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Abstract: Let G = (V,E) be a graph with p vertices and q edges. A subset
S ⊂ V (G) is a hop dominating set of G if for every v ∈ V − S, there exists
u ∈ S such that d(u, v) = 2. The minimum cardinality of a hop dominating
set of G is called a hop domination number of G and is denoted by γh(G).
The subdivision graph S(G) of a graph G is a graph obtained by subdividing
every edge of G exactly once. In this paper, we obtain an upper bound on hop
domination number of subdivision graph of any connected graph G in terms of
number of edges q, the maximum degree ∆(G) and domination number γ(G) of
G. We also characterize the family of connected graphs attaining this bound.
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1. Introduction

Throughout this paper, by a graph G = (V,E) we mean a connected simple
graph. We denote a graph G of order p and size q by a (p, q)-graph. By
subdividing an edge e = uv of a graph G we mean deleting the edge e and
introducing a new vertex x and the edges ux and xv. For a graph G, the
subdivision graph S(G) is a graph obtained by subdividing every edge of G
exactly once. The distance between two vertices u and v of a graph G is the
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length of the shortest path joining u and v in G and is denoted by d(u, v). A
graph G with exactly one cycle is called an unicyclic graph. A set D ⊂ V is
said to be a dominating set of G if every vertex in V −D is adjacent to some
vertex in D. D is said to be a minimal dominating set of G if no subset of it
is a dominating set of G. The minimum cardinality of a minimal dominating
set of G is called the domination number of G and is denoted by γ(G). In [4],
Chartrand et al. studied the exact 2-step dominating sets in graphs.

Recently, Ayyaswamy and Natarajan ([2, 9]) initiated a study on a new
domination parameter called hop domination number of a graph and charac-
terized the family of trees and unicyclic graphs with equal hop domination
number and total domination number. Ayyaswamy et al. ([1]) found some
bounds on hop domination number of a tree. Henning et al. [8] obtained cer-
tain probabilistic bounds for this parameter. Farhadi et al. [5] discussed the
complexity results of k-hop dominating set of a graph. Pabilona et al. [10, 11]
studied connected hop domination and total hop domination on graphs under
some binary operations. A vertex u of a graph G is said to hop dominate a
vertex v ∈ V (G) if d(u, v) = 0 or d(u, v) = 2. A subset S ⊂ V (G) of a graph G
is a hop dominating set (hd-set) of G if for every v ∈ V −S, there exists u ∈ S
such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G
is called the hop domination number of G and is denoted by γh(G). A path
on n vertices is denoted by Pn and a cycle of length n is denoted by Cn. We
denote a complete graph with n vertices by Kn and a complete bipartite graph
with a bipartition (V1, V2) mn vertices by Km,n. For other terminologies not
defined here we refer to Chartrand and Lesniak ([3]) and Haynes et al. ([6, 7]).
It is easy to verify that:

(i) γh(Pn) = γh(Cn) =







2r, if n = 6r;
2r + 1, if n = 6r + 1;
2r + 2, if n = 6r + s; 2 ≤ s ≤ 5.

(ii) γh(Kn) = n.

(iii) γh(Km,n) = 2.

(iv) γh(Wn)=3, where Wn is a wheel with n− 1 spokes.

(v) γh(P ) = 2, where P denotes the Peterson graph.
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2. Main Results

Observation 1. γh[S(Pn)] = γh(P2n−1).

Observation 2. γh[S(Cn)] = γh(C2n).

Proposition 3. γh[S(Kn)] =
⌊

n
2

⌋

+ 1, n ≥ 2.

Proof. Let V1 = V (Kn) = {v1, v2, · · · , vn}. Let V2 = {wij ∈ S(Kn) : wij

is a vertex subdividing the edge vivj in S(Kn)}. Then |V2| =
n(n−1)

2 = nC2.
Any one vertex vi is enough to hop dominate all vertices of V1 and we again
require exactly

⌊

n
2

⌋

vertices to hop dominate the nC2 vertices of V2. Thus
{vi} ∪ {wj(j+1) : j is odd; 1 ≤ j ≤ n} is a γh-set of S(Kn) and therefore
γh[S(Kn)] =

⌊

n
2

⌋

+ 1.

Proposition 4. γh[S(Km,n)] = 2 + min{m,n}.

Proof. Let (V1, V2) be the bipartition of V (Km,n) with |V1| = m and |V2| =
n. Let V1 = {vi : 1 ≤ i ≤ m} and V2 = {uj : 1 ≤ j ≤ n}.

Let m ≤ n.

Let V [S(Km,n)] = V1∪V2∪V3 where V3 = {wij : wij is a vertex subdividing
the edge viuj in S(Km,n)}. As V1 and V2 are independent sets, any γh-set
of S(Km,n) contains a vertex from each V1 and V2. One can observe that
the set D = {wkk : 1 ≤ k ≤ m} is a minimum hd-set of V3. Therefore
γh[S(Km,n)] = 2 + |D| = 2 +m = 2 +min(m,n). Hence the result follows.

Proposition 5. For the Petersen graph P , γh[S(P )] = 7.

Proof. Let us label the vertices of the outer cycle C5 by v1, v2, v3, v4, v5 and
the inner cycle by u1, u2, u3, u4, u5. Consider the three pairs (vi, vj), (vi, uj),
(ui, uj). Only one of them forms an edge in P . Let wij be the vertex subdividing
that edge. It is clear that the set {ui, uj} ∪ {vk} ∪ {wi(i+1) : i is odd, 1 ≤ i ≤
4} ∪ {wl(l+3) : l = 1, 2} is a γh-set of S(P ) where ui and uj are non adjacent
vertices and the vertex vk is adjacent to a vertex uk ∈ N(ui) ∩ N(uj) in P .
Hence γh[S(P )] = 7.

Proposition 6. For a wheel graphWn+1 with n+1 vertices, γh[S(Wn+1)] =
⌊

n
3

⌋

+ 2.
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Proof. Let the centre of Wn+1 be v and let v1, v2, · · · , vn be the vertices of
the outer cycle Cn of Wn+1. Let the vertex which is adjacent to v and vi in
S(Wn+1) be denoted by ui; 1 ≤ i ≤ n and let the vertex subdividing the edge
vivj in S(Wn+1) be denoted by wij. One can easily observe that the centre
vertex v of Wn+1 hop dominates the vertices {vi : 1 ≤ i ≤ n} and the vertex u2
hop dominates the vertices {ui : 1 ≤ i ≤ n} and also the vertices w12 and w23.
Furthermore, the set D \ {w12} hop dominates the remaining n− 2 vertices in
S(Wn+1) where D = {wi(i+1) : i ≡ 1 (mod 3)}. Therefore, {v} ∪ {uj} ∪D is a
γh-set of S(Wn+1). Thus γh[S(Wn+1)] =

⌊

n
3

⌋

+ 2.

Theorem 7. For any graph G, γ(G) < γh[S(G)].

Proof. Let D be a hop dominating set of S(G). Let D1 = D ∩ V (G) and
D2 = D\D1. Clearly D1 is the only set hop dominating V (G) since every vertex
in D2 is at odd distance from any vertex of V (G). This shows that D1 6= ∅.
Similarly D2 6= ∅. Further, if a vertex v is hop dominated by a vertex u in D1,
then d(u, v) = 2 in S(G). This implies there is a path uwv in S(G) and uv ∈
E(G). Thus v is dominated by u and so γ(G) ≤ |D1| < |D| = γh[S(G)].

Theorem 8. Let G be a (p, q)-graph. Let u be a vertex of maximum

degree ∆(G) and v be a vertex in N(u) such that deg(v) = max
y∈N(u)

{deg(y)}.

Then γh[S(G)] ≤ γ(G) + q −∆(G)− deg(v) + 2.

Proof. Let w0 be the new vertex subdividing the edge uv and S
′

be a γ-set
of G. Let E

′

be the set of all edges incident with u or v. Let D1 = {w :
w ∈ V [S(G)] \ V (G) is a vertex subdividing the edge vv′ ∈ E(G) \ E′}. Then
D = S′ ∪ {w0} ∪ D1 is a hop dominating set of S(G) and hence γh[S(G)] ≤
|D| = γ(G)+1+(q−∆(G)− (deg(v)−1)) = γ(G)+2−deg(v)+ q−∆(G).

Theorem 9. Let T be a tree with q edges. Let u be a vertex of max-

imum degree ∆(T ) and let v ∈ N(u) be a vertex in T such that deg(v) =
max

y∈N(u)
{deg(y)}. Then γh[S(T )] = γ(T ) + q+2− (∆(T ) + deg(v)) if and only if

the following conditions hold:

(i) every vertex w ∈ N(u) ∪N(v) \ {u, v} is either a leaf or a weak support.

(ii) both N(u) \ {v} and N(v) \ {u} cannot contain weak support vertices.

Proof. Assume that γh[S(T )] = γ(T ) + q+2− (∆(T ) + deg(v)). Let w0 be
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a vertex subdividing the edge uv in S(T ). Let E1 denote the set of all edges
neither incident at u nor at v and let D1 be the set of vertices subdividing the
edges in E1. In what follows hereafter, we call S

′

a γ-set of T .

(i) Let w ∈ N(u) ∪ N(v) \ {u, v}. Suppose w ∈ N(u) \ {v} be a vertex
of degree r ≥ 3. Let w1 be a vertex subdividing one of the edges incident at
w except the edge uw, say ww′. Let Ew denote the set of edges incident at w
except the edge uw and letDw be the set of vertices subdividing the edges in Ew.
Then w1 hop dominates all vertices of Dw. Therefore S

′∪{w0, w1}∪ (D1 \Dw)
is a hd-set of S(T ) and so,

γh[S(T )] ≤γ(T ) + q + 2− (∆(T ) + deg(v) − 1)− r + 1

= γ(T ) + q + 2− (∆(T ) + deg(v)) + r + 2

= γ(T ) + q + 4− (∆(T ) + deg(v)) + r

≤ γ(T ) + q + 4− (∆(T ) + deg(v)) − 3, since r ≥ 3

= γ(T ) + q + 1− (∆(T ) + deg(v))

< γ(T ) + q + 2− (∆(T ) + deg(v)), a contradiction.

Hence deg(w) ≤ 2 for every w ∈ N(u) \ {v}.
If deg(w) = 1, then nothing to prove. So, let deg(w) = 2.

Now we show that w is a weak support vertex in T .

Suppose y ∈ N(w) \ {u, v} is vertex such that deg(y) ≥ 2.

Let Eu be the set of edge incident with u except the edge uv and Du be the
set of vertices subdividing the edges in Eu. Let Ev be the set of edges which
are incident at v except the edge uv and Dv be the set of vertices subdividing
the edges in Ev.Let E2 be the set of edge which are not incident at u. Let D2

be the set of vertices subdividing the edges in E2. Let Ey be the set of edges
incident at y except the edge wy and Dy be the set of vertices subdividing the
edges in Ey. Then the vertex w2 which subdivides the edge wy in S(T ) will
hop dominate all vertices of Dy and the vertex w0 hop dominates all vertices in
Du ∪Dv. Therefore, S

′ ∪ {w0} ∪ (D2 \ (Dv ∪Dy)) is a hd-set of S(T ). Hence,

γh[S(T )] ≤γ(T ) + q + 1− (∆(T ) + deg(v) − 1)− deg(y) + 1

= γ(T ) + q + 3− (∆(T ) + deg(v)) − deg(y)

≤ γ(T ) + q + 1− (∆(T ) + deg(v)), since deg(y) ≥ 2

< γ(T ) + q + 2− (∆(T ) + deg(v)), a contradiction.

Thus deg(y) = 1 for all y ∈ N(w) \ {u, v}. That is, w is a weak support vertex
of T .
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Similarly, one can prove that every vertex w ∈ N(v) \ {u} is either a leaf of
a weak support of T .

(ii) Suppose both N(u) \ {v} and N(v) \ {u} have weak support vertices in
T .

Let N ′(u) = {w ∈ N(u) \ {v} : deg(w) = 2} and N ′(v) = {w ∈ N(v) \ {u} :
deg(w) = 2}. Let N ′′(u) = {w′ : w′ is the vertex subdividing the edge uw where
w ∈ N ′(u)} and N ′′(v) = {w′ : w′ is the vertex subdividing the edge vw where
v ∈ N ′(v)}.

By our assumption N ′(u) 6= ∅ and N ′(v) 6= ∅. Clearly, |N ′′(u) ∪ N ′′(v)| =
q−∆(T )−(deg(v)−1) and so S′∪N ′′(u)∪N ′′(v) is a hd-set of S(T ). Therefore,
γh[S(T )] ≤ γ(T ) + q − (∆(T ) + deg(v) − 1) < γ(T ) + q + 2− (∆(T ) + deg(v)),
a contradiction.

The converse is obvious.

Theorem 10. Let G be a connected (p, q)-graph having at least one cycle

and let u and v be vertices as in Theorem 8. Then γh[S(G)] = γ(G) + 2 + q −
(∆(G) + deg(v)) if and only if the following conditions hold:

(i) Every cycle C in G contains u or v or the edge uv and the length of C is

at most 5.

(ii) If the longest cycle containing the edge uv in G is C3, then

(a) every vertex w ∈ N(u) ∪ N(v) \ (N(u) ∩ N(v) ∪ {u, v}) is a leaf or

weak support of degree 2 or a vertex of degree 2 in another cycle C3

of G.

(b) both N(u)\{v} and N(v)\{u} cannot contain weak support vertices

in G.

(iii) If the longest cycle containing the edge uv in G is C = C4, then every

vertex w ∈ N(u) ∪ N(v) \ (N(u) ∩N(v) ∪ {u, v}) is a leaf or a vertex of

degree 2 in C.

(iv) If the longest cycle in G is C = C5, then

(a) the edge uv is a chord of C

(b) every vertex w ∈ N(u) ∪N(v) \ (N(u) ∩N(v) ∪ {u, v}) is a leaf or a

vertex of degree 2 in C.

(v) Every vertex w ∈ N(u)∩N(v) is of degree at most 3 and if w ∈ N(u)∩N(v)
is of degree 3 in G, then there exists at most one edge not adjacent to uv
in G.
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Proof. Assume that γh[S(G)] = γ(G) + 2 + q − (∆(G) + deg(v)).

Let E1,D1 and w0 be as in Theorem 9.

Throughout this proof, S
′

denotes a γ-set of G.

(i) Suppose there exists a cycle C in G not containing u and v.

Let V (C) = {v1, v2, · · · , vk}. Let wi, wi−1 and wi+1 be the vertices in
D1 subdividing the edges vi−1vi, vi−1vi−2 and vivi+1 in C, respectively. Then
clearly the vertex wi hop dominates the vertices wi−1 and wi+1 in S(G). There-
fore S′ ∪ {w0} ∪ (D1 \ {wi−1, wi+1}) is a hd-set of S(G). Hence

γh[S(G)] ≤γ(G) + 1 + q − 2− (∆(G) + deg(v) − 1)

= γ(G) + q − (∆(G) + deg(v))

< γ(G) + 2 + q − (∆(G) + deg(v)), a contradiction.

Claim: Every cycle C in G is of length at most 5.

Suppose there exists a cycle C containing the edge uv in G such that the
length k of C ≥ 6. Let V (C) = {u = v1, v = v2, v3, · · · , vk}. Then C contains
at least three edges not incident at u or v. Let vi−1vi, vi−2vi−1 and vivi+1 be
three edges in C not incident at u or v and let wi, wi−1 and wi+1 be the vertices
in S(G) subdividing these edges respectively. Then wi hop dominates wi−1 and
wi+1. Therefore S′ ∪ {w0} ∪ (D1 \ {wi−1, wi+1}) is a hd-set of S(G) so that

γh[S(G)] ≤γ(G) + 1 + q − 2− (∆(G) + deg(v) − 1)

= γ(G) + q − (∆(G) + deg(v))

< γ(G) + 2 + q − (∆(G) + deg(v)), a contradiction.

Applying a similar argument given in Theorem 9 one can easily prove the
conditions (ii− a) and (ii − b).

(iii) Let C = 〈u, v, x, y〉 be a longest cycle of length 4 containing the edge
uv in G.

Claim: Every vertex w ∈ N(u) ∪N(v) \ ((N(u) ∩N(v)) ∪ {u, v}) is a leaf
or a vertex of degree 2 in C. Let w ∈ N(u) ∪N(v) \ ((N(u) ∩N(v)) ∪ {u, v}).

Then either w ∈ N(u)\ (N(u)∩N(v)∪{u, v}) or w ∈ N(v)\N(u)∩N(v)∪
{u, v}.

Case 1: Let w ∈ N(u) \ (N(u) ∩ N(v) ∪ {u, v}). Then as discussed in
Theorem 9, deg(w) ≤ 2. If deg(w) = 1, then clearly w is a leaf. So assume
that deg(w) 6= 1.

We claim that w is neither a weak support vertex of degree 2 in G nor a
vertex of degree 2 in any other cycle of length 3 or 4 or 5.
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Suppose w is a weak support vertex of degree 2 in G. Let z be the leaf
adjacent to w in G. Let vuw and vwz be the vertices subdividing the edges uw
and wz in S(G). Then the vertex vuw hop dominates all the vertices in Du

and the vertex vwz in S(G). Let w1 be the vertex subdividing the edge vy in
S(G). Then w1 hop dominates all the vertices in Dv and the vertex vxy that
subdivides the edge xy in S(G).

Therefore S
′

∪ {w1, vwz} ∪D2 \ (Dv ∪ {vxy, vwz} is clearly a hd-set of S(G).
Hence

γh[S(G)] ≤γ(G) + 2 + q −∆(G)− (deg(v) − 1)− 2

= γ(G) + q −∆(G)− deg(v) + 1

< γ(G) + 2 + q − (∆(G) + deg(v)), a contradiction.

Thus the vertex w cannot be a weak support of degree 2 in G. The other cases
follow similarly.

Similarly, Case 2 can be argued for w ∈ N(v) \ (N(u) ∩N(v) ∪ {u, v}).
Next we prove condition (iv). Let C = C5 be a longest cycle of length 5 in

G.

Claim: The edge uv is a chord of C in G.
Suppose the edge uv is not a chord of C.
Case 1: u ∈ V (C) and v /∈ V (C).
Let V (C) = {u,w, x, y, z}. Then clearly the edges wx, xy and yz are in

E1. Let w1, w2 and w3 be the vertices subdividing the edges wx, xy and yz
respectively. Then S

′

∪ {w0} ∪D1 \ {w1, w3} is a hd-set of S(G). Hence

γh[S(G)] ≤γ(G) + 1 + q − 2− (∆(G) + deg(v) − 1)

=γ(G) + q − 1−∆(G)− deg(v) + 1

=γ(G) + q −∆(G)− deg(v)

< γ(G) + 2 + q − (∆(G) + deg(v)), a contradiction.

Similarly we can prove that uv is not an edge in C5.
One can prove the condition (b) of (iv) with similar arguments given in the

proof of (iii).
(v) Suppose there exist two edges xw1 and yw2 in G such that w1, w2 ∈

N(u) ∩ N(v) and deg(w1) = deg(w2) = 3. Let Eu and Ev be the set of edges
incident at u and v respectively except the edge uv. Let Du be the set of
vertices subdividing the edges in Eu and Dv be the set of vertices subdividing
the edges in Ev. Let w

′

1 and w
′

2 be the vertices subdividing the edges uw1 and
vw2 respectively. Let x

′

and y
′

be the vertices subdividing the edges xw1 and
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yw2 respectively. Then w
′

1 hop dominates all vertices in Du and the vertex
x

′

. Similarly, w
′

2 hop dominates all vertices in Dv and the vertex y
′

in S(G).
Therefore S

′

∪ {w
′

1, w
′

2} ∪ (D1 \ {x
′

, y
′

}) is a hd-set of S(G). Hence,

γh[S(G)] ≤γ(G) + 2 + q − 2− (∆(G) + deg(v) − 1)

=γ(G) + q −∆(G)− deg(v) + 1

< γ(G) + 2 + q − (∆(G) + deg(v)), a contradiction.

Conversely, assume that the conditions (i) to (v) hold good.
Let w0 be a vertex subdividing the edge uv. Then w0 hop dominates all

vertices subdividing the edges incident at u and v. As deg(u) = ∆(G) and by
the choice of v, every hd-set of S(G) contains w0. Furthermore, as any two
vertices of V (G) in S(G) are of even distance, every vertex v ∈ V (G) can be
hop dominated only by a vertex of V (G) in S(G). Therefore every γh-set of
S(G) contains γ(G) vertices of V (G). Let e = wx ∈ E1. If w ∈ N(u) and
x /∈ N(v), then by condition (ii-a), w is a weak support vertex of degree 2 in G.

If w ∈ N(u) and x ∈ N(v), then by condition (iii), wx is an edge in C4 that
contains the edge uv. Thus in both cases either the vertex subdividing the edge
uw or the vertex subdividing the edge wx is in every γh-set of S(G).

If w ∈ N(u)∩N(v), then by condition (v) wx is the only edge not adjacent
to uv in G. Therefore, one of the vertices subdividing the edges uv, vw and wx
is in any γh-set of S(G). If w /∈ N(u), then by condition (ii-b) the vertex w is
a weak support vertex of degree 2 in N(v) \ {u}. Then the vertex subdividing
the edge wx or vw is in every γh-set of S(G).

Thus in all cases we see that for every edge in E1 there corresponds a
subdividing vertex in every γh-set of S(G). Therefore every γh-set of S(G)
contains at least γ(G) + 1 + |E1| vertices. This implies

γh[S(G)] ≥γ(G) + 1 + |E1|

=γ(G) + 1 + q − (∆(G) + deg(v) − 1)

=γ(G) + 2 + q − (∆(G) + deg(v) − 1).

But by Theorem 8, γh[S(G)] ≤ γ(G) + 2 + q − (∆(G) + deg(v)).
Thus γh[S(G)] = γ(G) + 2 + q − (∆(G) + deg(v)).
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