International Journal of Applied Mathematics

Volume 32 No. 4 2019, 549-562

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v32i4.1

SOME SUBCLASSES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS FOR OPERATORS ON HILBERT SPACE

Yong Chan Kim¹, Jae Ho Choi² §

¹Department of Mathematics Education Yeungnam University, Gyongsan 38541, KOREA ²Department of Mathematics Education Daegu National University of Education 219 Jungangdaero, Namgu, Daegu 42411, KOREA

Abstract: The main object of the present paper is to investigate some results concerning a sufficient and necessary condition, coefficient estimates and distortion theorem for the class $\mathcal{T}_{\delta}^{\lambda}(\alpha, A)$. Furthermore, some applications of the fractional calculus for operator on Hilbert space are also considered.

AMS Subject Classification: 30C45, 33C20

Key Words: analytic functions, starlike functions, operator, proper contraction, fractional calculus

1. Introduction and definitions

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Also let \mathcal{S} denote the class of functions in \mathcal{A} which are univalent in the unit disk \mathbb{U} .

Received: April 5, 2019

© 2019 Academic Publications

[§]Correspondence author

Then a function $f(z) \in \mathcal{S}$ is said to be starlike of order α $(0 \le \alpha < 1)$ in \mathbb{U} if and only if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (0 \le \alpha < 1; z \in \mathbb{U}).$$
 (2)

We denote by $\mathcal{S}^*(\alpha)$ the class of all functions in \mathcal{S} which are starlike of order α in \mathbb{U} .

A function $f(z) \in \mathcal{S}$ is said to be *convex of order* α $(0 \le \alpha < 1)$ in \mathbb{U} if and only if

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \qquad (0 \le \alpha < 1; z \in \mathbb{U}). \tag{3}$$

We denote by $\mathcal{K}(\alpha)$ the class of all functions in \mathcal{S} which are convex of order α in \mathbb{U} .

Let a, b and c be complex numbers with $c \neq 0, -1, -2, \cdots$. Then the Gaussian/classical hypergeometric function ${}_{2}F_{1}(a, b; c; z)$ is defined by

$$_{2}F_{1}(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!},$$

where $(\eta)_k$ is the Pochhammer symbol defined, in terms of the Gamma function, by

$$(\eta)_k = \frac{\Gamma(\eta + k)}{\Gamma(\eta)} = \begin{cases} 1 & (k = 0) \\ \eta(\eta + 1) \cdots (\eta + k - 1) & (k \in \mathbb{N}). \end{cases}$$

The hypergeometric function ${}_{2}F_{1}(a,b;c;z)$ is analytic in \mathbb{U} and if a or b is a negative integer, then it reduces to a polynomial.

For functions $f_j(z) \in \mathcal{A}$, given by

$$f_j(z) = z + \sum_{k=2}^{\infty} a_{k,j} z^k$$
 $(j = 1, 2),$

we define the Hadamard product (or convolution) of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2)(z) = z + \sum_{k=2}^{\infty} a_{k,1} a_{k,2} z^k = (f_2 * f_1)(z) \qquad (z \in \mathbb{U}).$$

For the purpose to define the Srivastava-Attiya transform, we recall here the general Hurwitz-Lerch Zeta function, which is defined in [15] by the following series:

$$\Phi(z,\lambda,\delta) := \frac{1}{\delta^{\lambda}} + \sum_{k=1}^{\infty} \frac{z^k}{(k+\delta)^{\lambda}}$$

$$(\delta \in \mathbb{C} \setminus \mathbb{Z}_0^- = \{0, -1, -2, \dots\}; \lambda \in \mathbb{C} \text{ when } z \in \mathcal{U};$$

 $\operatorname{Re}(\lambda) > 1 \text{ when } |z| = 1).$

For the properties and characteristics of the Hurwitz-Lerch Zeta function and other related special functions, see for example [4], [9] and [16].

Recently, Srivastava and Attiya [14] have introduced the linear operator $\mathcal{L}_{\lambda,\delta}:\mathcal{A}\to\mathcal{A}$, defined in terms of the Hadamard product by

$$\mathcal{L}_{\lambda,\delta}f(z) = \mathcal{G}_{\lambda,\delta}(z) * f(z) \qquad (\delta \in \mathbb{C} \setminus \mathbb{Z}_0^-; \lambda \in \mathbb{C}; z \in \mathbb{U}), \tag{4}$$

where

$$\mathcal{G}_{\lambda,\delta}(z) = (1+\delta)^{\lambda} \left[\Phi(z,\lambda,\delta) - \delta^{-\lambda} \right] \qquad (z \in \mathbb{U}).$$
 (5)

The operator $\mathcal{L}_{\lambda,\delta}$ is now popularly known in the literature as the *Srivastava*-Attiya operator. Various class-mapping properties of the operator $\mathcal{L}_{\lambda,\delta}$ (and its variants) are discussed in the recent works of Srivastava and Attiya [14], Liu [8], Murugusundaramoorthy [10], Yuan and Liu [19], Yunus et al. [20] and others.

It is easy to observe from (1) and (4) that

$$\mathcal{L}_{\lambda,\delta}f(z) = z + \sum_{k=2}^{\infty} \left(\frac{1+\delta}{k+\delta}\right)^{\lambda} a_k z^k.$$
 (6)

We note that:

- (i) $\mathcal{L}_{0,h}f(z) = f(z);$
- (ii) $\mathcal{L}_{1,0}f(z) = \mathcal{L}f(z) = \int_0^z \frac{f(t)}{t} dt$ ($f \in \mathcal{A}$) (see Alexander [1]); (iii) $\mathcal{L}_{m,1}f(z) = \mathcal{I}^m f(z)$ ($m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0,1,2,3,\cdots\}$) (see Flett [5]);
 - (iv) $\mathcal{L}_{\gamma,1}f(z) = \mathcal{Q}^{\gamma}f(z)$ ($\gamma > 0$) (see Jung et al. [6]);
 - (v) $\mathcal{L}_{m,0} f(z) = \mathcal{L}^m f(z)$ ($m \in \mathbb{N}_0$) (see Sălăgean [12]).

Let \mathcal{T} denote the subclass of \mathcal{S} consisting of functions whose nonzero coefficients are negative. That is, an analytic and univalent function f is in \mathcal{T} if it can be expressed as

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k$$
 $(a_k \ge 0).$ (7)

We also denote by $\mathcal{T}^*(\alpha)$ and $\mathcal{C}(\alpha)$ the subclasses of \mathcal{T} that are, respectively, starlike of order α and convex of order α . See Silverman [13] for further information on them. And let $\mathcal{T}_{\delta}^{\lambda}(\alpha)$ denote the class of functions of the form (7) satisfying the condition:

$$\operatorname{Re}\left(\frac{z(\mathcal{L}_{\lambda,\delta}f)'(z)}{\mathcal{L}_{\lambda,\delta}f(z)}\right) > \alpha \quad (\lambda \in \mathbb{R}; \delta > -1; 0 \le \alpha < 1; z \in \mathbb{U}). \tag{8}$$

Clearly, we have $\mathcal{T}^0_{\delta}(\alpha) = \mathcal{T}^*(\alpha)$ and $\mathcal{T}^{-1}_0(\alpha) = \mathcal{C}(\alpha)$ $(0 \le \alpha < 1)$.

Finally, let A be a bounded linear operator on a complex Hilbert space \mathcal{H} . For a complex valued function f analytic on a domain E of the complex plane containing the spectrum $\sigma(A)$ of A we denote f(A) as Riesz-Dunford integral [2, p.568], that is,

$$f(A) := \frac{1}{2\pi i} \int_C f(z)(zI - A)^{-1} dz, \tag{9}$$

where I is the identity operator on \mathcal{H} and C is positively oriented simple closed rectifiable contour containing $\sigma(A)$. Also f(A) can be defined by the series $f(A) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} A^k$ which converges in the norm topology, [3]. If f(z) is defined by (1), we also have

$$\mathcal{L}_{\lambda,\delta}f(A) = \sum_{k=1}^{\infty} \left(\frac{1+\delta}{k+\delta}\right)^{\lambda} a_k A^k \qquad (a_1 = 1). \tag{10}$$

Throughout this paper, A^* shall always denote the conjugate operator of A.

By using arguments similar to [13, Theorem 2] with (8), we prove the following lemma.

Lemma 1. Let f(z) of the form (7) be analytic in \mathbb{U} , $\lambda \in \mathbb{R}$, $\delta > -1$, and $0 \le \alpha < 1$. Then the following statements are equivalent:

(i)
$$f \in \mathcal{T}_{\delta}^{\lambda}(\alpha);$$

(ii) $\left| \frac{z(\mathcal{L}_{\lambda,\delta}f(z))'}{\mathcal{L}_{\lambda,\delta}f(z)} - 1 \right| \leq 1 - \alpha \qquad (z \in \mathbb{U});$

(iii)
$$\sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(\lambda, \delta) a_k \le 1,$$

where

$$B_k(\lambda, \delta) = \left(\frac{1+\delta}{k+\delta}\right)^{\lambda}.$$
 (11)

Proof. In view of the definition of $\mathcal{T}_{\delta}^{\lambda}(\alpha)$, we obtain

$$f \in \mathcal{T}_{\delta}^{\lambda}(\alpha) \Leftrightarrow \mathcal{L}_{\lambda,\delta} f \in \mathcal{T}^*(\alpha),$$

and so, Lemma 1 follows immediately from the result [13, Theorem 2]. $\hfill\Box$

From Lemma 1, we define a new class $\mathcal{T}_{\delta}^{\lambda}(\alpha, A)$ as following.

Definition 1. Let $\mathcal{T}_{\delta}^{\lambda}(\alpha, A)$ denote the class of functions of the form (7) satisfying the condition

$$||A(\mathcal{L}_{\lambda,\delta}f)'(A) - \mathcal{L}_{\lambda,\delta}f(A)|| \le (1-\alpha)||\mathcal{L}_{\lambda,\delta}f(A)||, \tag{12}$$

where $\lambda \in \mathbb{R}$, $\delta > -1$, $0 \le \alpha < 1$, and all operators A with ||A|| < 1, $A \ne \theta$ (θ denotes the zero operator on \mathcal{H}).

The following definition is given below for some operators of generalized fractional calculus defined by Kim et al. [7] (see also [11] and [17]).

Definition 2. For an invertible operator A, the fractional integral operator $\mathcal{I}_{0,A}^{a,b,c}$ is defined by

$$\mathcal{I}_{0,A}^{a,b,c}f(A) = \frac{1}{\Gamma(a)} \int_0^1 A^{-b} {}_2F_1(a+b,-c;a;1-t)f(tA)(1-t)^{a-1}dt, \qquad (13)$$

where a > 0 and $b, c \in \mathbb{R}$.

The fractional derivative operator
$$\mathcal{D}_{0,A}^{a,b,c}$$
 is defined by
$$\mathcal{D}_{0,A}^{a,b,c}f(A) = \frac{1}{\Gamma(1-a)}g'(A), \tag{14}$$

where

$$g(z) = \int_0^1 z^{-b} {}_2F_1(b-a+1, -c; 1-a; 1-t) f(tz) (1-t)^{-a} dt,$$

0 < a < 1 and $b, c \in \mathbb{R}$. In both (13) and (14), f(z) is an analytic function in a simply-connected region of the z-plane containing the origin with the order

$$f(z) = \mathcal{O}(|z|^{\epsilon}) \quad (z \to 0)$$

for $\epsilon > \max\{0, b-c\} - 1$, and the multiplicity of $(1-t)^{a-1}$ is in (13) (and that of $(1-t)^{-a}$ in (14)) removed by requiring $\log(1-t)$ to be real when 1-t>0.

In this article, we provide some results concerning a sufficient and necessary condition, coefficient estimates and the distortion theorem for the class $\mathcal{T}_{\delta}^{\lambda}(\alpha,A)$. Also, we consider several applications of fractional calculus for operators on Hilbert space.

2. Some results for the class $\mathcal{T}^{\lambda}_{\delta}(\alpha, A)$

We begin by proving an equivalent condition for the class $\mathcal{T}_{\delta}^{\lambda}(\alpha, A)$ due to Lemma 1 as following.

Lemma 2. Let f(z) be in the class $\mathcal{T}_{\delta}^{\lambda}(\alpha, A)$ for all proper contraction A with $A \neq \theta$ if and only if

$$\sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(\lambda, \delta) a_k \le 1, \tag{15}$$

where $B_k(\lambda, \delta)$ is given by (11), $\lambda \in \mathbb{R}$, $\delta > -1$ and $0 \le \alpha < 1$. The result is sharp for the function

$$f(z) = z - \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} z^k \qquad (k \ge 2).$$
 (16)

Proof. Assume that the inequality (15) holds. By using (10) and (11), we have

$$||A(\mathcal{L}_{\lambda,\delta}f)'(A) - \mathcal{L}_{\lambda,\delta}f(A)|| - (1-\alpha)||\mathcal{L}_{\lambda,\delta}f(A)||$$

$$= ||A - \sum_{k=2}^{\infty} kB_{k}(\lambda,\delta)a_{k}A^{k} - A + \sum_{k=2}^{\infty} B_{k}(\lambda,\delta)a_{k}A^{k}||$$

$$- (1-\alpha)||A - \sum_{k=2}^{\infty} B_{k}(\lambda,\delta)a_{k}A^{k}||$$

$$= ||\sum_{k=2}^{\infty} (k-1)B_{k}(\lambda,\delta)a_{k}A^{k}|| - (1-\alpha)||A - \sum_{k=2}^{\infty} B_{k}(\lambda,\delta)a_{k}A^{k}||$$

$$\leq \sum_{k=2}^{\infty} (k-1+1-\alpha)B_{k}(\lambda,\delta)a_{k} - (1-\alpha) \leq 0.$$

Hence $f(z) \in \mathcal{T}^{\lambda}_{\delta}(\alpha, A)$. For the converse, assume that

$$||A(\mathcal{L}_{\lambda,\delta}f)'(A) - \mathcal{L}_{\lambda,\delta}f(A)|| \le (1-\alpha)||\mathcal{L}_{\lambda,\delta}f(A)||.$$

Then

$$\|\sum_{k=2}^{\infty} (k-1)B_k(\lambda, \delta)a_k A^k\| \le (1-\alpha)\|A - \sum_{k=2}^{\infty} B_k(\lambda, \delta)a_k A^k\|.$$

Choose A = eI (0 < e < 1). We obtain

$$\frac{\sum_{k=2}^{\infty} (k-1)B_k(\lambda,\delta)a_k e^k}{e - \sum_{k=2}^{\infty} B_k(\lambda,\delta)a_k e^k} \le 1 - \alpha.$$
(17)

Upon clearing the denomination in (17) and letting $e \to 1$, we have

$$\sum_{k=2}^{\infty} (k-1)B_k(\lambda,\delta)a_k \le (1-\alpha)\{1-\sum_{k=2}^{\infty} B_k(\lambda,\delta)a_k\},\,$$

which yields the required condition (15). It is evident that the function (16) is an extreme one for Lemma 2. \Box

Corollary 1. Let f(z) be in the class $\mathcal{T}_{\delta}^{\lambda}(\alpha, A)$. Then

$$a_k \le \frac{1-\alpha}{(k-\alpha)B_k(\lambda,\delta)}$$
 $(k \ge 2),$

where $B_k(\lambda, \delta)$ is given by (11), $\lambda \in \mathbb{R}$, $\delta > -1$ and $0 \le \alpha < 1$. The result is sharp for the function

$$f(z) = z - \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} z^k \qquad (k \ge 2).$$

Theorem 1. Let $f_1(z) = z$ and

$$f_k(z) = z - \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} z^k$$
 $(k \ge 2).$

Then $f(z) \in \mathcal{T}_{\delta}^{\lambda}(\alpha, A)$ if and only if it can be expressed in the form

$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z), \tag{18}$$

where $\mu_k \geq 0 \ (k \geq 1)$ and $\sum_{k=1}^{\infty} \mu_k = 1$.

Proof. If we set

$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z),$$

then

$$f(z) = z - \sum_{k=2}^{\infty} \mu_k \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} z^k.$$

Thus we obtain

$$\sum_{k=2}^{\infty} \frac{(k-\alpha)B_k(\lambda,\delta)}{1-\alpha} \mu_k \frac{1-\alpha}{(k-\alpha)B_k(\lambda,\delta)} = \sum_{k=2}^{\infty} \mu_k = 1 - \mu_1 \le 1.$$

Hence $f(z) \in \mathcal{T}^{\lambda}_{\delta}(\alpha, A)$. For the converse, we assume that f(z) given by (7) is in the class $\mathcal{T}^{\lambda}_{\delta}(\alpha, A)$. From Corollary 1 we have

$$a_k \le \frac{1-\alpha}{(k-\alpha)B_k(\lambda,\delta)}$$
 $(k \ge 2).$

We may set

$$\mu_k = \frac{(k - \alpha)B_k(\lambda, \delta)}{1 - \alpha}a_k \qquad (k \ge 2)$$

and $\mu_1 = 1 - \sum_{k=2}^{\infty} \mu_k$. Hence we conclude that

$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z),$$

which completes the proof of Theorem 1.

Theorem 2. If $f(z) \in \mathcal{T}_{\delta}^{\lambda}(\alpha, A)$ for $\lambda \geq 0$, $\delta > -1$, $0 \leq \alpha < 1$ and ||A|| < 1, $A \neq \theta$, then

$$\|A\| - \frac{1-\alpha}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^2 \leq \|f(A)\| \leq \|A\| + \frac{1-\alpha}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^2$$

and

$$1 - \frac{2(1-\alpha)}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} ||A|| \le ||f'(A)|| \le 1 + \frac{2(1-\alpha)}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} ||A||.$$

Proof. From Lemma 2, we see that

$$\frac{2-\alpha}{1-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{-\lambda} \sum_{k=2}^{\infty} a_k \le \sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} B_k(-\lambda, \delta) a_k \le 1$$

for $\lambda \geq 0$ and $\delta > -1$ which gives

$$\sum_{k=2}^{\infty} a_k \le \frac{1-\alpha}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda}.$$

Therefore we have

$$||f(A)|| \ge ||A|| - ||A||^2 \sum_{k=2}^{\infty} a_k \ge ||A|| - \frac{1-\alpha}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} ||A||^2$$

and

$$||f(A)|| \le ||A|| + ||A||^2 \sum_{k=2}^{\infty} a_k \le ||A|| + \frac{1-\alpha}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} ||A||^2.$$

By noting the relation

$$\frac{k(2-\alpha)}{2(1-\alpha)} \left(\frac{1+\delta}{2+\delta}\right)^{-\lambda} \le \frac{k-\alpha}{1-\alpha} B_k(-\lambda,\delta) \qquad (k \ge 2), \tag{19}$$

we have

$$\sum_{k=2}^{\infty} \frac{k(2-\alpha)}{2(1-\alpha)} \left(\frac{1+\delta}{2+\delta}\right)^{-\lambda} a_k \le \sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} B_k(-\lambda, \delta) a_k \le 1,$$

that is

$$\sum_{k=2}^{\infty} k a_k \le \frac{2(1-\alpha)}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda}.$$

Thus

$$||f'(A)|| \ge 1 - ||A|| \sum_{k=2}^{\infty} k a_k \ge 1 - \frac{2(1-\alpha)}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} ||A||$$

and

$$||f'(A)|| \le 1 + \frac{2(1-\alpha)}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} ||A||.$$

This completes the proof of Theorem 2.

3. Some results for fractional calculus operators

By using Definition 2, we prove the following theorem.

Theorem 3. Let $\max\{b-c, b, -c-a\} < 2, \ 2a > b(a+c), \ \lambda \geq 0 \ \text{and} \ \delta > -1$. If $f(z) \in \mathcal{T}^{\lambda}_{\delta}(\alpha, A) \ (0 \leq \alpha < 1)$, then

$$\|\mathcal{I}_{0,A}^{a,b,c}f(A)\| \leq \frac{\Gamma(2-b+c)}{\Gamma(2-b)\Gamma(a+2+c)}\|A\|^{1-b} + \frac{(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(2-b)\Gamma(a+2+c)} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^{2-b}$$

and

$$\|\mathcal{I}_{0,A}^{a,b,c}f(A)\| \geq \frac{\Gamma(2-b+c)}{\Gamma(2-b)\Gamma(a+2+c)}\|A\|^{1-b} - \frac{(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(2-b)\Gamma(a+2+c)} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^{2-b}$$

for a > 0, $b, c \in \mathbb{R}$ and all invertible operator A with $(A^{\frac{1}{q}})^*A^{\frac{1}{q}} = A^{\frac{1}{q}}(A^{\frac{1}{q}})^*$ $(q \in \mathbb{N}), \|A\| \le 1$ and $r_{sp}(A)r_{sp}(A^{-1}) \le 1$, where $r_{sp}(A)$ is the radius of spectrum of A.

Proof. Consider the function

$$\begin{split} F(A) &= \frac{\Gamma(2-b)\Gamma(a+2+c)}{\Gamma(2-b-c)} A^b \mathcal{I}_{0,A}^{a,b,c} f(A) \\ &= A - \sum_{k=2}^{\infty} \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(2-b)\Gamma(a+2+c)}{\Gamma(k+1-b)\Gamma(a+k+1+c)\Gamma(2-b+c)} a_k A^k \\ &= A - \sum_{k=2}^{\infty} b_k A^k, \end{split}$$

where

$$b_k = \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(2-b)\Gamma(a+2+c)}{\Gamma(k+1-b)\Gamma(a+k+1+c)\Gamma(2-b+c)} a_k.$$

Further, for convenience, we put

$$\Phi(k) = \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(2-b)\Gamma(a+2+c)}{\Gamma(k+1-b)\Gamma(a+k+1+c)\Gamma(2-b+c)} \qquad (k \ge 2).$$

Then, by the constraints of the hypotheses, we see that $\Phi(k)$ is non-increasing for integers $k \geq 2$ and we have $0 < \Phi(k) < 1$. By virtue of Lemma 2, we obtain

$$\frac{2-\alpha}{1-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{-\lambda} \sum_{k=2}^{\infty} b_k \leq \sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} B_k(-\lambda, \delta) b_k
\leq \sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} B_k(-\lambda, \delta) a_k \leq 1,$$

which gives

$$\sum_{k=2}^{\infty} b_k \le \frac{1-\alpha}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \quad \text{and} \quad F(z) \in \mathcal{T}_{\delta}^{\lambda}(\alpha, A).$$

Therefore we have

$$\|\mathcal{I}_{0,A}^{a,b,c}f(A)\| \leq \frac{\Gamma(2-b+c)}{\Gamma(2-b)\Gamma(a+2+c)} \|A\| \|A^{-b}\|$$

$$+ \frac{(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(2-b)\Gamma(a+2+c)} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^{2} \|A^{-b}\|$$
(20)

and

$$\|\mathcal{I}_{0,A}^{a,b,c}f(A)\| \ge \frac{\Gamma(2-b+c)}{\Gamma(2-b)\Gamma(a+2+c)} \|A\| \|A^{-b}\|$$

$$-\frac{(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(2-b)\Gamma(a+2+c)} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^{2} \|A^{-b}\|.$$
(21)

By the equation (7) of [18, p.307],

$$||A^b|| = ||A||^b$$
 $(b > 0).$

Since $A^*A = AA^*$, $||A|| = r_{sp}(A)$. So,

$$1 = ||AA^{-1}|| \le ||A|| ||A^{-1}|| = r_{sp}(A)r_{sp}(A^{-1}) \le 1.$$

Thus $||A^{-1}|| = ||A||^{-1}$. Therefore

$$||A^b|| = ||A||^b \tag{22}$$

for all real b. By applying (20), (21) and (22), we evidently completes the proof of Theorem 3. \Box

Theorem 4. Let $\max\{b-c-1, b, -2-c+a\} < 1, c+1 < (1-b)(2-a+c), b(2-a+c) \le 2(1-\alpha), \ \lambda \ge 0 \text{ and } \delta > -1.$ If $f(z) \in \mathcal{T}^{\lambda}_{\delta}(\alpha, A) \ (0 \le \alpha < 1),$ then

$$\|\mathcal{D}_{0,A}^{a,b,c}f(A)\| \leq \frac{\Gamma(2-b+c)}{\Gamma(1-b)\Gamma(3-a+c)} \|A\|^{-b} + \frac{2(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(1-b)\Gamma(3-a+c)} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^{1-b}$$

and

$$\|\mathcal{D}_{0,A}^{a,b,c}f(A)\| \geq \frac{\Gamma(2-b+c)}{\Gamma(1-b)\Gamma(3-a+c)}\|A\|^{-b} - \frac{2(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(1-b)\Gamma(3-a+c)} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^{1-b}$$

for a > 0, $b, c \in \mathbb{R}$ and all invertible operator A with $(A^{\frac{1}{q}})^*A^{\frac{1}{q}} = A^{\frac{1}{q}}(A^{\frac{1}{q}})^*$ $(q \in \mathbb{N}), \|A\| \le 1$ and $r_{sp}(A)r_{sp}(A^{-1}) \le 1$, where $r_{sp}(A)$ is the radius of spectrum of A.

Proof. Consider the function

$$G(A) = \frac{\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(2-b-c)} A^{b+1} \mathcal{D}_{0,A}^{a,b,c} f(A)$$

$$= A - \sum_{k=2}^{\infty} \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(k-b)\Gamma(k+2-a+c)\Gamma(2-b+c)} a_k A^k$$

$$= A - \sum_{k=2}^{\infty} c_k A^k,$$

where

$$c_k = \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(k-b)\Gamma(k+2-a+c)\Gamma(2-b+c)} a_k.$$

Further, for convenience, we put

$$\Psi(k) = \frac{\Gamma(k+1-b+c)\Gamma(k)\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(k-b)\Gamma(k+2-a+c)\Gamma(2-b+c)} \qquad (k \ge 2).$$

Then, by the constraints of the hypotheses, we see that $\Psi(k)$ is non-increasing for the integers $k \geq 2$ and we have $0 < \Psi(k) < 1$, that is,

for the integers
$$k \geq 2$$
 and we have $0 < \Psi(k) < 1$, that is,
$$0 < \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(k-b)\Gamma(k+2-a+c)\Gamma(2-b+c)} < k.$$

Therefore, by applying (19) and Lemma 2, we obtain

$$\frac{2-\alpha}{2(1-\alpha)} \left(\frac{1+\delta}{2+\delta}\right)^{-\lambda} \sum_{k=2}^{\infty} c_k = \sum_{k=2}^{\infty} \frac{2-\alpha}{2(1-\alpha)} \left(\frac{1+\delta}{2+\delta}\right)^{-\lambda} k \Psi(k) a_k$$

$$\leq \sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} B_k(-\lambda, \delta) \Psi(k) a_k$$

$$\leq \sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} B_k(-\lambda, \delta) a_k \leq 1,$$

which gives

$$\sum_{k=2}^{\infty} c_k \le \frac{2(1-\alpha)}{2-\alpha} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda}.$$

Hence, by using same arguments with the proof of Theorem 3, we have

$$\|\mathcal{D}_{0,A}^{a,b,c}f(A)\|$$

$$\leq \frac{\Gamma(2-b+c)}{\Gamma(1-b)\Gamma(3-a+c)}\|A\|^{-b} + \frac{\Gamma(2-b+c)}{\Gamma(1-b)\Gamma(3-a+c)}\|A\|^{1-b} \sum_{k=2}^{\infty} c_k$$

$$\leq \frac{\Gamma(2-b+c)}{\Gamma(1-b)\Gamma(3-a+c)}\|A\|^{-b} + \frac{2(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(1-b)\Gamma(3-a+c)} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^{1-b}$$

and

$$\|\mathcal{D}_{0,A}^{a,b,c}f(A)\| \ge \frac{\Gamma(2-b+c)}{\Gamma(1-b)\Gamma(3-a+c)} \|A\|^{-b} - \frac{2(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(1-b)\Gamma(3-a+c)} \left(\frac{1+\delta}{2+\delta}\right)^{\lambda} \|A\|^{1-b}$$

This evidently completes the proof of Theorem 4.

References

- [1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. Ser. 2, 17 (1915), 12-22.
- [2] N. Dunford and J.T. Schwarz, *Linear Operators, Part I, General Theory*, Interscience, New York (1958).

- [3] K. Fan, Julia's lemma for operators, Math. Ann., 239 (1979), 241-245.
- [4] C. Ferreira and J.L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl., 298 (2004), 210-224.
- [5] T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, *J. Math. Anal. Appl.*, **38** (1972), 746-765.
- [6] I.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
- [7] Y.C. Kim, J.H. Choi, and J.S. Lee, Generalized fractional calculus to a subclass of analytic functions for operators on Hilbert space, *Internat. J. Math. and Math. Sci.*, **21** (1998), 671-676.
- [8] J.L. Liu, Sufficient conditions for strongly starlike functions involving the generalized Srivastava-Attiya operator, *Integral Transforms Spec. Funct.*, **22** (2011), 79-90.
- [9] S.D. Lin, H.M. Srivastava and P.Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, *Integral Transforms* Spec. Funct., 17 (2006), 817-827.
- [10] G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, *Integral Transforms Spec. Funct.*, **23** (2012), 97-103.
- [11] S. Owa, M. Saigo and H.M. Srivastava, Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, *J. Math. Anal. Appl.*, **140** (1989), 419-426.
- [12] G.S. Sălăgean, Subclasses of univalent functions, In: Lecture Notes in Mathematics, Vol. 1013, Springer, Berlin (1983), 362-372.
- [13] H. Silverman, Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.*, **51** (1975), 109-116.
- [14] H.M. Srivastava and A.A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, *Integral Transforms Spec. Funct.*, **18** (2007), 207-216.
- [15] H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Function, Kluwer Academic Publishers, Dordrecht (2001).

- [16] H.M. Srivastava, D. Jankov, T.K. Pogány and R.K. Saxena, Two-side inequalities for the extended Hurwitz-Lerch Zeta function, *Comput. Math.* Appl., 62 (2011), 516-522.
- [17] H.M. Srivastava, M. Saigo and S. Owa, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl., 131 (1988), 412-420.
- [18] Y. Xiaopei, A subclass of analytic p-valent functions for operator on Hilbert space, Math. Japonica, 40 (1994), 303-308.
- [19] S.M. Yuan and Z.M. Liu, Some properties of two subclasses of k-fold symmetric functions associated with Srivastava-Attiya operator, Appl. Math. Comput., 218 (2011), 1136-1141.
- [20] Y. Yunus, A.B. Akbarally and S.A. Halim, Properties of a certain subclass of starlike functions defined by a generalized operator, *Int. J. Appl. Math.*, **31**, No 4 (2018), 597-611; DOI: 10.12732/ijam.v31i4.6.