PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG

Abstract

In this paper we present PROLogic, a logic programming language based on a formal first-order fuzzy temporal logic: FTCLogic. FTCLogic integrates the advantages of a formal system (a first-order logic based on Possibilistic Logic) and an efficient mechanism with which to reason about time: the Fuzzy Temporal Constraints Networks or FTCN. PROLogic, therefore, is a Fuzzy Temporal PROLOG, which is implemented in Haskell.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 4
Year: 2019

DOI: 10.12732/ijam.v32i4.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J.A. Alonso Jim´enez, L´ogica en Haskell, In: https://www.cs.us.es/˜jalonso/publicaciones/2007-Logica en Haskell.pdf (2007), 113-134.
  2. [2] S. Barro, R. Mar´ın, J. Mira and A.R. Pat´on, A model and a language for the fuzzy representation and handling of time, Fuzzy Sets and Systems, 61 (1994), 153-175.
  3. [3] P. Blackburn, J. Bos and K. Striegnitz, Prolog Syntax, In: http://www.learnprolognow.org/lpnpage.php?pagetype=html &pageid=lpn-htmlse2 (2012).
  4. [4] M. Campos, J.M. Juarez, J. Palma, R. Marn, and F. Palacios, Avian Influenza: Temporal modeling of a human to human transmission case, Expert Systems with Applications, 38 (2011), 8865-8885.
  5. [5] M.A. C´ardenas-Viedma and R. Mar´ın, FTCLogic: Fuzzy temporal constraint logic, Fuzzy Set and Systems, 363 (2019), 84-112; DOI: 10.1016/j.fss.2018.05.014.
  6. [6] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, Artificial Intelligence, 49 (1991), 61-65.
  7. [7] D. Dubois and H. Prade, Processing fuzzy temporal knowledge, IEEE Trans. on Systems, Man and Cybernetics, 19, No 4 (1989), 729-744.
  8. [8] D. Dubois and H. Prade, Possibility tTheory and its applications: Where do we stand?, In: Springer Handbook Computational Intelligence, Eds. Janusz Kacprzuk and Witold Pedrycz (2015), 31-60, Springer Berlin Heidelberg.
  9. [9] D. Dubois and H. Prade, Possibilistic logic - An overview, In: Handbook of the History of Logic. Volume 9: Computational Logic. J. Siekmann, Vol. Eds.; D.M. Gabbay, J. Woods, Series Eds. (2015), 283-342.
  10. [10] S. Dutta, A Temporal Logic for uncertain events and an outline of a possible implementation in an extension of PROLOG, Proc.s of the Fourth Conf. on Uncertainty in Artificial Intelligence, UAI (1988).
  11. [11] F.M. Galindo-Navarro and M.A. C´ardenas-Viedma, PROLogic, In: https://webs.um.es/mariancv/PROLogic/PROLogic.exe (2017).
  12. [12] A. Kaufmann and M. Gupta, Introduction to Fuzzy Arithmetic, Van Nostrand Reinhold, New York (1985).
  13. [13] R. Marn, M.A. C´ardenas-Viedma, M. Balsa and J.L. S´anchez, Obtaining solutions in fuzzy constraint networks, Intern. J. of Approximate Reasoning 16, No 3-4 (1997), 261-288.
  14. [14] S. Marlow, Happy User Guide. In: https://www.haskell.org/happy/doc/happy.pdf (2001).
  15. [15] S. Marlow, Alex: A lexical analyser generator for Haskell, In: https://www.haskell.org/alex/ (2015).
  16. [16] S. Marlow, Happy: The parser generator for haskell, In: https://www.haskell.org/happy/ (2015).
  17. [17] E. Lamma, M. Milano and P. Mello, Extending constraint logic programming for temporal reasoning, Annals of Math. and Artificial Intelligence, 22, No 1-2 (1998), 139-158.
  18. [18] E. Schwalb and L. Vila, Logic programming with temporal constraints, Proc. Third Intern. Workshop on Temporal Representation and Reasoning (TIME ’96), Key West, FL - USA (1996), 51-56.
  19. [19] K. Ungchusak, P. Auewarakul, S. Dowell, R. Kiphati, W. Auwanit, P. Puthavathana et al., Probable person-to-person transmission of avian influenza A (H5N1), The New England J. of Medicine, 352 (2005), 333-340.