U)$ denotes the value of γ at U [15]. A nonempty subset A of a topological space (X,τ) with an operation γ on τ is said to be γ -open [15] if for each $x \in A$, there exists an open set U containing x such that $\gamma(U) \subseteq A$. The complement of a γ -open set is called a γ -closed. The class of all γ -open sets of X is denoted by τ_{γ} . The τ_{γ} -closure of a subset A of X with an operation γ on τ is defined as the intersection of all γ -closed sets containing A and it is denoted by τ_{γ} -Cl(A) [15], and the τ_{γ} -interior of a subset A of X with an operation γ on τ is defined as the union of all γ -open sets containing A [14]. An operation γ on τ is said to be regular if for every open neighborhood U and V of each $x \in X$, there exists an open neighborhood W of x such that $\gamma(W) \subseteq \gamma(U) \cap \gamma(V)$, [15].

The following recalls necessary concepts and preliminaries required in the

sequel of our work.

Definition 1. A subset A of a topological space (X, τ) with an operation γ on τ is said to be:

- (i) γ -regular-open [6] if $A = \tau_{\gamma}$ - $Int(\tau_{\gamma}$ -Cl(A)).
- (ii) γ -preopen [13] if $A \subseteq \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -Cl(A)).
- (iii) γ -semiopen [14] if $A \subseteq \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ -Int(A)).
- (iv) α - γ -open [11] if $A \subseteq \tau_{\gamma}$ - $Int(\tau_{\gamma}$ - $Cl(\tau_{\gamma}$ -Int(A))).

Definition 2. The complement of a γ -regular-open [6] (respectively, γ -preopen [13], γ -semiopen [14] and α - γ -open [11]) set is called γ -regular-closed (respectively, γ -preclosed, γ -semiclosed and α - γ -closed).

Definition 3. ([4]) A γ -preopen subset A of a topological space (X, τ) is called γ - P_S -open if for each $x \in A$, there exists a γ -semiclosed set F such that $x \in F \subseteq A$. The complement of a γ - P_S -open set is called γ - P_S -closed.

Definition 4. Let A be any subset of a topological space (X, τ) and γ be an operation on τ . Then the τ_{γ} - P_S -closure [4] (respectively, τ_{γ} -semiclosure [14] and $\tau_{\alpha-\gamma}$ -closure [11]) of A is defined as the intersection of all γ - P_S -closed (respectively, γ -semiclosed and α - γ -closed) sets of X containing A and it is denoted by τ_{γ} - $P_SCl(A)$ (respectively, τ_{γ} -sCl(A) and $\tau_{\alpha-\gamma}$ -Cl(A)). The τ_{γ} - P_S -interior [4] of A is defined as the union of all γ - P_S -open sets of X contained in A and it is denoted by τ_{γ} - $P_SInt(A)$.

Lemma 1.1. ([4]) Let A be a subset of a topological space (X, τ) and γ be an operation on τ . Then:

- (i) A is γ -P_S-closed if and only if τ_{γ} -P_SCl(A) = A.
- (ii) $x \in \tau_{\gamma} P_S Cl(A)$ if and only if $A \cap U \neq \phi$ for every γP_S -open set U of X containing x.

Definition 5. ([3]) A subset A of a topological space (X, τ) with an operation γ on τ is said to be γ - P_S -generalized closed (shortly γ - P_S -g-closed) if τ_{γ} - P_S Cl $(A) \subseteq G$ whenever $A \subseteq G$ and G is γ - P_S -open set in X. The complement of a γ - P_S -g-closed set is called a γ - P_S -g-open.

For any topological space (X, τ) and any operation γ on τ , we denote the class of all γ - P_S -open (respectively, γ - P_S -closed, γ - P_S -g-open, γ -regular-open, α - γ -open and γ -semiopen) sets of X by τ_{γ} - $P_SO(X)$ (respectively, τ_{γ} - $P_SC(X)$, τ_{γ} - $P_SGO(X)$, τ_{α} - γ and τ_{γ} -SO(X)).

Theorem 1.2. A set A is γ - P_S -g-open if $F \subseteq \tau_{\gamma}$ - $P_SInt(A)$ whenever $F \subseteq A$ and F is a γ - P_S -closed set in X.

Definition 6. ([6]) A topological space (X, τ) is said to be γ -locally indiscrete if every γ -open subset of X is γ -closed, or every γ -closed subset of X is γ -open.

Lemma 1.3. If (X, τ) is γ -locally indiscrete space, then γ is a regular operation. Therefore, if (X, τ) is γ -locally indiscrete, then τ_{γ} - $P_SO(X, \tau)$ is a topology on (X, τ) .

Remark 1.4. ([6], [4]) If (X, τ) is γ -locally indiscrete space, then:

$$\tau_{\gamma}$$
- $RO(X) = \tau_{\gamma} = \tau_{\gamma}$ - $P_SO(X) = \tau_{\alpha-\gamma} = \tau_{\gamma}$ - $SO(X)$.

Definition 7. ([7]) A topological space (X, τ) with an operation γ on τ is said to be γ - P_S - T_0 if for each pair of distinct points x, y in X, there exists a γ - P_S -open set G such that either $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$.

Definition 8. A topological space (X, τ) with an operation γ on τ is said to be γ - P_S - T_1 , [7] (respectively, γ -semi T_1 [14]) if for each pair of distinct points x, y in X, there exist two γ - P_S -open (respectively, γ -semiopen) sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

Definition 9. ([7]) A topological space (X, τ) with an operation γ on τ is said to be γ - P_S - T_2 if for each pair of distinct points x, y in X, there exist two γ - P_S -open sets G and H containing x and y respectively such that $G \cap H = \phi$.

Definition 10. ([3]) A topological space (X, τ) with an operation γ on τ is said to be γ - P_S - $T_{\frac{1}{2}}$ if every γ - P_S -g-closed set in X is γ - P_S -closed.

Theorem 1.5. ([3]) For any topological space (X, τ) with an operation γ on τ . Then X is γ - P_S - $T_{\frac{1}{2}}$ if and only if for each element $x \in X$, the set $\{x\}$ is

 γ - P_S -closed or γ - P_S -open.

Theorem 1.6. ([4]) Let (X, τ) be a topological space and γ be an operation on τ . If (X, τ) is γ -semi T_1 , then the concept of γ - P_S -open (respectively, γ - P_S -closed) set and γ -preopen (respectively, γ -preclosed) set are identical.

Lemma 1.7. ([7]) Let (X, τ) be a topological space and γ be an operation on τ . Then the following statements are hold:

- (i) If X is γ - P_S - T_2 , then it is γ - P_S - T_1 .
- (ii) If X is γ - P_S - T_1 , then it is γ - P_S - $T_{\frac{1}{2}}$.
- (iii) If X is γ - P_S - $T_{\frac{1}{2}}$, then it is γ - P_S - T_0 .

2. Characterizations of γ - P_S -regular spaces

In this section, γ - P_S -regular space is a new type of γ - P_S - separation axioms will be defined. Some characterizations of γ - P_S -regular spaces are investigated.

Definition 11. A topological space (X, τ) with an operation γ on τ is said to be γ - P_S -regular if for each γ - P_S -closed set F of X not containing x, there exist disjoint γ - P_S -open sets G and H such that $x \in G$ and $F \subseteq H$.

The following are some significant characterizations of γ - P_S -regular spaces.

Theorem 2.1. Let (X, τ) be a topological space and γ be an operation on τ . Then the following conditions hold:

- (i) X is γ - P_S -regular.
- (ii) For each point x in X and each γ - P_S -open set U containing x, there exists a γ - P_S -open set V such that $x \in V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq U$.
- (iii) For each γ - P_S -closed set F of X, $\cap \{\tau_{\gamma}$ - $P_SCl(H): F\subseteq H \text{ and } H\in \tau_{\gamma}$ - $P_SO(X)\}=F$.
- (iv) For each subset S of X and each γ - P_S -open set G of X such that $S \cap G \neq \phi$, there exists a γ - P_S -open set H of X such that $S \cap H \neq \phi$ and τ_{γ} - $P_SCl(H) \subseteq G$.

- (v) For each nonempty subset S of X and each γ - P_S -closed set F of X such that $S \cap F = \phi$, there exists γ - P_S -open sets M and N of X such that $S \cap M \neq \phi$, $F \subseteq N$ and $M \cap N = \phi$.
- (vi) For each $x \in X$ and each γ - P_S -closed set $F \subseteq X$ such that $x \notin F$, there exists γ - P_S -open set M and γ - P_S -g-open set N such that $x \in M$, $F \subseteq N$ and $M \cap N = \phi$.
- (vii) For each $S \subseteq X$ and each γ - P_S -closed set $F \subseteq X$ such that $S \cap F = \phi$, there exists γ - P_S -open set M and γ - P_S -g-open set M such that $S \cap M \neq \phi$, $F \subseteq N$ and $M \cap N = \phi$.
- Proof. (i) \Rightarrow (ii) Let x be any point in X and U be any γ - P_S -open set in X containing x. Then $X \setminus U$ is γ - P_S -closed set such that $x \notin X \setminus U$. Since X is γ - P_S -regular space, then there exists γ - P_S -open sets V and H such that $x \in V$ and $X \setminus U \subseteq H$ and $V \cap H = \phi$. This implies that $V \subseteq X \setminus H$ and hence $x \in V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq U$.
- (ii) \Rightarrow (iii) Let F be any γ - P_S -closed set of X. Suppose that $x \in X \setminus F$, where $X \setminus F$ is γ - P_S -open set and $x \in X$. Then by (ii), there exists a γ - P_S -open set V such that $x \in V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq X \setminus F$. This implies that $F \subseteq X \setminus \tau_{\gamma}$ - $P_SCl(V)$. Let $H = X \setminus \tau_{\gamma}$ - $P_SCl(V)$, then H is γ - P_S -open set such that $V \cap H = \phi$. Thus, by Lemma 1.1 (ii), $x \notin \tau_{\gamma}$ - $P_SCl(H)$. Therefore, $\cap \{\tau_{\gamma}$ - $P_SCl(H) : F \subseteq H \text{ and } H \in \tau_{\gamma}$ - $P_SO(X)\} \subseteq F$.
- (iii) \Rightarrow (iv) Let S be any subset of X and G be any γ - P_S -open set of X such that $S \cap G \neq \phi$. Let $x \in S \cap G$. Then $x \notin X \backslash G$. Since $X \backslash G$ is γ - P_S -closed, then by (iii), there exists a γ - P_S -open set O such that $X \backslash G \subseteq O$ and $x \notin \tau_{\gamma}$ - $P_SCl(O)$. If we take $H = X \backslash \tau_{\gamma}$ - $P_SCl(O)$, then H is a γ - P_S -open set of X containing x and $S \cap H \neq \phi$. Now $H \subseteq X \backslash O$ and hence τ_{γ} - $P_SCl(H) \subseteq X \backslash O \subseteq G$.
- (iv) \Rightarrow (v) Let S be any nonempty subset of X and F be any γ - P_S -closed set of X such that $S \cap F = \phi$. Then $X \setminus F$ is γ - P_S -open set and $S \cap X \setminus F \neq \phi$. By (iv), there exists a γ - P_S -open set M of X such that $S \cap M \neq \phi$ and τ_{γ} - $P_SCl(M) \subset X \setminus F$. Let $N = X \setminus \tau_{\gamma}$ - $P_SCl(M)$, then $F \subseteq N$ and $M \cap N = \phi$.
- $(v) \Rightarrow (vi)$ Let x be any point X and a γ - P_S -closed set $F \subseteq X$ such that $x \notin F$. Then $\{x\}$ is a subset of X and $\{x\} \cap F = \phi$. Hence by using (v), there exists γ - P_S -open sets M and N of X such that $\{x\} \cap M \neq \phi$, $F \subseteq N$ and $M \cap N = \phi$. Since every γ - P_S -open set is γ - P_S -g-open, then N is a γ - P_S -g-open set such that $x \in M$, $F \subseteq N$ and $M \cap N = \phi$.
- (vi) \Rightarrow (vii) For any subset S of X and any γ - P_S -closed set F in X such that $S \cap F = \phi$. Suppose $x \in S$, then $x \notin F$. By (vi), there exists γ - P_S -open

set M and γ - P_S -g-open set N such that $x \in M$, $F \subseteq N$ and $M \cap N = \phi$. Hence $S \cap M \neq \phi$.

(vii) \Rightarrow (i) For each $x \in X$ and each γ - P_S -closed set F of X such that $x \notin F$. Then $\{x\}$ is a subset of X and $\{x\} \cap F = \phi$. So by using (vii), there exists γ - P_S -open set M and γ - P_S -g-open set N such that $\{x\} \cap M \neq \phi$, $F \subseteq N$ and $M \cap N = \phi$. This implies that $x \in M$, $F \subseteq N$ and $M \cap N = \phi$. Now, let $H = \tau_{\gamma}$ - P_S Int(N). Thus, by Theorem 1.2, we obtain $F \subseteq H$ and $M \cap H = \phi$. Therefore, a space X is γ - P_S -regular.

Theorem 2.2. The following statements hold for any topological space (X, τ) and any operation γ on τ :

- (i) X is γ - P_S -regular.
- (ii) For each γ - P_S -closed set F of X, $\cap \{\tau_{\gamma}$ - $P_SCl(H): F \subseteq H \text{ and } H \in \tau_{\gamma}$ - $P_SO(X)\} = F$.
- (iii) For each γ - P_S -closed set F of X, $\cap \{\tau_{\gamma}$ - $P_SCl(H): F \subseteq H \text{ and } H \in \tau_{\gamma}$ - $P_SGO(X)\} = F$.
 - *Proof.* (i) \Rightarrow (ii) It is clear from Theorem 2.1.
 - (ii) \Rightarrow (iii) It is evident that every γ - P_S -open set is γ - P_S -g-open.
- (iii) \Rightarrow (i) Let F be a γ - P_S -closed set in X and let $x \in X$ such that $x \notin F$. Then by (iii), there exists a γ - P_S -g-open set H such that $F \subseteq H$ and $x \notin \tau_{\gamma}$ - $P_SCl(H)$. Since F is γ - P_S -closed and H is a γ - P_S -g-open, then by Theorem 1.2, we get $F \subseteq \tau_{\gamma}$ - $P_SInt(H)$. Let $U = \tau_{\gamma}$ - $P_SInt(H)$ which is γ - P_S -open and hence $F \subseteq U$. Also, let $V = X \setminus \tau_{\gamma}$ - $P_SCl(H)$ is a γ - P_S -open set containing x such that $V \cap U = \phi$. Hence X is γ - P_S -regular space. \square

Theorem 2.3. Let (X, τ) be a γ -locally indiscrete space and γ be a regular operation on τ . Then X is γ - P_S -regular if and only if for each γ - P_S -closed set F of X not containing x in X, there exist γ - P_S -open sets G and H such that $x \in G$, $F \subseteq H$ and τ_{γ} - $P_SCl(G) \cap \tau_{\gamma}$ - $P_SCl(H) = \phi$.

Proof. Let F be a γ - P_S -closed set in X and $x \in X$ does not belong to F. Since (X,τ) is γ - P_S -regular space, then there exist γ - P_S -open sets G_0 and H such that $x \in G_0$, $F \subseteq H$ and $G_0 \cap H = \phi$ which implies $G_0 \cap \tau_{\gamma}$ - $P_SCl(H) = \phi$. Since τ_{γ} - $P_SCl(H)$ is γ - P_S -closed such that $x \notin \tau_{\gamma}$ - $P_SCl(H)$ and X is γ - P_S -regular, then there exist γ - P_S -open sets U and V such that $x \in U$, τ_{γ} - $P_SCl(H) \subseteq V$ and $U \cap V = \phi$. This implies that τ_{γ} - $P_SCl(U) \cap V = \phi$. If

we take $G = G_0 \cap U$. Since (X, τ) is a γ -locally indiscrete space and γ is a regular operation on τ , then by Lemma 1.3, G is γ - P_S -open set. So G and H are γ - P_S -open sets such that $x \in G$, $F \subseteq H$ and τ_{γ} - $P_SCl(G) \cap \tau_{\gamma}$ - $P_SCl(H) = \phi$. The converse is trivial.

Notice that γ -regular-open, γ -open, α - γ -open and γ -semiopen sets can be substitute to γ - P_S -open set in Theorem 2.3 (this is because of Remark 1.4). Again, τ_{γ} -closure, $\tau_{\alpha-\gamma}$ -closure and τ_{γ} -semi-closure of a set can be replaced by τ_{γ} - P_S -closure.

Theorem 2.4. The following statements are equivalent for any topological space (X, τ) with an operation γ on τ :

- (i) X is γ - P_S -regular.
- (ii) For each point x in X and each γ - P_S -open set H containing x, there exists a γ - P_S -open set G containing x such that τ_{γ} - $P_SCl(G) \subseteq H$.
- (iii) For each point $x \in X$ and for each γ - P_S -closed set F of X not containing x, there exists a γ - P_S -open set G containing x such that τ_{γ} - $P_SCl(G) \cap F = \phi$.

Proof. (i) \Rightarrow (ii) It is similar to Theorem 2.1.

- (ii) \Rightarrow (iii) Let $x \in X$ and let F be a γ - P_S -closed set of X such that $x \notin F$. Then $X \setminus F$ is γ - P_S -open set containing x. So by (ii), there exists a γ - P_S -open set $H \subseteq X$ containing x such that τ_{γ} - $P_SCl(G) \subseteq X \setminus F$. This implies that τ_{γ} - $P_SCl(G) \cap F = \phi$.
- (iii) \Rightarrow (i) Let F be any γ - P_S -closed set in X such that $x \notin F$. Then by (iii), there exists a γ - P_S -open set G containing x such that τ_{γ} - $P_SCl(G) \cap F = \phi$ which implies that $F \subseteq X \setminus \tau_{\gamma}$ - $P_SCl(G)$. Since $X \setminus \tau_{\gamma}$ - $P_SCl(G)$ is γ - P_S -open such that $X \setminus \tau_{\gamma}$ - $P_SCl(G) \cap G = \phi$. Therefore, X is γ - P_S -regular space. \square

The following example shows that the relation between the γ - P_S -regularity and γ - P_S - T_i for $i=0,\frac{1}{2},1,2$ are independent.

Example 2.5. Consider the space $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Define an operation $\gamma \colon \tau \to P(X)$ by $\gamma(A) = A$ for all $A \in \tau$. Then $\tau_{\gamma} = \tau$. Hence $\tau_{\gamma} - P_S O(X) = \{\phi, X, \{a\}, \{b, c, d\}\}$. The space (X, τ) is $\gamma - P_S$ -regular, but it is not $\gamma - P_S - T_i$ for $i = 0, \frac{1}{2}, 1, 2$.

Example 2.6. Let a space $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Define an operation $\gamma \colon \tau \to P(X)$ as follows:

For every $A \in \tau$,

$$\gamma(A) = \left\{ \begin{array}{ll} A & \text{if } a \in A \\ Cl(A) & \text{if } a \notin A \end{array} \right..$$

Clearly, $\tau_{\gamma} = \{\phi, X, \{a\}, \{a,b\}, \{b,c\}\}\}$. So τ_{γ} - $P_SO(X) = \{\phi, X, \{a\}, \{a,c\}, \{b,c\}\}\}$. Therefore, the space (X,τ) is γ - P_S - T_i for $i = 0, \frac{1}{2}, 1, 2$, but it is not γ - P_S -regular since the set $\{b\}$ is γ - P_S -closed not containing c, then there is no disjoint γ - P_S -open sets G and H such that $c \in G$ and $\{b\} \subseteq H$.

Definition 12. ([8]) A topological space (X, τ) with an operation γ on τ is said to be γ -pre-regular if for each γ -preclosed set F of X not containing x, there exist disjoint γ -preopen sets U and V such that $x \in U$ and $F \subseteq V$.

The relation between γ - P_S -regularity and γ -pre-regularity are independent while they are equivalent when a topological space (X, τ) is γ -semi T_1 as can be seen in the following two examples and theorem.

Example 2.7. In Example 2.6, the space (X, τ) is γ -pre-regular, but it is not γ - P_S -regular since the set $\{b\}$ is γ - P_S -closed not containing c, then there is no disjoint γ - P_S -open sets G and H such that $c \in G$ and $\{b\} \subseteq H$.

Example 2.8. Let a space $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a, b\}, \{c\}, X\}$. Then $P_SO(X) = \tau$. Define an operation γ on τ by:

For every $A \in \tau$,

$$\gamma(A) = \begin{cases} A & \text{if } A = \{c\} \\ X & \text{if } A \neq \{c\} \end{cases}.$$

Obviously, $\tau_{\gamma} = \{\phi, X, \{c\}\}$ and τ_{γ} - $P_SO(X) = \{\phi, X\}$. Then the space (X, τ) is γ - P_S -regular, but it is not γ -pre-regular since the set $\{a, b\}$ is γ -preclosed not containing c, then there is no disjoint γ -preopen sets G and H such that $c \in G$ and $\{a, b\} \subseteq H$.

Theorem 2.9. Let (X, τ) be a γ -semi T_1 space. Then (X, τ) is γ - P_S -regular if and only if (X, τ) is γ -pre-regular.

Proof. The proof follows from Theorem 1.6.

Definition 13. ([5]) Let (X,τ) and (Y,σ) be two topological spaces. A

function $f: (X, \tau) \to (Y, \sigma)$ is called (γ, β) - P_S -irresolute at a point $x \in X$ if for each β - P_S -open set V of Y containing f(x), there exists a γ - P_S -open set U of X containing x such that $f(U) \subseteq V$. If f is (γ, β) - P_S -irresolute at every point x in X, then f is said to be (γ, β) - P_S -irresolute.

Theorem 2.10. ([5]) The following properties are equivalent for any function $f:(X,\tau)\to (Y,\sigma)$, where γ and β are operations on τ and σ , respectively:

- (i) f is (γ, β) - P_S -irresolute.
- (ii) The inverse image of every β - P_S -open set of Y is γ - P_S -open set in X.
- (iii) The inverse image of every β - P_S -closed set of Y is γ - P_S -closed set in X.

Definition 14. ([5]) A function $f:(X,\tau) \to (Y,\sigma)$ is called (γ,β) - P_S -open (respectively, (γ,β) - P_S -closed) if for every γ - P_S -open (respectively, γ - P_S -closed) set V of X, then f(V) is β - P_S -open (respectively, β - P_S -closed) set in Y.

Lemma 2.11. ([5]) For a bijective function $f:(X,\tau)\to (Y,\sigma)$. The following properties of f are equivalent:

- (i) f^{-1} is (γ, β) - P_S -irresolute.
- (ii) f is (γ, β) - P_S -open.
- (iii) f is (γ, β) - P_S -closed.

Lemma 2.12. ([5]) Let (Y, σ) be a topological space and β be an operation on σ . A function $f: (X, \tau) \to (Y, \sigma)$ is (γ, β) - P_S -closed if and only if for each subset S of Y and each γ - P_S -open set O in X containing $f^{-1}(S)$, there exists a β - P_S -open set R in Y containing S such that $f^{-1}(R) \subseteq O$.

In the next results, we give some properties of γ - P_S -regular spaces which is related to γ - P_S -functions.

Theorem 2.13. Let $f:(X,\tau)\to (Y,\sigma)$ be a bijective, (γ,β) - P_S -irresolute and (γ,β) - P_S -closed, where γ and β are operations on τ and σ respectively. If (X,τ) is γ - P_S -regular, then (Y,σ) is also β - P_S -regular.

Proof. Let E be a β - P_S -closed set of (Y, σ) such that $y \notin E$. Since f is (γ, β) - P_S -irresolute function, then by Theorem 2.10 (iii), $f^{-1}(E)$ is γ - P_S -closed in (X, τ) . Since f is bijective, let f(x) = y, then $x \notin f^{-1}(E)$. Since (X, τ) is γ - P_S -regular space, then there exist disjoint γ - P_S -open sets G and H in X such that $x \in G$ and $f^{-1}(E) \subseteq H$. Since f is (γ, β) - P_S -closed, then by Lemma 2.12, we have there exists a β - P_S -open set U in Y containing E such that $f^{-1}(U) \subseteq H$. Since f is bijective (γ, β) - P_S -closed function. Then by Lemma 2.11, $y \in f(G)$ and f(G) is β - P_S -open set in Y. Thus, $G \cap f^{-1}(U) = \phi$ and hence $f(G) \cap U = \phi$. Therefore, (Y, σ) is β - P_S -regular.

Theorem 2.14. Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective (γ, β) - P_S -irresolute, (γ, β) - P_S -open and (γ, β) - P_S -closed, where γ and β are operations on τ and σ respectively. If (X, τ) is γ - P_S -regular, then (Y, σ) is also β - P_S -regular.

Proof. Similar to Theorem 2.13.

Definition 15. ([8]) Let (X,τ) and (Y,σ) be two topological spaces. A function $f:(X,\tau)\to (Y,\sigma)$ is called:

- (i) β -pre-anti-continuous if the inverse image of each β -preopen set in Y is open in X, or if the inverse image of each β -preclosed set in Y is closed in X.
- (ii) γ -pre-anti-closed if the image of each γ -preclosed set in X is closed in Y.

Theorem 2.15. Let $f:(X,\tau)\to (Y,\sigma)$ be a surjective β -pre-anti-continuous, β - P_S -open and β - P_S -closed function with the operation β on σ . If (X,τ) is regular, then (Y,σ) is β - P_S -regular.

Proof. Let E be a β - P_S -closed set of (Y, σ) containing y. Then E is β -preclosed. Since a function f is β -pre-anti-continuous, then $f^{-1}(E)$ is closed set in X containing $x \in X$, where y = f(x). Since a space X is regular, there exists an open set V such that $x \in V \subseteq Cl(V) \subseteq f^{-1}(E)$ which implies that $y \in f(V) \subseteq f(Cl(V)) \subseteq E$. Since f is β - P_S -open and β - P_S -closed function, then f(V) and f(Cl(V)) are β - P_S -open and β - P_S -closed sets in Y respectively. Then σ_{β} - $P_SCl(f(Cl(V))) \subseteq E$ and hence $y \in f(V) \subseteq \sigma_{\beta}$ - $P_SCl(f(Cl(V))) \subseteq E$. Consequently, by Theorem 2.1, (Y, σ) is β - P_S -regular.

Theorem 2.16. Let γ and β be operations on τ and σ respectively. Let

 $f: (X, \tau) \to (Y, \sigma)$ be an injective, (γ, β) - P_S -irresolute and (γ, β) - P_S -closed. If (Y, σ) is β - P_S -regular, then (X, τ) is also γ - P_S -regular.

Proof. Suppose that a set F is any γ - P_S -closed set of (X,τ) and $x \notin F$. Since f is (γ,β) - P_S -closed function. Then f(F) is β - P_S -closed set in Y and $f(x) \notin f(F)$. Since (Y,σ) is β - P_S -regular. Then there exist disjoint β - P_S -open sets U and V in Y such that $f(x) \in U$ and $f(F) \subseteq V$. Since f is injective, then $x \in f^{-1}(U)$, $F \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \phi$. Since f is (γ,β) - P_S -irresolute, then by Theorem 2.10 (ii), $f^{-1}(U)$ and $f^{-1}(V)$ are γ - P_S -open sets in X. So (X,τ) is γ - P_S -regular.

Definition 16. ([2]) Let (X, τ) and (Y, σ) be two topological spaces and γ be an operation on τ . A function $f: (X, \tau) \to (Y, \sigma)$ is called γ - P_S -continuous at a point $x \in X$ if for each open set V of Y containing f(x), there exists a γ - P_S -open set U of X containing x such that $f(U) \subseteq V$. If f is γ - P_S -continuous at every point x in X, then f is said to be γ - P_S -continuous.

Theorem 2.17. ([2]) For a function $f:(X,\tau)\to (Y,\sigma)$ and γ be an operation on τ , the following statements are equivalent:

- (i) f is γ - P_S -continuous.
- (ii) $f^{-1}(V)$ is γ - P_S -open set in X, for every open set V in Y.
- (iii) $f^{-1}(F)$ is γ - P_S -closed set in X, for every closed set F in Y.

Theorem 2.18. Let γ be an operation on τ . Let $f:(X,\tau)\to (Y,\sigma)$ be an injective γ - P_S -continuous and γ -pre-anti-closed. If (Y,σ) is regular, then (X,τ) is γ - P_S -regular.

Proof. Let F be a γ - P_S -closed set of X containing x. Then F is γ -preclosed. Since a function f is γ -pre-anti-closed, then f(F) is closed set in Y containing $y \in Y$, where y = f(x). Since a space (Y, σ) is regular, then there exists an open set V such that $y \in V \subseteq Cl(V) \subseteq f(F)$ which implies that $x \in f^{-1}(V) \subseteq f^{-1}(Cl(V)) \subseteq F$. Since f is γ - P_S -continuous function, then by Theorem 2.17 (ii) and (iii), $f^{-1}(V)$ and $f^{-1}(Cl(V))$ are γ - P_S -open and γ - P_S -closed sets in X respectively. Then τ_{γ} - $P_SCl(f^{-1}(Cl(V))) \subseteq F$ and hence $x \in f^{-1}(V) \subseteq \tau_{\gamma}$ - $P_SCl(f^{-1}(V)) \subseteq \tau_{\gamma}$ - $P_SCl(f^{-1}(Cl(V))) \subseteq F$. Therefore, by Theorem 2.1, (X, τ) is γ - P_S -regular space.

3. Characterizations of γ - P_S -normal spaces

Now, γ - P_S -normal space which is another type of γ - P_S - separation axioms is examined. Some characterizations of γ - P_S -normal spaces are investigated.

Definition 17. A topological space (X, τ) with an operation γ on τ is said to be γ - P_S -normal if for each pair of disjoint γ - P_S -closed sets E, F of X, there exist disjoint γ - P_S -open sets G and H such that $E \subseteq G$ and $F \subseteq H$.

Some important characterizations of γ - P_S -normal spaces are investigated as follows.

Theorem 3.1. Let (X, τ) be a γ -locally indiscrete space and γ be a regular operation on τ . Then X is γ - P_S -normal if and only if for each pair of disjoint γ - P_S -closed sets F and E of X, there exist disjoint γ - P_S -open sets G and H such that $E \subseteq G$, $F \subseteq H$ and τ_{γ} - $P_SCl(G) \cap \tau_{\gamma}$ - $P_SCl(H) = \phi$.

Proof. Let E and F be disjoint γ - P_S -closed sets in (X,τ) . Since (X,τ) is γ - P_S -normal space, there exist disjoint γ - P_S -open sets G and H such that $E\subseteq W$, $F\subseteq H$ and $W\cap H=\phi$. This implies that $W\cap \tau_\gamma$ - $P_SCl(H)=\phi$. Since τ_γ - $P_SCl(H)$ is γ - P_S -closed set such that $E\cap \tau_\gamma$ - $P_SCl(H)=\phi$ and X is γ - P_S -normal, then there exist γ - P_S -open sets U and V such that $E\subseteq U$, τ_γ - $P_SCl(H)\subseteq V$ and $U\cap V=\phi$ which implies that τ_γ - $P_SCl(U)\cap V=\phi$. If we put $G=W\cap U$. Since a space X is γ -locally indiscrete and γ is a regular operation on τ , then by Lemma 1.3, G is γ - P_S -open set in X. Hence G and H are γ - P_S -open sets such that $E\subseteq G$, $F\subseteq H$ and τ_γ - $P_SCl(G)\cap \tau_\gamma$ - $P_SCl(H)=\phi$.

Conversely, suppose E and F are disjoint γ - P_S -closed sets in X. Then by hypothesis, we have there exist disjoint γ - P_S -open sets G and H such that $E \subseteq G$, $F \subseteq H$ and τ_{γ} - $P_SCl(G) \cap \tau_{\gamma}$ - $P_SCl(H) = \phi$. This implies that $G \cap H = \phi$ and hence (X, τ) is γ - P_S -normal space. \square

Notice that γ - P_S -open set in Theorem 3.1 can be replaced by γ -regular-open, γ -open, α - γ -open and γ -semiopen sets according to Remark 1.4. Again, τ_{γ} - P_S -closure can be replaced by τ_{γ} -closure, $\tau_{\alpha-\gamma}$ -closure and τ_{γ} -semi-closure of a set.

Theorem 3.2. The following conditions are equivalent for any topological space (X, τ) with an operation γ on τ :

- (i) X is γ - P_S -normal.
- (ii) For each γ - P_S -closed set F in X and each γ - P_S -open set G containing F, there exists a γ - P_S -open set H containing F such that τ_{γ} - $P_SCl(H) \subseteq G$.
- (iii) For each pair of disjoint γ - P_S -closed sets F and E of X, there exists a γ - P_S -open set G containing E such that τ_{γ} - $P_SCl(G) \cap F = \phi$.
- Proof. (i) \Rightarrow (ii) Let F be any γ - P_S -closed set in X and G be any γ - P_S -open set in X such that $F \subseteq G$. Then $F \cap X \backslash G = \phi$ and $X \backslash G$ is γ - P_S -closed. By hypothesis, there exist γ - P_S -open sets H and W such that $F \subseteq H$ and $X \backslash G \subseteq W$ and $H \cap W = \phi$ which implies τ_{γ} - $P_SCl(H) \cap W = \phi$. Then τ_{γ} - $P_SCl(H) \subseteq X \backslash W \subseteq G$. So $F \subseteq H$ and τ_{γ} - $P_SCl(H) \subseteq G$.
- (ii) \Rightarrow (iii) Let E and F be γ - P_S -closed sets of X such that $E \cap F = \phi$. Then $E \subseteq X \setminus F$ and $X \setminus F$ is γ - P_S -open set containing E. By (ii), there exists a γ - P_S -open set $G \subseteq X$ containing E such that τ_{γ} - $P_SCl(G) \subseteq X \setminus F$. This implies that τ_{γ} - $P_SCl(G) \cap F = \phi$.
- (iii) \Rightarrow (i) Let E and F be disjoint γ - P_S -closed sets of X. Then by (iii), there exists a γ - P_S -open set G containing E such that τ_{γ} - $P_SCl(G) \cap F = \phi$ which implies that $F \subseteq X \setminus \tau_{\gamma}$ - $P_SCl(G)$. Since $X \setminus \tau_{\gamma}$ - $P_SCl(G)$ is γ - P_S -open such that $X \setminus \tau_{\gamma}$ - $P_SCl(G) \cap G = \phi$. Therefore, X is γ - P_S -normal.

Theorem 3.3. Let (X, τ) be a topological space and γ be an operation on τ . Then the following statements hold:

- (i) X is γ - P_S -normal.
- (ii) For each pair of disjoint γ - P_S -closed sets F and E of X, there exist disjoint γ - P_S -g-open sets G and H such that $E \subseteq G$ and $F \subseteq H$.
- (iii) For each γ - P_S -closed set F in X and each γ - P_S -open set U containing F, there exists a γ - P_S -g-open set V such that $F \subseteq V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq U$.
- (iv) For each γ - P_S -closed set F in X and each γ - P_S -g-open set U containing F, there exists a γ - P_S -g-open set V such that $F \subseteq V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq \tau_{\gamma}$ - $P_SInt(U)$.
- (v) For each γ - P_S -closed set F in X and each γ - P_S -g-open set U containing F, there exists a γ - P_S -open set V such that $F \subseteq V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq \tau_{\gamma}$ - $P_SInt(U)$.

- (vi) For each γ - P_S -g-closed set F in X and each γ - P_S -open set U containing F, there exists a γ - P_S -open set V such that τ_{γ} - $P_SCl(F) \subseteq V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq U$.
- (vii) For each γ - P_S -g-closed set F in X and each γ - P_S -open set U containing F, there exists a γ - P_S -g-open set V such that τ_{γ} - $P_SCl(F) \subseteq V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq U$.
 - *Proof.* (i) \Rightarrow (ii) It is obvious, since every γ - P_S -open set is γ - P_S -g-open.
- (ii) \Rightarrow (iii) Let F be any γ - P_S -closed set in X and let U be any γ - P_S -open set containing F. Then $X \setminus U$ is γ - P_S -closed set in X and hence by using (ii), there exist disjoint γ - P_S -g-open sets G and H such that $F \subseteq G$ and $X \setminus U \subseteq H$. Since $X \setminus U$ is γ - P_S -closed and H is γ - P_S -g-open. Then by Theorem 1.2, $X \setminus U \subseteq \tau_{\gamma}$ - $P_SInt(H)$ and $G \cap \tau_{\gamma}$ - $P_SInt(H) = \phi$. So, τ_{γ} - $P_SCl(G) \cap \tau_{\gamma}$ - $P_SInt(H) = \phi$ which implies that τ_{γ} - $P_SCl(G) \subseteq X \setminus \tau_{\gamma}$ - $P_SInt(H) \subseteq U$. Therefore, $F \subseteq G \subseteq \tau_{\gamma}$ - $P_SCl(G) \subseteq U$.
- (iv) \Rightarrow (v) For each γ - P_S -closed set F in X and each γ - P_S -g-open set U containing F. Then by (iv), there exists a γ - P_S -g-open set V such that $F \subseteq V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq \tau_{\gamma}$ - $P_SInt(U)$. Since $F \subseteq V$ where F is γ - P_S -closed set and U is γ - P_S -g-open set, then by Theorem 1.2, $F \subseteq \tau_{\gamma}$ - $P_SInt(V)$. Since τ_{γ} - $P_SCl(\tau_{\gamma}$ - $P_SInt(V)) \subseteq \tau_{\gamma}$ - $P_SCl(V)$. Therefore, τ_{γ} - $P_SInt(V)$ is a γ - P_S -open set such that $F \subseteq \tau_{\gamma}$ - $P_SInt(V) \subseteq \tau_{\gamma}$ - $P_SCl(\tau_{\gamma}$ - $P_SInt(V)) \subseteq \tau_{\gamma}$ - $P_SInt(U)$.
- (v) \Rightarrow (vi) Suppose that $F \subseteq U$, where U is γ - P_S -open set and F is γ - P_S -g-closed set of X. So, τ_{γ} - $P_SCl(F) \subseteq U$. Since every γ - P_S -open set is γ - P_S -g-open (that is, U is γ - P_S -g-open) and τ_{γ} - $P_SCl(F)$ is γ - P_S -closed, then by (v), there exists a γ - P_S -open set V such that τ_{γ} - $P_SCl(F) \subseteq V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq \tau_{\gamma}$ - $P_SInt(U) = U$.
 - $(vi) \Rightarrow (vii)$ The proof is clear.
- (vii) \Rightarrow (i) Suppose that E and F are two γ - P_S -closed sets of X such that $E \cap F = \phi$. This implies that $F \subseteq X \setminus E$, F is γ - P_S -g-closed and $X \setminus E$ is γ - P_S -open. Then by (vii), there exists a γ - P_S -g-open set V such that τ_{γ} - $P_SCl(F) \subseteq V \subseteq \tau_{\gamma}$ - $P_SCl(V) \subseteq X \setminus E$. By Theorem 1.2, $F \subseteq \tau_{\gamma}$ - $P_SInt(V)$. Now $E \subseteq X \setminus \tau_{\gamma}$ - $P_SCl(V)$. Let $G = X \setminus \tau_{\gamma}$ - $P_SCl(V)$ and $H = \tau_{\gamma}$ - $P_SInt(V)$ are γ - P_S -open sets of X such that $E \subseteq G$, $F \subseteq H$ and $G \cap H = \phi$. Consequently, X is γ - P_S -normal space.

Definition 18. ([8]) A topological space (X, τ) with an operation γ on τ is said to be γ -pre-normal if for each pair of disjoint γ -preclosed sets E, F of X, there exist disjoint γ -preopen sets U and V such that $E \subseteq U$ and $F \subseteq V$.

The relation between γ - P_S -normality and γ -pre-normality are independent. However, they are equivalent when a topological space (X, τ) is γ -semi T_1 as can be explained in the following two examples and theorem.

Example 3.4. Let (X, τ) be a topological space and γ be an operation on τ as in Example 2.6. Then the space (X, τ) is γ -pre-normal, but it is not γ - P_S -normal since the set $\{b\}$ is γ - P_S -closed not containing c, then there is no disjoint γ - P_S -open sets G and H such that $c \in G$ and $\{b\} \subseteq H$.

Example 3.5. In Example 2.8. Then the space (X, τ) is γ - P_S -normal, but it is not γ -pre-normal since $\{a\}$ and $\{b\}$ are disjoint γ -preclosed sets, then there is no disjoint γ -preopen sets G and H such that $\{a\} \in G$ and $\{b\} \subseteq H$.

Theorem 3.6. Let (X, τ) be a γ -semi T_1 space. Then (X, τ) is γ - P_S -normal if and only if (X, τ) is γ -pre-normal.

Proof. The proof follows from Theorem 1.6.

Theorem 3.7. ([7]) Let (X, τ) be a topological space and γ be an operation on τ . Then X is γ - P_S - T_1 if and only if every singleton set in X is γ - P_S -closed.

Lemma 3.8. If (X, τ) is γ - P_S - T_1 space. Then every γ - P_S -normal space X is γ - P_S -regular.

Proof. Let F be a γ - P_S -closed set in X and $x \in X$ does not belong to F. Since X is γ - P_S - T_1 . Then by Theorem 3.7, $\{x\}$ is γ - P_S -closed. So $\{x\}$ and F are two disjoint γ - P_S -closed sets of X. Since X is γ - P_S -normal, then there exist disjoint γ - P_S -open sets G and H such that $x \in \{x\} \subseteq G$ and $F \subseteq H$. Hence X is γ - P_S -regular. \square

The following example shows that the converse of Lemma 3.8 is not true in general.

Example 3.9. In Example 2.5, the space (X, τ) is both γ - P_S -regular and

 γ - P_S -normal, but (X, τ) is not γ - P_S - T_1 since every γ - P_S -open set containing b contains c also.

As in Lemma 1.7 (i) showed that every γ - P_S - T_2 space is γ - P_S - T_1 while the converse is true only when a space X is γ - P_S -regular as shown in the following Lemma 3.10.

Lemma 3.10. If (X, τ) is γ - P_S -regular and γ - P_S - T_1 space. Then it is γ - P_S - T_2 .

Proof. Similar to Lemma 3.8. □

From Lemma 3.8 and 3.10, we have the following theorem.

Theorem 3.11. If (X, τ) is γ - P_S -normal and γ - P_S - T_1 space. Then it is γ - P_S - T_2 .

Proof. Obvious. \Box

In the end of this section, we obtain some properties of γ - P_S -normal spaces which is related to γ - P_S -functions.

Theorem 3.12. For any operations γ and β on τ and σ respectively. If $f: (X, \tau) \to (Y, \sigma)$ is bijective (γ, β) - P_S -irresolute and (γ, β) - P_S -open and (X, τ) is γ - P_S -normal. Then (Y, σ) is also β - P_S -normal.

Proof. Suppose that E_1 and E_2 are disjoint β - P_S -closed sets of (Y, σ) and f is (γ, β) - P_S -irresolute function, then by Theorem 2.10 (iii), $f^{-1}(E_1)$ and $f^{-1}(E_2)$ are γ - P_S -closed sets in (X, τ) . Since (X, τ) is γ - P_S -normal space, then there exist disjoint γ - P_S -open sets G_1 and G_2 in X such that $f^{-1}(E_1) \subseteq G_1$ and $f^{-1}(E_2) \subseteq G_2$. Since a function f is (γ, β) - P_S -open and bijective, then $f(G_1)$ and $f(G_2)$ are β - P_S -open sets in (Y, σ) such that $E_1 \subseteq f(G_1)$, $E_2 \subseteq f(G_2)$ and $f(G_2) \cap f(G_2) = \phi$. Then (Y, σ) is β - P_S -normal space.

Corollary 3.13. Let $f:(X,\tau)\to (Y,\sigma)$ be a surjective (γ,β) - P_S -irresolute, (γ,β) - P_S -open and (γ,β) - P_S -closed, where γ and β are operations on τ and σ respectively. If (X,τ) is γ - P_S -normal, then (Y,σ) is also β - P_S -normal.

Proof. Directly follows from Theorem 3.12.

Theorem 3.14. Let $f:(X,\tau)\to (Y,\sigma)$ be a bijective β -pre-anti-continuous, β - P_S -open function with the operation β on σ . If (X,τ) is normal, then (Y,σ) is β - P_S -normal.

Proof. Let F_1 and F_2 are disjoint β - P_S -closed sets in (Y, σ) . Then F_1 and F_2 are disjoint β -preclosed sets. Since f is β -pre-anti-continuous, then the sets $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are closed sets in (X, τ) . Since (X, τ) is normal, then there exist disjoint open sets V_1 and V_2 such that $f^{-1}(F_1) \subseteq V_1$ and $f^{-1}(F_2) \subseteq V_2$. Since f is bijective β - P_S -open function, then $f(V_1)$ and $f(V_2)$ are β - P_S -open sets in (Y, σ) such that $F_1 \subseteq f(V_1)$, $F_2 \subseteq f(V_2)$ and $f(V_2) \cap f(V_2) = \phi$. Hence (Y, σ) is β - P_S -normal space.

Theorem 3.15. Let γ and β be operations on τ and σ respectively. Let $f: (X, \tau) \to (Y, \sigma)$ be an injective, (γ, β) - P_S -irresolute and (γ, β) - P_S -closed. If (Y, σ) is β - P_S -normal, then (X, τ) is also γ - P_S -normal.

Proof. Assume that f is (γ, β) - P_S -closed and, F_1 and F_2 are disjoint γ - P_S -closed sets of (X, τ) . Then $f(F_1)$ and $f(F_2)$ are β - P_S -closed sets in (Y, σ) . Since (Y, σ) is β - P_S -normal space, then there exist disjoint β - P_S -open sets H_1 and H_2 in X such that $f(F_1) \subseteq H_1$ and $f(F_2) \subseteq H_2$. Since f is injective, then $F_1 \subseteq f^{-1}(H_1)$, $F_2 \subseteq f^{-1}(H_2)$ and $f^{-1}(H_1) \cap f^{-1}(H_2) = \phi$. Since f is (γ, β) - P_S -irresolute, then by Theorem 2.10 (ii), $f^{-1}(H_1)$ and $f^{-1}(H_2)$ are γ - P_S -open sets in (X, τ) . Therefore, (X, τ) is γ - P_S -normal.

Theorem 3.16. For any operation γ on τ . If the function $f:(X,\tau) \to (Y,\sigma)$ is injective γ - P_S -continuous and γ -pre-anti-closed, and (Y,σ) is normal. Then (X,τ) is γ - P_S -normal.

Proof. Let F_1 and F_2 are disjoint γ - P_S -closed sets of (X,τ) . Then F_1 and F_2 are disjoint γ -preclosed sets. Since f is γ -pre-anti-closed, then $f(F_1)$ and $f(F_2)$ are closed sets in (Y,σ) . Since a space (Y,σ) is normal, then there exist open sets V_1 and V_2 in Y such that $f(F_1) \subseteq V_1$, $f(F_2) \subseteq V_2$ and $V_1 \cap V_2 = \phi$. Now since f is injective γ - P_S -continuous, then by Theorem 2.17 (ii), $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are γ - P_S -open sets in (X,τ) such that $F_1 \subseteq f^{-1}(V_1)$, $F_2 \subseteq f^{-1}(V_2)$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. So (X,τ) is γ - P_S -normal space.

Acknowledgments

Thanks to Universiti Utara Malaysia for the financial support.

References

- [1] B.A. Asaad and N. Ahmad, Further characterization of γ -extremally disconnected spaces, *International J. of Pure and Applied Mathematics*, **108**, No 3 (2016), 533-549.
- [2] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -functions in topological spaces, International J. of Mathematical Analysis, 8, No 6 (2014), 285-300.
- [3] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -generalized closed sets and γ - P_S - $T_{\frac{1}{2}}$ spaces, International J. of Pure and Applied Mathematics, **93**, No 2 (2014), 243-260.
- [4] B.A. Asaad, N. Ahmad and Z. Omar, γ - P_S -open sets in topological spaces, Proc. of the 1st Innovation and Analytics Conference and Exhibition, UUM Press, Sintok (2013), 75-80.
- [5] B.A. Asaad, N. Ahmad and Z. Omar, (γ, β) - P_S -irresolute and (γ, β) - P_S -continuous functions, *International J. of Pure and Applied Mathematics*, **99**, No 1 (2015), 77-96.
- [6] B.A. Asaad, N. Ahmad and Z. Omar, γ -regular-open sets and γ -extremally disconnected spaces, *Mathematical Theory and Modeling*, **3**, No 12 (2013), 132-141.
- [7] B.A. Asaad, N. Ahmad and Z. Omar, Operation-separation axioms via γ - P_S -open sets, International J. of Pure and Applied Mathematics, 118, No 3 (2018), 686-699.
- [8] M.K. Ghosh, On γ -preopen sets, International J. of Mathematical Analysis, **6**, No 53 (2012), 2633-2645.
- [9] Sh. Haxha and Q.D. Gjonbalaj, γ^* -operation in the product of topological spaces, *International J. of Applied Mathematics*, **31**, No 4 (2018), 661-672; DOI: 10.12732/ijam.v31i4.11.
- [10] D.S. Jankovic, On functions with α -closed graphs, Glasnik Matematicki, 18, No 38 (1983), 141-148.

- [11] N. Kalaivani and G.S.S. Krishnan, On α - γ -open sets in topological spaces, *Proc. of ICMCM*, **6** (2009), 370-376.
- [12] S. Kasahara, Operation compact spaces, *Math. Japonica*, **24**, No 1 (1979), 97-105.
- [13] G.S.S. Krishnan and K. Balachandran, On a class of γ -preopen sets in a topological space, East Asian Math. J., 22, No 2 (2006), 131-149.
- [14] G.S.S. Krishnan and K. Balachandran, On γ -semiopen sets in topological spaces, *Bull. Cal. Math. Soc.*, **98**, No 6 (2006), 517-530.
- [15] H. Ogata, Operation on topological spaces and associated topology, *Math. Japonica*, **36**, No 1 (1991), 175-184.
- [16] Z.A. Ameen, B.A. Asaad and R.A. Muhammed, On superclasses of δ -open sets in topological spaces, *International J. of Applied Mathematics*, **32**, No 2 (2019), 259-277; DOI: 10.12732/ijam.v32i2.8.