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1. Introduction

An industry is considered as an oligopoly if the number of firms therein is small
enough as to cause “mutual dependence” recognized, so that in a differentiated
oligopoly where the products are similar but not identical, price decisions are
made in a game-theoretical framework with collusion and competition coexist-
ing (cf. e.g., [5] for evolutionary game dynamics). Classic oligopoly equilibria
(for the general construct of fixed points, see, e.g., [2], [4]) have been associated
with such names as Cournot-Nash (cf. e.g., [1]), Bertrand, Edgeworth, Stack-
elberg, and Chamberlin. Our focus here will be on the price vector fields that
may characterize an oligopoly. In the sequel we will first construct a price vector
field for a duopoly to derive some consequent observations and next treat the
case of three firms or more in broad topological terms. Finally we will conclude
this paper with some summary remarks.
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2. Analysis

We begin with a model of a duopoly, where N = 2. For expository purposes,
we will use (z,y) to stand for prices of firms X and Y.
Let a > 0 and consider the orbit

(¢ —a)* +y* =d”. (1)
Then we may have
Lo 2
x4 (t) : =acos (—77 + 2 /oo Ee*m’z dz> + a, and (2)

t 1 2
t) : =asin|—7m+2 / — 052 dz) , 3
e 1) (-rvon [ = ®)

with
dj—: = —yV2re % and (4)
dg—: = (z—a)V 27T6_0'5t2], where (5)

. 1 T —a
t = norminv [— <7T — arccos < ))] Yy < 0;
2T a
1 _
= norminv [— <7r + arccos <u>>] Yy > 0. (6)
2 a

This is an orbit that approaches (0,0) as t — —oo, but as ¢ increases, (z (t),y (t))
moves along the lower half of the circle, to pass through (2a,0) and continue
the motion along the upper half of the circle; in particular, at (a, —a) we have
arccos) = § so that ¢ = norminv(i) is the standard normal variable z that

accumulates an area of i and thereby

2

Ty = acos <—7T—|—Z7T> +a=a, and (7)
2

yr = asin <—7T + f) = —a. (8)

At (2a,0) we have t = norminv (5= (7)) = 0, with cumulative area 3; at (a,a)

we have t = norminv(% (7r + %)), with cumulative area %; at (2a,0) we have

t = norminv — oo, we have 7 4 arccos (%) — 27 and the motion approaches

(0,0). As such, (0,0) is a globally asymptotically stable equibibrium.
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This orbit describes a dynamics where X being the leader of the two firms
intitiated a price increase from the existing equilibrium and Y reacted by a
price decrease; this interaction lasted until (a, —a). Then Y began to collude
with X by increasing its price as well until (2a,0). The third segment contin-
ued from (2a,0) to (a,a), when Y kept increasing its price but X did not go
along, instead it began to reduce its price. The last segment from (a, a) back to
(0,0) showed a “price war” between X and Y, decreasing their prices to their
original equilibrium. In summary, the four arcs of the circle consists of, in time
evolution, (4, —), (+,+), (—,+), and (—, —). Here we remark that: (1) Actual
price movements in markets are descrete, not continuous. The circular orbit
here represents potential observations, in analogy to quantum states being ob-
served in isolated mode despite the underlying wavefunction being continuous.
In fact, here we have prescribed the Gaussian densities to the above circular
orbit. (2) Clearly the orbit of “real interactions” does not have to be that of a
circle, but here is where homotopy invariance becomes relevant. That is, topo-
logical values of manifolds are invariant under smooth transformations of the
manifold, e.g., the index of an equilibrium.

We next reflect the above right half-plane onto {(z,y) | z <0}, i.e.,

o (t) =~ (1), (9)

with y¢ () remaining the same. Then we must modify the time parameter ¢

into
. 1 r+a
t = mnorminv |— [ 7 — arccos Yy < 0; (10)
2 a

= norminv [i (71 + arccos (x——i_a>>] Yy > 0. (11)
2m a

This left half-plane represents that X, the leader, initiates a price decrease with
the same kind of subsequent dynamics as that of the right half-plane, i.e., in
time evolution, (—,—), (—,+), (+,+), and (+,—) over the four equal arcs of
any circular orbit.

By taking the union of the above two half-planes we obtain a vector field
over R? that possesses one unique globally asymptotically stable equilibrium
(0,0), which has index 2.

While the above depicted a situation where one of the duopoly, X, led the
dynamics, it is entirely possible that X and Y are of equal stature, as measured
by, say, market shares. Then we consider a 90° — rotation of the above

U, = LUR, with (12)
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L = {(z,y) |z <0} and
R = {(z,y) |z =0}
into
Upr = BUT, with (13)
{(z,y) |y <0} and
T = {(z,y)|y=0}
with a subsequent field superposition of
U:=UrLr+Upr. (14)
This 90° — rotation clearly can be made in two ways, counterclockwise and

clockwise; however, there exists a restriction on the time parameter ¢, i.e., the
requirement of

o
Il

U(t)=ULr(t)+Upr ().
Now by design the flows in Uy, r are in the lower half-plane during ¢t € (—o0, 0] so
that R (¢ <0)NB (t <0)oerwise Would fail to approach the equilibrium (0,0) as
it must be approached over t € [0, 00); likewise, L (t < 0)NB (t < 0) .y unterclockwise
would fail to approach the equilibrium (0, 0) also. As such, we will only consider
case (1) RN Tyockwise and (i) L N Teounterclockwise, VE € [0, 00). Patenthetically
of course if we had modeled flows in Uy, r beginning from the upper half-plane,
then we would have the opposite symmetrical results.

Hence for R N Tyiockwise We have Tepckwise = { (x5 () ,y+ ()}, with

Lo
z+(t) = acos (—7‘(’ + 277/ Eeo":’%dz) , and (15)

t
1 2
t) = asinw+ 27r/ — e 9%z 4 q, 16
y-l—( ) e \/ﬁ ( )
so that
d
% = —(y—a) V2re % and (17)
d
% = zV 27re_0‘5t2, where (18)

t = norminv [i <7T + arccos (y — a>>] . (19)
2m a

Thus we have the following field superposition by Equations (4), (5), (17), and

(18)
d ( Ty + o ) L a0 ( —y—(y—a) )

dt \ y++y+ (x—a)+x
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— 205t [2( _xy > + < _aa )} : (20)

where

r—a

1
t = norminv [2— <7r + arccos ( ))] from Equation (6)
™

Q

<
)

1
norminv [— <7T + arccos (
2T

>>] from Equation (19)

S

implies that
r o=y (21)

and that a new equilibrium is established at

a a
=(=,= 22
()= (5.5 (22
for which we have the characteristic equation

_ A2 e
0 = de‘u(_2 /\>—)\ +4 (23)
= A\ = *+2i and hence (24)
(g, g) =  a center. (25)

This corresponds to a situation where X and Y simultaneously make an identi-
cal price increase by a, then gravitating toward (%, %) with potential rotations
around (%, %), indeed a plausible event to a duopoly (cf. [3]).

For bookdeeping we have for the vector field V (R N Tjockwise) @ divergence
equal to 0, hence the flows being incompressible, and curl (V) = (0,0,4)”.

Next we consider L N T punterclockwise, Where

Teounterclockwise = 1(x+(t),y4 ()}, with
|
x4 (t) = acos <—7T + 277/ —6_0'532dz> , (26)
oo V2T
| 2
yy () = asin <—7r + 27r/ ——e 052 dz> + a, (27)
NN T
so that
d
% = —(y—a)v2re %" and (28)
d
G 2me 05 where by Equation (19) (29)

dt
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1 _
t = mnorminv [— <7r + arccos <y a))} (30)
2 a

and the field superposition is, by Equations (4), (9), (28), (29), (11), and (30),

%(m_—l—mi) _ meo.5t2<y—(9—a) )

Y¥ t Y+ (z—a)+x

= V2me 05 ( “ > , with (31)

2r —a

. 1 y—a
t = mnorminv |— [ ™+ arccos
2T a
. 1 r+a
norminv | — ( 7 -+ arccos s
2T a

implying that
r+a = y—a. (32)

As such, {(x,y) | y — = = 2a} approaches (0,0) as ¢ — oo and (0,0) remains to
be the unique globally asymptotically stable equilibrium. Here we have

div (V (L N Tcounterclockwise)) = 0and
curl (V (L N Tcounterclockwise)) = (0, 0, 2)T .

We now consider the case of N = 3 by modeling (p1, p2,p3 (p1,p2)) as a
vector field over S2. Since the Euler characteristic y (52) = 2 and by the
Poincaré-Hopf theorem the sum of indices of equlibria equals x, an application
of the Borsuk-Ulam theorem then leads to the existence of a pair of antipodal
equilibria, one unstable and the other globally asymptotically stable.

Lastly we consider the case of N > 4. Assume that

{(p1,p2, -+ ,pn)} = MY

form a compact N — manifold. Then M is triangulable and
N

X (MN) = Z (—1)7 - F;, where
j=0
Fj = the number of j—dimensional “faces”: j = 0 for vertices, j = 1 for edges,
and j = 2 for faces in triangles. Then it follows that the number of equilibria
must be at least x (MN)
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3. Summary remark

In this paper we applied vector fields to oligopolistic pricing dynamics. While
our models were specific, by homotopy invariance our topological results can
be generalized to any smooth deformation of the vector fields. In our analyses
above there was a free parameter a > 0, we envision that future studies may as-
sign a probability measure on a € R so that the vector fields carry probabilities
analogous to quantum waves.
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