International Journal of Applied Mathematics

Volume 32 No. 4 2019, 587-601

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v32i4.4

γ -OPEN FUNCTION AND γ -CLOSED FUNCTIONS

Shukri Haxha¹, Qefsere Doko Gjonbalaj² §

1,2 Faculty of Electrical and Computer Engineering
Department of Math.
University of Prishtina "Hasan Prishtina"
Prishtinë, 10 000 – KOSOVË

Abstract: In this paper we define two types of functions of topological spaces: γ -open functions and γ -closed functions. In addition, we examine the relation of these functions among themselves and their relation with γ -continuous functions. In the following, we study some properties of γ -open and γ -closed functions.

AMS Subject Classification: 54A05, 54A10, 54D10

Key Words: γ -open functions, γ -closed functions, γ -continuous functions

1. Introduction

The notion of γ -operation in a topological space and the notion of the γ -open set were introduced by the Japanese mathematician H. Ogata in 1991. Further, through the notion of the γ -open set, Ogata defined the $\gamma - T_i$ $(i=0,\frac{1}{2},1,2)$ spaces.

In 1992 F.U. Rehman and B. Ahmad defined the γ -interior, γ -exterior, γ -closure and γ -boundary of a subset of a topological space (see [9]).

In 2003 B. Ahmad and S. Hussain studied many properties of a γ -operation in a topological space, they defined the meaning of γ -neighborhood as well as γ -neighborhood of the base (see [1]).

In 2009 C.K. Basu, B.M. Uzzal Afsan and M.K. Chash defined γ -continuity of function (see [3]).

In our previous work [4]: " γ^* -operation in the product of topological

Received: May 20, 2019

© 2019 Academic Publications

[§]Correspondence author

spaces", we have defined the concept of γ 6*-operation in the topological product of topological spaces (X_i, \mathcal{T}_i) , $i \in I$, through γ_i -operations of spaces (X_i, \mathcal{T}_i) , $i \in I$.

As noted before, in this paper we define two types of functions of topological spaces: γ -open functions and γ -closed functions and also we study some properties of these functions.

2. Preliminaries

Definition 1. ([11]) Let (X, \mathcal{T}) be the topological space. The function $\gamma : \mathcal{T} \to \mathcal{P}(X), (\mathcal{P}(X))$, is the partition of X, such that for each $G \in \mathcal{T}, G \subseteq \gamma(G)$, is called γ -operation in the topological space (X, \mathcal{T}) .

Examples of γ -operation in a topological space (X, \mathcal{T}) , are functions: γ : $\mathcal{T} \to \mathcal{P}(X)$, given by: $\gamma(G) = G$, $\gamma(G) = clG$, $\gamma(G) = int(clG)$, etc.

Definition 2. ([11]) Let (X, \mathcal{T}) be the topological space and $\gamma : \mathcal{T} \to \mathcal{P}(X)$ a γ -operation in this space. The set $G \subseteq X$ is called γ -open, if for every $x \in G$, there exists the set $U \in \mathcal{T}$, such that $x \in U$ and $\gamma(U) \subseteq G$.

The family of all γ -open sets of topological space (X, \mathcal{T}) , is denoted by: \mathcal{T}_{γ} . This means:

$$\mathcal{T}_{\gamma} = \{ G \subseteq X : \forall x \in G, \exists U \in \mathcal{T} : x \in U \subseteq \gamma(U) \subseteq G \}. \tag{1}$$

Definition 3. ([2]) The set F, is called γ -closed, if its complement $F^C = X \setminus F$ is the γ -open set in X.

By Definition 3, it turns out that if the set F is γ -closed, it is closed set. True, if F is γ -closed, then $F^C = X \setminus F$ is a γ -open set and as such is open set. It means F is closed set. By the definition of γ -operation, γ -open set and γ -closed set some simple statements are derived, which are given by the following theorem.

Theorem 4. ([2]) Let (X, \mathcal{T}) be the topological space and $\gamma : \mathcal{T} \to \mathcal{P}(X)$ a γ -operation in this space, also let be \mathcal{T}_{γ} as given in equation (1), then:

1.
$$\mathcal{T}_{\gamma} \subseteq \mathcal{T}$$

- 2. $\emptyset, X \in \mathcal{T}_{\gamma}$ (\emptyset and X are γ -closed sets),
- 3. If $\gamma(G) = G, \forall G \in \mathcal{T}$, then $\mathcal{T}_{\gamma} = \mathcal{T}$,
- 4. If $\mathcal{T} = \{\emptyset, X\}$ (in discrete topology), then for each γ -operation, the only γ -open and γ -closed sets are \emptyset and X.
- Proof. 1. From $G \in \mathcal{T}_{\gamma}$ it follows that for every $x \in G$, exists $U_x \in \mathcal{T}$ such that $x \in U_x \subseteq \gamma(U_x) \subseteq G$, so $G = \bigcup \{U_x : x \in G\} \in \mathcal{T}$ (as a union of sets $U_x \in \mathcal{T}$). This means $\mathcal{T}_{\gamma} \subseteq \mathcal{T}$.
- 2. Since \emptyset has no element, we can consider that each "element" satisfies the condition of Definition 1. It means $\emptyset \in \mathcal{T}_{\gamma}$. On the other hand, $\forall x \in X$, there exists an open set U (at least set X), so $x \in U$ and $\gamma(U) \subseteq X$. It means $X \in \mathcal{T}_{\gamma}$.
- 3. Let $\gamma(G) = G, \forall G \in \mathcal{T}$. From $G \in \mathcal{T}$ and $x \in G$ we have: $x \in G$ and $\gamma(G) = G \subseteq G$, it means $\mathcal{T} \subseteq \mathcal{T}_{\gamma}$. From statement 1. it follows that $\mathcal{T}_{\gamma} = \mathcal{T}$.
- 4. It follows directly from the statements 1. and 2.

Theorem 5. ([1]) Let (X, \mathcal{T}) be the topological space and $\gamma : \mathcal{T} \to \mathcal{P}(X)$ a γ -operation in this space, then:

- 1. $\mathcal{T}_{\gamma} \subseteq \mathcal{T}$,
- 2. $\emptyset, X \in \mathcal{T}_{\gamma}$ (\emptyset and X are γ -closed sets).
- Proof. 1. Let $x \in \bigcup_{i \in I} G_i(G_i \in \mathcal{T}_{\gamma})$. Then, there exists $i_0 \in I$, such that $x \in G_{i_0}$. Since $G_{i_0} \in \mathcal{T}_{\gamma}$, there exists $G \in \mathcal{T}$ such as $x \in G$ and $\gamma(G) \subseteq G_{i_0} \subseteq \bigcup_{i \in I} G_i$. It means $\bigcup_{i \in I} G_i \in \mathcal{T}_{\gamma}$.
- 2. That the intersection of the two γ -open sets is not always a γ -open set, as shown by the following example.

Example 1. Let $X = \{a, b, c\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}.$$

In X, we define γ -operation in this way:

$$\gamma(G) = \begin{cases} G, b \in G \\ clG, b \notin G \end{cases}$$
 (2)

We define the \mathcal{T}_{γ} family, by proving which of the sets from the \mathcal{T} family, satisfy the terms of Definition 2.

We consider the set $\{a\}$. Sets $\{a\}, \{a, b\}$ and $\{a, c\}$, are open sets that contain the single element a, of the set $\{a\}$. On the other hand, we have:

$$\gamma(\{a\}) = cl\{a\} = \{a, c\} \not\subseteq \{a\}, \gamma(\{a, b\}) = \{a, b\} \not\subseteq \{a\}, \gamma(\{a, c\}) = \{a, c\} \not\subseteq \{a\}. \text{ It means } \{a\} \not\in \mathcal{T}_{\gamma}.$$

Similarly, proving to all open sets of given space, we find that:

$$\mathcal{T}_{\gamma} = \{\emptyset, \{b\}, \{a, b\}, \{a, c\}, X\}. \tag{3}$$

We notice that $\{a,b\} \in \mathcal{T}_{\gamma}$ and $\{a,c\} \in \mathcal{T}_{\gamma}$, but $\{a,b\} \cap \{a,c\} = \{a\} \notin \mathcal{T}_{\gamma}$.

Remark 1. The statement 2. of Theorem 4 shows that \mathcal{T}_{γ} is not always the topology in X.

Based on Theorem 5 and De-Morgan laws, it follows:

Theorem 6. Let (X, \mathcal{T}) be the topological space and $\gamma : \mathcal{T} \to \mathcal{P}(X)$ a γ -operation in this space, then:

- 1. If for any $i \in I$, F_i is the γ -closed set in X, then $\cap_{i \in I} F_i$ is the γ -closed set in X,
- 2. If F_1, F_2 are γ -closed sets in X, then $F_1 \cup F_2$, is not always γ -closed set.

The statement 2. of Theorem 6 is proved by Example 1, according to which $\{c\}^c = \{a,b\} \in \mathcal{T}_{\gamma} \text{ and } \{b\}^c = \{a,c\} \in \mathcal{T}_{\gamma}.$ So, sets $\{c\}$ and $\{b\}$, are γ -closed, but their union $\{b,c\}$, is not γ - closed because $\{b,c\}^c = \{a\} \notin \mathcal{T}_{\gamma}$.

Definition 7. ([11]) Let (X, \mathcal{T}) be the topological space and $A \subseteq X$. The point $x \in A$ is called the point of γ -interior of set A, if there exists an open neighborhood U of point x, so $\gamma(U) \subseteq A$. The set of all γ -interiors points of set A is called γ -interior and is symbolically denoted by $int_{\gamma}(A)$. This means:

$$int_{\gamma}(A) = \{x \in A : x \in U \in \mathcal{T}, \gamma(U) \subseteq A\} \subseteq A.$$

By Definition 7, it turns out that $int_{\gamma}(A) \subseteq intA$. Also from Definitions 2 and 7, it turns out that A is a γ -open, then and only when $int_{\gamma}(A) = intA$.

Definition 8. ([11]) Let (X, \mathcal{T}) be the topological space and $A \subseteq X$. The point $x \in A$ is called the point of γ - closure of set A, if $\gamma(U) \cap A \neq \emptyset$ for each open neighborhood U of point x. The set of all γ -closures points of set A is called γ -closure and is symbolically marked by $cl_{\gamma}(A)$. It means:

$$cl_{\gamma}(A) = \{x \in A : \gamma(U) \cap A \neq \emptyset,$$

for each open neighborhood U of point x}.

By Definition 8, it turns out that $clA \subseteq cl_{\gamma}(A)$ and $A \subseteq cl_{\gamma}(A)$. Also from Definitions 3 and 8, it turns out that A is a γ -closed, then and only when $A = cl_{\gamma}(A)$.

Definition 9. ([1]) The set $U \subseteq X$ is called the γ - neighborhood of point $x \in X$, if there exists the γ - open set V, such that $x \in V \subseteq U$.

Definition 10. ([3]) Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological space and $\gamma: \mathcal{T} \to \mathcal{P}(X)$ a γ -operation in (X, \mathcal{T}) . The function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is called the γ -continuous if the inverse image of any V-open set in Y is the γ -open set in X.

Definition 11. ([5]) Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological space. The function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is called open if the image f(G) of each open set G in X is open set in Y.

Definition 12. ([5]) Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological space. The function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is called closed if the image f(F) of each open set F in X is open set in Y.

3. Main results

3.1. γ -open functions and γ -closed functions

Definition 13. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological space and γ a γ -operation in space Y. The function $f:(X, \mathcal{T}) \to (Y, \mathcal{T}')$ is called the γ -open function if the image f(G) of any G open set in X is the γ -open set in Y.

Definition 14. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological space and γ a γ -operation in space Y. The function $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ is called the γ -closed function if the image f(F) of any F closed set in X is the γ -closed set in Y.

By Definitions 13 and 14, the following simple statement follows:

Statement 1. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological space and γ a γ -operation in space Y.

- 1. If the function $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ is γ -open, then it is also open;
- 2. If the function $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ is γ -closed, then it is also closed.
 - *Proof.* 1. Let $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ be γ -open function and G open set in X. Then from Definition 13, f(G) is γ -open set in Y and as such is open set in Y. It means f is an open function.
- 2. Let $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ be γ -open function and F closed set in X. Then from Definition 14, f(F) is γ -closed set in Y and as such is open set in Y. It means f is a closed function.

Next, by means of different examples we will see what is the relation among the γ -open, γ -closed and γ -continuous functions.

Example 2. Let be $X = \{a, b, c\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$$

and γ -operation in X, given with: $\gamma(G) = clG, \forall G \in \mathcal{T}$. The closed sets in X are: $\emptyset, \{b, c\}, \{a, b\}, \{c\}, \{b\}$ and X. By definition of γ -operation we have:

$$\gamma(\emptyset) = cl\emptyset = \emptyset, \gamma(\{a\}) = cl\{a\} = \{a\}, \gamma\{c\} = cl\{c\} = \{c\},$$
$$\gamma(\{a,b\}) = cl\{a,b\} = \{a,b\}, \gamma\{a,c\} = cl\{a,c\} = X, \gamma(X) = X.$$

We will consider which of the family members \mathcal{T} meet the terms of Definition 1. For example the set $\{a\}$ is not γ -open because open sets that contain its only element a are: $\{a\}, \{a,b\}, \{a,c\},$ and X, but none of the sets $\gamma(\{a\}), \gamma(\{a,b\}), \gamma(\{a,c\})$ and $\gamma(X)$ do not contained in $\{a\}$. By proving equally to all open sets in X, we conclude that $\mathcal{T}_{\gamma} = \{\emptyset, \{c\}, \{a,b\}, X\}$.

Let be $Y=\{1,2\}$ with the topology $\mathcal{T}'=\{\emptyset,\{1\},Y\}$. In space Y let γ' -operation be given in this way: $\gamma'(G)=G, \forall G\in \mathcal{T}'$. Since $\gamma'(G)=G, \forall G\in \mathcal{T}'$

 \mathcal{T}' . it comes out that $\mathcal{T}'_{\gamma} = \mathcal{T}' = \{\emptyset, \{1\}, Y\}$. We define the function $f: X \to Y$ with

$$f(x) = \begin{cases} 1, x \in \{a, c\} \\ 2, x \in \{b\} \end{cases}.$$

From the definition of function f we have:

$$f(\emptyset) = \emptyset, f(\{a\}) = \{1\}, f(\{c\}) = \{1\}, f(\{a, b\}) = \{1, 2\} = Y,$$
$$f(\{a, c\}) = \{1\}, f(X) = Y.$$

It means that the image of any open set in X, is the γ' -open set in Y, so f is the γ' -open function.

Note that $\{c\}$ is a closed set in X, because $\{c\}^c = \{a,b\} \in \mathcal{T}$, but $f(\{c\}) = \{1\}$ is not a γ' -closed set in Y, so f is not γ' -closed function.

We also note that $\{1\}$ is γ' -open in Y, but $f^{-1}(\{1\}) = \{a, c\} \notin \mathcal{T}_{\gamma}$. It means that f is not a γ -continuous function.

Example 3. Let be $X = \{a, b, c\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$$

and let be given γ - operation in X, with: $\gamma(G) = clG, \forall G \in \mathcal{T}$ (see Example 2). We have $\mathcal{T}_{\gamma} = \{\emptyset, \{c\}, \{a, b\}, X\}.$

Let be $Y = \{1, 2, 3\}$ with the indiscrete topology $\mathcal{T}' = \{\emptyset, Y\}$. Since the only open sets in γ' are \emptyset and Y, for whatever γ' -operation in Y we have $\mathcal{T}'_{\gamma} = \{\emptyset, Y\}$.

We define the function $f: X \to Y$ with

$$f(x) = \begin{cases} 1, x = a \\ 2, x = b \\ 3, x = c \end{cases}.$$

It is clear that $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(Y) = X$. It means that the inverse image of any open set in Y, is γ -open set in X. It means that f is the γ -continuous function.

On the other hand for example $\{a\}$ is a closed set in X, but $f(\{a\}) = \{1\} \not\in \mathcal{T}'_{\gamma}$. It means that f is not γ' -open function.

As well $\{b,c\}$ is closed set in X, but $f(\{b,c\}) = \{1,2\}$ and $\{1,2\}$ is not γ' -closed in Y. It means that f is not a γ' -closed function.

Example 4. Let be $X = \{a, b, c\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}.$$

Closed sets in X are: \emptyset , $\{b, c\}$, $\{a, c\}$, $\{c\}$ and X.

Let be $Y = \{1,2\}$ with the topology $\mathcal{T}' = \{\emptyset, \{1\}, Y\}$ and let be given γ' -operation in Y with $\gamma'(G) = G, \forall G \in \mathcal{T}'$. We have $\mathcal{T}'_{\gamma} = \{\emptyset, \{1\}, Y\}. \ \gamma'$ -closed sets in Y are: $\emptyset, \{2\}$ and Y.

We define the function $f: X \to Y$ with

$$f(x) = \begin{cases} 1, x \in \{a\} \\ 2, x \in \{b, c\} \end{cases}.$$

We have $f(\emptyset) = \emptyset$, $f(\{b,c\}) = \{2\}$, $f(\{a,c\} = Y, f(\{c\}) = \{2\}, f(X) = Y$. It means that the image of each closed set in X, is γ' -closed set in Y. So f is γ' -closed function.

On the other hand $\{b\}$ is open set in X, but $f(\{b\}) = \{2\}$ is not γ' -open set in Y, consequently f is not γ' -open function.

Example 5. Let be $X = \{a, b, c\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{a\}, X\}$$

and let be $\gamma(G) = G, \forall G \in \mathcal{T}$. It means $\mathcal{T}_{\gamma} = \{\emptyset, \{a\}, X\}$. Closed sets in X are: $\emptyset, \{b, c\}$ and X.

Let be now $Y = \{1, 2\}$ with the topology $\mathcal{T}' = \{\emptyset, \{1\}, Y\}$ and $\gamma'(G) = G, \forall G \in \mathcal{T}'$. It means $\mathcal{T}'_{\gamma} = \{\emptyset, \{1\}, Y\}.$ γ' -closed sets in Y are: $\emptyset, \{2\}, Y$.

We define the function $f: X \to Y$ with

$$f(x) = \begin{cases} 1, x \in \{c\} \\ 2, x \in \{a, b\} \end{cases}.$$

We have $f(\emptyset) = \emptyset$, $f(\{b,c\}) = Y$, f(X) = Y. It means that the image of each closed set in X, is the γ' -closed set in Y. So f is γ' -closed function. On the other hand $\{1\}$ is open set in Y, but $f^{-1}(\{1\}) = \{c\}$ which is not a γ -open set in X. It means that f is not a γ - continuous function.

The last four examples show that the meanings: γ -open function, γ -closed function, γ -continuous function are independent of each other.

3.2. Some properties of γ -open and γ -closed functions

The following theorems provide some statements equivalent to Definition 13, respectively Definition 14.

Theorem 15. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological spaces, γ a γ -operation in space Y and $f: X \to Y$. The following statements are equivalent:

- 1. f is the γ -open.
- 2. $\emptyset, X \in \mathcal{T}_{\gamma}$ (\emptyset and X are γ -closed sets)
- 3. For each open set B of base in X, f(B) is γ -open set in Y.
- 4. For each $x \in X$ and each neighborhood U of the point x in X there exists γ -neighborhood V of the point f(x) in Y such that $V \subseteq f(U)$.
- Proof. (1) \Rightarrow (2) Let f be the γ -open function. It means that for each open set G in X, f(G) is γ -open in Y. From $intA \subseteq A \Rightarrow f(intA) \subseteq f(A) \Rightarrow int_{\gamma}f(intA) \subseteq int_{\gamma}f(A)$. Since intA is the open set in X and f the γ -open function, it turns out that f(intA) is γ -open set in Y, and hence $int_{\gamma}f(intA) = f(intA) \Rightarrow f(intA) \subseteq int_{\gamma}f(A)$.
- $(2) \Rightarrow (3)$ Let B be the open set of base in X. Then $int B = B \Rightarrow f(B) = f(int B) \subseteq int_{\gamma}f(B) \subseteq f(B)$. It means that $int_{\gamma}f(B) = f(B) \Rightarrow f(B)$ is γ -open in Y.
- $(3)\Rightarrow (4)$ Let be $x\in X$ and U neighborhood of point x in X. Then there exists the open set G in X such that $x\in G\subseteq U$ and there exists an open set of base B such that $x\in B\subseteq G\subseteq U$. Note that V=f(B), according to (3), V is γ -open in Y and as such is the γ neighborhood of its point $f(x)\in V\subseteq f(U).(B\subseteq U\Rightarrow f(B)=V\subseteq f(U))$.
- $(4)\Rightarrow (1)$ Let G be open set in X. Then G is the neighborhood of each point $x\in G$. According to (4), for every $x\in G$, there exists the γ -neighborhood V_x of the point f(x) in Y, such that $V_x\subseteq f(G)$. From the definition of γ -neighborhood for every $x\in G$ there exists the γ -open set H_x in Y, such that $f(x)\in H_x\subseteq V_x\subseteq f(G)$. This means $f(G)=f(\cup_{x\in G}\{x\})=\cup_{x\in G}\{f(x)\}\subseteq \cup_{x\in G}H_x\subseteq f(G)$. It means $f(G)=\cup_{x\in G}H_x$. So f(G) is the γ -open set as the union of the γ -open sets. Finally f is the γ -open function.

Theorem 16. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological spaces and γ a γ -operation in space Y and $f: X \to Y$. The function $f: X \to Y$ is γ -closed if and only if for each $A \subseteq X$ is valid: $cl_Y f(A) \subseteq f(clA)$.

Proof. Let $f: X \to Y$ be the γ -closed function. Then f(clA) is γ -closed set in Y, because clA is closed set in X. From $A \subseteq clA \Rightarrow f(A) \subseteq f(clA) \Rightarrow cl_{\gamma}f(A) \subseteq cl_{\gamma}f(clA) = f(clA)$, because f(clA) is γ -closed in X. It means $cl_{\gamma}f(A) \subseteq f(clA)$.

Conversely: For each $A \subseteq X$, let $cl_{\gamma}f(A) \subseteq f(clA)$ and let be $F \subseteq X$ the closed set in X. From the assumption $f(F) \subseteq cl_{\gamma}f(F) \subseteq f(clF) = f(F)$, that because f is closed at X. It means $f(F) = cl_{\gamma}f(F)$. So f(F) is the γ -closed set in Y and consequently f is the γ -closed function.

Theorem 17. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological spaces and γ a γ -operation in space Y. The function $f: X \to Y$ is γ -closed if and only if for each $B \subseteq Y$ and any open set $G \subseteq X$ such that $f^{-1}(B) \subseteq G$, there exists the γ -open set U in Y, such that $B \subseteq U$ and $f^{-1}(U) \subseteq G$.

Proof. Let $f: X \to Y$ be the γ -closed function. Let be further $B \subseteq Y$ and $G \subseteq X$ the open set in X, such that $f^{-1}(B) \subseteq G$. Then $f(X \setminus G)$ is γ -closed set in Y, because $X \setminus G$ is closed in X and f is γ -closed. The set $U = Y \setminus f(X \setminus G)$ is γ -open in Y. Since $f^{-1}(B) \subseteq G \Rightarrow X \setminus G \subseteq X \setminus f^{-1}(B) = f^{-1}(Y \setminus B) \Rightarrow f(X \setminus G) \subseteq f(f^{-1}(Y \setminus B)) \subseteq Y \setminus B \Rightarrow Y \setminus f(X \setminus G) \supseteq Y \setminus (Y \setminus B) = B$. It means $B \subseteq U$. As well $f^{-1}(U) = f^{-1}(Y \setminus f(X \setminus G)) = X \setminus f^{-1}(f(X \setminus G)) \subseteq X \setminus (X \setminus G) = G$. It means $f^{-1}(U) \subseteq G$ and $G \subseteq G$.

Conversely: Let F be any closed set in X. We have to prove that f(F) is γ -closed in Y. The set $B = Y \setminus f(F)$ satisfies the condition $f^{-1}(B) = f^{-1}(Y \setminus f(F)) = X \setminus f^{-1}(f(F)) \subseteq X \setminus F$. Note $X \setminus F = G$. G is open set in X such that $f^{-1}(B) \subseteq G$. From the assumption exists the γ -open set U in Y, such that $B \subseteq U$ and $f^{-1}(U) \subseteq G$. It means $B = Y \setminus f(F) \subseteq U$ and $f^{-1}(U) \cap (X \setminus G) = \emptyset \Rightarrow f(f^{-1}(U) \cap (X \setminus G)) = f(\emptyset) = \emptyset \Rightarrow U \cap f(X \setminus G) = \emptyset$. That is, $U \subseteq Y \setminus f(X \setminus G) = Y \setminus f(F)$. So we have $Y \setminus f(F) \subseteq U \subseteq Y \setminus f(F)$. That is, $U = Y \setminus f(F) \Rightarrow f(F) = Y \setminus U$ is γ -closed set in Y, because U is γ -open in Y. Thus f is γ -closed.

Theorem 18. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two topological spaces and γ a γ -operation in space Y. The function $f: X \to Y$ is γ -open if and only if for each $B \subseteq Y$ and any open set $F \subseteq X$ such that $f^{-1}(B) \subseteq F$, there exists the γ -closed set S in Y, such that $B \subseteq S$ and $f^{-1}(S) \subseteq F$.

Proof. Let $f: X \to Y$ be the γ -open function. Let be further $B \subseteq Y$ and $F \subseteq X$ the closed set in X, such that $f^{-1}(B) \subseteq F$. Then $f(X \setminus F)$ is γ -open set in Y, because $X \setminus F$ is open in X and f is γ -open. The set $S = Y \setminus f(X \setminus F)$ is γ -closed in Y. Since $f^{-1}(B) \subseteq F \Rightarrow X \setminus F \subseteq X \setminus f^{-1}(B) = f^{-1}(Y \setminus B) \Rightarrow f(X \setminus F) \subseteq f(f^{-1}(Y \setminus B)) \subseteq Y \setminus B \Rightarrow Y \setminus f(X \setminus F) \supseteq Y \setminus (Y \setminus B) = B$. It means $B \subseteq S$. As well $f^{-1}(S) = f^{-1}(Y \setminus f(X \setminus F)) = X \setminus f^{-1}(f(X \setminus F)) \subseteq X \setminus (X \setminus F) = F$. It means $f^{-1}(S) \subseteq F$ and $G \subseteq S$.

Conversely: Let G be any open set in X. We have to prove that f(G) is γ -open in Y. The set $B = Y \setminus f(G)$ satisfies the condition $f^{-1}(B) = f^{-1}(Y \setminus f(G)) = X \setminus f^{-1}(f(G)) \subseteq X \setminus G$. Note $X \setminus G = F$. F is closed set in X such that $f^{-1}(B) \subseteq F$. From the assumption exists the γ -closed set S in Y, such that $B \subseteq S$ and $f^{-1}(S) \subseteq F$. It means $B = Y \setminus f(G) \subseteq S$ and $f^{-1}(S) \cap (X \setminus F) = \emptyset \Rightarrow f(f^{-1}(S) \cap (X \setminus F)) = f(\emptyset) = \emptyset \Rightarrow S \cap f(X \setminus F) = \emptyset$. It means $S \subseteq Y \setminus f(X \setminus F) = Y \setminus f(G)$. So we have $Y \setminus f(G) \subseteq S \subseteq Y \setminus f(G)$. It means $S = Y \setminus f(G) \Rightarrow f(F) = Y \setminus S$ is γ -open set in Y, because S is γ -closed in Y. Thus f is γ -open.

The following theorems are related to the composition of γ -open (γ -closed) functions.

Theorem 19. Let $(X, \mathcal{T}_1), (Y, \mathcal{T}_2)$ and (Z, \mathcal{T}_3) be topological spaces and $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2), g: (Y, \mathcal{T}_2) \to (Z, \mathcal{T}_3)$ the functions of topological spaces. Let be further γ_2 and γ_3 , the γ -operations in Y and Z spaces, respectively. Then

- 1. If f and g are γ_2 , respectively γ_3 open functions, then their composition $g \circ f : X \to Z$ is γ_3 —open function.
- 2. If f and g are γ_2 , respectively γ_3 -closed functions, then their composition $g \circ f: X \to Z$ is γ_3 -closed function.
- 3. If f is open function and g is γ_3 -open functions, then their composition $g \circ f: X \to Z$ is γ_3 -open function.
- 4. If f is closed function and g is γ_3 -closed functions, then their composition $g \circ f : X \to Z$ is γ_3 -closed function.
- *Proof.* 1. Let f and g be γ_2 , respectively γ_3 -open functions and let G be any open set in X. Then from $(g \circ f)(G) = g(f(G))$ and since f is γ_2 -open, it follows that f(G) is γ_2 -open set in Y and as such it is open

- set in Y. As g is γ_3 -open function it follows that $(g \circ f)(G) = g(f(G))$ is γ_3 -open set in Z. So the composition $g \circ f : X \to Z$ is γ_3 -open function.
- 2. Let f and g be γ_2 , respectively γ_3 -closed functions and let F be any closed set in X. Then from $(g \circ f)(F) = g(f(F))$ and since f is γ_2 -closed, it follows that f(F) is γ_2 -closed set in Y and as such it is closed set in Y. As g is γ_3 -closed function it follows that $(g \circ f)(G) = g(f(G))$ is γ_3 -closed set in Z. So the composition $g \circ f : X \to Z$ is γ_3 -closed function.
- 3. Let f be any open function and g be γ_3 -open functions and G let be any open set in X. Then from $(g \circ f)(G) = g(f(G))$ and since G is open set in X and f open function, it follows that f(G) is open set in Y. As g is γ_3 -open function it follows that $(g \circ f)(G) = g(f(G))$ is γ_3 -open set in G. It means $G \circ f: X \to Z$ is G0-open function.
- 4. Let f be any closed function and g be γ_3 -closed functions and F let be any closed set in X. Then from $(g \circ f)(G) = g(f(G))$ and since F is closed set in X and f closed function, it follows that f(F) is closed set in Y. As g is γ_3 -closed function it follows that $(g \circ f)(G) = g(f(G))$ is γ_3 -closed set in Z. It means $g \circ f : X \to Z$ is γ_3 -closed function.

Theorem 20. Let $(X, \mathcal{T}_1), (Y, \mathcal{T}_2)$ and (Z, \mathcal{T}_3) be topological spaces and $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2), g: (Y, \mathcal{T}_2) \to (Z, \mathcal{T}_3)$ the functions of topological spaces. Let be further γ_3 a γ -operations in Z spaces. Then

- 1. If the composition $g \circ f : X \to Z$ is γ_3 -open function and f is the surjective and continuous function, then the function g is γ_3 -open.
- 2. If the composition $g \circ f: X \to Z$ is γ_3 -closed function and f is the surjective and continuous function, then the function g is γ_3 -closed.
- Proof. 1. Let G be any open set in Y and f the surjective and continuous function. Since f is surjective, there is a set $H \subseteq X$ such that $f^{-1}(G) = H$. From the continuity of the function f it follows that H is the open set in X. Since $g \circ f : X \to Z$ is γ_3 -open, then $(g \circ f)(H)$ is γ_3 -open in Z. Further $(g \circ f)(H) = g(f(H)) = g(f(f^{-1}(G))) = (\text{since } f \text{ is a surjective}) = g(G)$. It means g(G) is γ_3 -open set and consequently g is the γ_3 -open function.

2. Let F be any closed set in Y and f the surjective and continuous function. Since f is surjective, there is a set $S \subseteq X$ such that $f^{-1}(F) = S$. From the continuity of the function f it follows that S is the closed set in X. Since $g \circ f: X \to Z$ is γ_3 -closed, then $(g \circ f)(S)$ is γ_3 -closed in Z. Further $(g \circ f)(S) = g(f(S)) = g(f(f^{-1}(F))) = (\text{since } f \text{ is a surjective}) = g(F)$. It means g(F) is γ_3 -closed set and consequently g is the γ_3 -closed function.

Theorem 21. Let $(X, \mathcal{T}_1), (Y, \mathcal{T}_2)$ and (Z, \mathcal{T}_3) be topological spaces and $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2), g: (Y, \mathcal{T}_2) \to (Z, \mathcal{T}_3)$ the functions of topological spaces. Let be further γ_2 and γ_3 the γ -operations in Y and Z spaces, respectively. Then

- 1. If the composition $g \circ f: X \to Z$ is γ_3 -open function and g is injective and γ_2 -continuous function, then the function f is γ_2 -open.
- 2. If the composition $g \circ f: X \to Z$ is γ_3 -closed function and g is injective and γ_2 -continuous function, then the function f is γ_2 -closed.
- Proof. 1. Let $G \subseteq X$ be any open set in X. As $g \circ f : X \to Z$ is γ_3 -open function, then $(g \circ f)(G) = g(f(G))$ is γ_3 -open set in Z and as such it is open set in Z. From the γ_2 -continuity of the function g, it follows that $g^{-1}(g(f(G)))$ is γ_2 -open set in Y. As g is injective, it follows that $g^{-1}(g(f(G))) = f(G)$. It means f(G) is γ_2 -open in Y. Consequently f is γ_2 -open function.
- 2. Let $F \subseteq X$ be any closed set in X. As $g \circ f : X \to Z$ is γ_3 -closed function, then $(g \circ f)(G) = g(f(G))$ is γ_3 -closed set in Z and as such it is closed set in Z. From the γ_2 -continuity of the function g, it follows that $g^{-1}(g(f(F)))$ is γ_2 -closed set in Y. As g is injective, it follows that $g^{-1}(g(f(F))) = f(F)$. It means f(F) is γ_2 -closed in Y. Consequently, f is γ_2 -closed function.
- **Theorem 22.** 1. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be topological spaces and γ a γ -operation in space Y. Further let A be open subspace in X. If the function $f: X \to Y$ is the γ -open function then also the retract $f_{|A}: A \to Y$ is γ -open function.
- 2. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be topological spaces and γ a γ -operation in space

- Y. Further let A be closed subspace in X. If the function $f: X \to Y$ is the γ -closed function then also the retract $f_{|A}: A \to Y$ is γ -closed function.
- Proof. 1. Let $G \subseteq A$ be any open set in A. As A is open in X it follows that G is open in X. As f is γ -open function, then f(G) is γ -open set in Y and $f_{|A}(G) = f(G)$. It means $f_{|A}(G)$ is γ -open set in Y. Consequently $f_{|A}: A \to Y$ is γ -open function.
- 2. Let $F \subseteq A$ be any open set in A. As A is closed in X it follows that F is closed in X. As f is γ -closed function, then f(F) is γ -closed set in Y and $f_{|A}(F) = f(F)$. It means $f_{|A}(F)$ is γ -closed set in Y. Consequently $f_{|A}: A \to Y$ is γ -closed function.

The following theorem shows in which case: γ -open function and γ -closed function are equivalent.

Theorem 23. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be topological spaces and γ a γ -operation in space Y. Further let $f: X \to Y$ be the bijective function of topological spaces. Then the following statements are equivalent:

- 1. f is γ -open function.
- 2. f is γ -closed function.

Proof. (1) \Rightarrow (2) Let f be the γ -open function and F any closed set in X. Then $X \setminus F$ is open set in X, from where $f(X \setminus F)$ is γ -open set in Y. As f is bijective, we have: $f(X \setminus F) = Y \setminus f(F)$. That is, $Y \setminus f(F)$ is γ -open in Y, and then f(F) is γ -closed in Y. Consequently f is γ -closed function. (2) \Rightarrow (1) Let f be the γ -closed function and G any open set in X. Then $X \setminus G$ is closed set in X, from where $f(X \setminus G)$ is γ -closed set in Y. As f is bijective, we have: $f(X \setminus G) = Y \setminus f(G)$. That is, $Y \setminus f(G)$ is γ -closed in Y, and then f(G) is γ -open in Y. Consequently f is γ -open function.

References

- [1] B. Ahmad, S. Hussain, Properties of γ -operations on topological spaces, The Aligarh Bull. of Maths., **22**, No 1 (2003), 45-51.
- [2] M. Asaad, A.Alhosaini, $t\gamma$ —open sets and separation axioms, J. of Kerbala University, **6**, No 4 (2008).

- [3] C.K. Basu, B.M. Uzzal Afsan, M.K. Ghosh, A class of functions and separation axioms with respect to an operation, *Hacettepe J. of Math. and Statist.*, **38**, No 2 (2009), 103-118.
- [4] Sh. Haxha, Q.D. Gjonbalaj, γ^* -operation in the product of topological spaces, *International Journal of Applied Mathematics*, **31**, No 4 (2018), 661-672; doi:10.12732/ijam.v31i4.11.
- [5] Q. Haxhibeqiri, Topologjia, Prishtinë (1989).
- [6] S. Hussain, B. Ahmad, T. Noiri, On γ -semi-continuous functions, *J. of Mathematics*, **42** (2010), 57-65.
- [7] H.Z. Ibrahim, Weak forms of γ -open sets and new separation axioms, Intern. J. of Scientific and Engin. Research, 3, No 5 (2012).
- [8] S. Kaliaj, l. Ekonomi Topologjia e hapësirave metrike, Tiranë (2017).
- [9] M. Khan and B. Ahmad, On p-regular spaces, $Math.\ Today,\ {\bf 13}\ (1995),\ 51-56.$
- [10] S. Lipschutz, General Topology, McGraw-Hill, New York (2010).
- [11] H. Ogata, Operations on topological spaces and associated topology, *Math. Japon.*, **36**, No 1 (1991), 175-184.
- [12] N. Okicic, E. Duvnjakovic, Opsta Topologija, Tuzla (2010).