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Abstract: Let G = (V, F) be a graph with p vertices and g edges. A subset
S C V(@) is a hop dominating set of G if for every v € V — S, there exists
u € S such that d(u,v) = 2. The minimum cardinality of a hop dominating
set of G is called a hop domination number of G and is denoted by 4(G).
The subdivision graph S(G) of a graph G is a graph obtained by subdividing
every edge of G exactly once. In this paper, we obtain an upper bound on hop
domination number of subdivision graph of any connected graph G in terms of
number of edges ¢, the maximum degree A(G) and domination number v(G) of
G. We also characterize the family of connected graphs attaining this bound.
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1. Introduction

Throughout this paper, by a graph G = (V, E) we mean a connected simple
graph. We denote a graph G of order p and size ¢ by a (p,q)-graph. By
subdividing an edge e = wv of a graph G we mean deleting the edge e and
introducing a new vertex x and the edges ux and zv. For a graph G, the
subdivision graph S(G) is a graph obtained by subdividing every edge of G
exactly once. The distance between two vertices v and v of a graph G is the
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length of the shortest path joining u and v in G and is denoted by d(u,v). A
graph G with exactly one cycle is called an unicyclic graph. A set D C V is
said to be a dominating set of G if every vertex in V' — D is adjacent to some
vertex in D. D is said to be a minimal dominating set of G if no subset of it
is a dominating set of G. The minimum cardinality of a minimal dominating
set of G is called the domination number of G and is denoted by «(G). In [4],
Chartrand et al. studied the exact 2-step dominating sets in graphs.

Recently, Ayyaswamy and Natarajan (]2, 9]) initiated a study on a new
domination parameter called hop domination number of a graph and charac-
terized the family of trees and unicyclic graphs with equal hop domination
number and total domination number. Ayyaswamy et al. ([1]) found some
bounds on hop domination number of a tree. Henning et al. [8] obtained cer-
tain probabilistic bounds for this parameter. Farhadi et al. [5] discussed the
complexity results of k-hop dominating set of a graph. Pabilona et al. [10, 11]
studied connected hop domination and total hop domination on graphs under
some binary operations. A vertex u of a graph G is said to hop dominate a
vertex v € V(G) if d(u,v) = 0 or d(u,v) = 2. A subset S C V(G) of a graph G
is a hop dominating set (hd-set) of G if for every v € V — S| there exists u € S
such that d(u,v) = 2. The minimum cardinality of a hop dominating set of G
is called the hop domination number of G and is denoted by ~v,(G). A path
on n vertices is denoted by P, and a cycle of length n is denoted by C,. We
denote a complete graph with n vertices by K,, and a complete bipartite graph
with a bipartition (Vi,Va) mn vertices by K, . For other terminologies not
defined here we refer to Chartrand and Lesniak ([3]) and Haynes et al. ([6, 7]).
It is easy to verify that:

2r, if n=6r;
(i) W (Pn) =m(Cp) =] 2r+1, if n=06r+1;

2r+2, if n=6r+s;2<s<5.
(i) h(Kpn) = 2.

(iv) vn(Wy,)=3, where W), is a wheel with n — 1 spokes.

(v) v (P) = 2, where P denotes the Peterson graph.
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2. Main Results
Observation 1. v,[S(P,)] = Y (Pan—1)-
Observation 2. v,[S(Cy)] = Y(Can).
Proposition 3. ,[S(K,)] = [%|+1,n>2.

Proof. Let Vi = V(K,,) = {v1,v2,--- ,v,}. Let Vo = {w;; € S(K,,) : wij
is a vertex subdividing the edge v;v; in S(K,)}. Then |V3| = "("271) = nCs.
Any one vertex v; is enough to hop dominate all vertices of V; and we again

require exactly L%J vertices to hop dominate the nCy vertices of V5. Thus

{vi} U{wjjq1) + jis odd; 1 < j < n}is a y-set of S(K,) and therefore
WS (Kn)] = [5] + 1. =

Proposition 4. ~,[S(Ky,n)] = 2 + min{m,n}.

Proof. Let (V1,Va) be the bipartition of V (K, ) with [Vi| =m and |V| =
n. Let Vi ={v; : 1 <i<m}and Vo ={u; : 1 <j<n}.

Let m <n.

Let V[S(Kyn)] = ViUVaU Vs where Vi = {w;; : w;; is a vertex subdividing
the edge vju; in S(Kyy,)}. As Vi and Va are independent sets, any ~j-set
of S(K,,,) contains a vertex from each V; and V2. One can observe that
the set D = {wgr : 1 < k < m} is a minimum hd-set of V3. Therefore
Y[S(Kmn)] =2+ |D| =2+ m =2+ min(m,n). Hence the result follows. [

Proposition 5. For the Petersen graph P, v,[S(P)] = 7.

Proof. Let us label the vertices of the outer cycle Cy by v1,v9, v3, v4, v5 and
the inner cycle by wq,ug,us, us,us. Consider the three pairs (v;,v;), (vi,u; ),
(ui,uj). Only one of them forms an edge in P. Let w;; be the vertex subdividing
that edge. It is clear that the set {u;, u;} U {vg} U{wjy1) 14 s odd, 1 <id <
4} UA{wyq3) : 1 = 1,2} is a yp-set of S(P) where u; and u; are non adjacent
vertices and the vertex vy is adjacent to a vertex uy € N(u;) N N(u;) in P.
Hence v,[S(P)] = 1. O

Proposition 6. For a wheel graph Wy, 1 with n+1 vertices, y,[S(Wy41)] =
n
|2 +2.
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Proof. Let the centre of W, 11 be v and let vy, vg,--- , v, be the vertices of
the outer cycle C,, of W, ;1. Let the vertex which is adjacent to v and v; in
S(Wp41) be denoted by u;; 1 < i < n and let the vertex subdividing the edge
v;vj in S(Wp41) be denoted by w;;. One can easily observe that the centre
vertex v of W, 1 hop dominates the vertices {v; : 1 <i < n} and the vertex us
hop dominates the vertices {u; : 1 <i < n} and also the vertices w2 and was3.
Furthermore, the set D \ {wi2} hop dominates the remaining n — 2 vertices in
S(Wh1) where D = {wjy1) : i = 1 (mod 3)}. Therefore, {v} U {u;} UD is a
Yp-set of S(Wiyq1). Thus yu[S(Wita)] = | 2] + 2. O

Theorem 7. For any graph G, v(G) < v[S(G)].

Proof. Let D be a hop dominating set of S(G). Let D; = DNV (G) and
Dy = D\ D;. Clearly D is the only set hop dominating V' (G) since every vertex
in Dy is at odd distance from any vertex of V(G). This shows that Dy # {).
Similarly Dy # (). Further, if a vertex v is hop dominated by a vertex u in Dy,
then d(u,v) = 2 in S(G). This implies there is a path wwv in S(G) and uv €
E(G). Thus v is dominated by u and so v(G) < |Di| < |D| = v[S(G)]. O

Theorem 8. Let G be a (p,q)-graph. Let u be a vertex of maximum
degree A(G) and v be a vertex in N(u) such that deg(v) = m]\z[i(x){deg(y)}.
yelN(u

Then 14[S(G)] < 1(G) + 4 — A(G) — deg(v) +2.

Proof. Let wy be the new vertex subdividing the edge uv and S be a y-set
of G. Let E' be the set of all edges incident with u or v. Let D; = {w :
w € V[S(G)]\ V(G) is a vertex subdividing the edge vv' € E(G) \ E'}. Then
D = S"U{wp} U Dy is a hop dominating set of S(G) and hence 7,[S(G)] <
D] = 1(G) +1+ (g — A(G) — (deg(v) — 1)) = 7(G) +2 — deg(v) + g— A(G). D

Theorem 9. Let T be a tree with q edges. Let u be a vertex of max-
imum degree A(T) and let v € N(u) be a vertex in T such that deg(v) =
m]\afl(x){deg(y)}. Then v,[S(T)] = (T) +q+2— (A(T) + deg(v)) if and only if
yeN(u

the following conditions hold:
(i) every vertex w € N(u)U N (v) \ {u,v} is either a leaf or a weak support.

(ii) both N(u)\ {v} and N(v) \ {u} cannot contain weak support vertices.

Proof. Assume that 7, [S(T)] = v(T) + ¢+ 2 — (A(T') + deg(v)). Let wgy be
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a vertex subdividing the edge uv in S(T'). Let E; denote the set of all edges
neither incident at u nor at v and let D7 be the set of vertices subdividing the
edges in Fy. In what follows hereafter, we call S’ a y-set of 7.

(i) Let w € N(u) U N(v) \ {u,v}. Suppose w € N(u) \ {v} be a vertex
of degree r > 3. Let w; be a vertex subdividing one of the edges incident at
w except the edge uw, say ww'. Let E, denote the set of edges incident at w
except the edge uw and let D,, be the set of vertices subdividing the edges in F,,.
Then wy hop dominates all vertices of D,,. Therefore S"U{wq, w1} U (D1 \ Dy,)
is a hd-set of S(7) and so,

WS(T)] <A(T) +q+2 = (A(T) + deg(v) —=1) —r +1
A(T) + deg(v)) +r+ 2

A(T) + deg(v)) +

<A(T)+q+4— (A(T) + deg(v)) —37 sincer >3

=(T) +q+1— (A(T) + deg(v)

<A(T)+q+2— (A(T) + deg(v)), a contradiction.

Hence deg(w) < 2 for every w € N(u) \ {v}.

If deg(w) = 1, then nothing to prove. So, let deg(w) = 2.

Now we show that w is a weak support vertex in 7.

Suppose y € N(w) \ {u,v} is vertex such that deg(y) > 2.

Let E,, be the set of edge incident with u except the edge uv and D,, be the
set of vertices subdividing the edges in F,. Let E, be the set of edges which
are incident at v except the edge wv and D, be the set of vertices subdividing
the edges in E,.Let Fy be the set of edge which are not incident at u. Let Do
be the set of vertices subdividing the edges in E>. Let E, be the set of edges
incident at y except the edge wy and D, be the set of vertices subdividing the
edges in E,. Then the vertex wy which subdivides the edge wy in S(T") will
hop dominate all vertices of D, and the vertex wy hop dominates all vertices in
D, U D,,. Therefore, S’ U{wo}U (D2 \ (D, U D)) is a hd-set of S(T"). Hence,

WS <y(T) +q+1 = (A(T) + deg(v) — 1) — deg(y) +1
=(T) +q+3— (A(T) + deg(v)) — deg(y)

)+ q+1—(A(T) + deg(v)), since deg(y) > 2

)+ q+2— (A(T) + deg(v)), a contradiction.

Thus deg(y) =1 for all y € N(w) \ {u,v}. That is, w is a weak support vertex
of T'.
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Similarly, one can prove that every vertex w € N(v) \ {u} is either a leaf of
a weak support of T

(ii) Suppose both N(u)\ {v} and N(v) \ {u} have weak support vertices in
T.

Let N'(u) = {w € N(u)\ {v} : deg(w) = 2} and N'(v) = {w € N(v) \ {u} :
deg(w) = 2}. Let N"(u) = {w' : w' is the vertex subdividing the edge uw where
w € N'(u)} and N”(v) = {w' : w' is the vertex subdividing the edge vw where
ve N (v)}

By our assumption N'(u) # 0 and N'(v) # (0. Clearly, |[N”(u) U N”(v)| =
q—A(T)—(deg(v)—1) and so S"UN"(u)UN"(v) is a hd-set of S(T"). Therefore,
WIS(T)] AT + 4 — (AT) +deg(v) — 1) < UT) + g +2 — (A(T) + deg(v)).
a contradiction.

The converse is obvious. O

Theorem 10. Let G be a connected (p, q)-graph having at least one cycle
and let uw and v be vertices as in Theorem 8. Then v4[S(G)] = v(G) +2+q —
(A(G) + deg(v)) if and only if the following conditions hold:

(i) Every cycle C' in G contains u or v or the edge uv and the length of C' is
at most 5.

(ii) If the longest cycle containing the edge uv in G is Cs, then

(a) every vertex w € N(u) U N(v) \ (N(u) N N(v)U{u,v}) is a leaf or
weak support of degree 2 or a vertex of degree 2 in another cycle Cj
of G.

(b) both N(u)\{v} and N(v)\{u} cannot contain weak support vertices
in G.

(iii) If the longest cycle containing the edge wv in G is C' = Cy, then every
vertex w € N(u) U N(v) \ (N(u) N N(v) U{u,v}) is a leaf or a vertex of
degree 2 in C.

(iv) If the longest cycle in G is C' = C, then

(a) the edge uv is a chord of C'

(b) every vertex w € N(u) UN(v) \ (N(u) N N(v)U{u,v}) is a leaf or a
vertex of degree 2 in C.

(v) Every vertexw € N(u)NN (v) is of degree at most 3 and if w € N(u)NN (v)
is of degree 3 in GG, then there exists at most one edge not adjacent to uv
in G.
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Proof. Assume that v,[S(G)] = v(G) + 2+ ¢ — (A(G) + deg(v)).

Let F1, D1 and wy be as in Theorem 9.

Throughout this proof, S" denotes a ~v-set of G.

(i) Suppose there exists a cycle C' in G not containing u and v.

Let V(C) = {v1,v2, - ,v}. Let w;,w;—1 and w;41 be the vertices in
Dy subdividing the edges v;—1v;, v;—1v;—2 and v;v;41 in C, respectively. Then
clearly the vertex w; hop dominates the vertices w;_1 and w;;1 in S(G). There-
fore S"U{wo} U (D \ {wi—1,wi11}) is a hd-set of S(G). Hence

WS(G)] <9(G) +1+q—2— (A(G) +deg(v) — 1)
=7(G) + ¢ — (A(G) + deg(v))
<Y(G)+ 2+ q— (A(G) + deg(v)), a contradiction.

Claim: Every cycle C' in G is of length at most 5.

Suppose there exists a cycle C' containing the edge uv in G such that the
length k of C' > 6. Let V(C) = {u = v1,v = vy, v3,- -+ ,vx}. Then C contains
at least three edges not incident at u or v. Let v;_jv;,v;_9v;—1 and v;v;4+1 be
three edges in C' not incident at u or v and let w;, w;—1 and w; 1 be the vertices
in S(G) subdividing these edges respectively. Then w; hop dominates w;_; and
wit+1. Therefore 8" U {wp} U (D1 \ {wi—1,wit1}) is a hd-set of S(G) so that

W[S(G)] <v(G) +14q—2— (A(G) + deg(v) — 1)
=7(G) +q — (A(G) + deg(v))
<v(G)+ 2+ q— (A(G) + deg(v)), a contradiction.

Applying a similar argument given in Theorem 9 one can easily prove the
conditions (i — a) and (it — b).

(iii) Let C' = (u,v,z,y) be a longest cycle of length 4 containing the edge
uv in G.

Claim: Every vertex w € N(u) UN(v) \ ((N(u) N N(v)) U{u,v}) is a leaf
or a vertex of degree 2 in C. Let w € N(u) UN(v) \ (N (u) N N(v)) U{u,v}).

Then either w € N(u)\ (N(u) NN (v)U{u,v}) or w e N(v)\N(u)NN(v)U
{u,v}.

Case 1: Let w € N(u) \ (N(u) N N(v) U{u,v}). Then as discussed in
Theorem 9, deg(w) < 2. If deg(w) = 1, then clearly w is a leaf. So assume
that deg(w) # 1.

We claim that w is neither a weak support vertex of degree 2 in G nor a
vertex of degree 2 in any other cycle of length 3 or 4 or 5.
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Suppose w is a weak support vertex of degree 2 in G. Let z be the leaf
adjacent to w in G. Let vy, and v,, be the vertices subdividing the edges uw
and wz in S(G). Then the vertex vy, hop dominates all the vertices in D,
and the vertex vy, in S(G). Let wy be the vertex subdividing the edge vy in
S(G). Then wy hop dominates all the vertices in D, and the vertex v, that
subdivides the edge zy in S(G).

Therefore S’ U {w1, vz} UDg \ (Dy U{vgy, vy} is clearly a hd-set of S(G).
Hence

WS(G)] <H(G) + 2+ ¢ — A(G) — (deg(v) — 1) —
=7(G) +q—A(G) —deg(v) +1
<Y(G) + 2+ q— (A(G) + deg(v)), a contradiction.

Thus the vertex w cannot be a weak support of degree 2 in GG. The other cases
follow similarly.

Similarly, Case 2 can be argued for w € N(v) \ (N(u) N N(v) U{u,v}).
Next we prove condition (iv). Let C' = C5 be a longest cycle of length 5 in

Claim: The edge uv is a chord of C' in G.

Suppose the edge uv is not a chord of C.

Case 1: ue V(C) and v ¢ V(C).

Let V(C) = {u,w,z,y,z}. Then clearly the edges wz,zy and yz are in
Fq. Let wy,wy and ws be the vertices subdividing the edges wx,ry and yz
respectively. Then S" U {wg} U Dy \ {wy, w3} is a hd-set of S(G). Hence

WIS(G)] <A(G) + 14— 2= (A(G) +deg(v) — 1)

(
=v(G)+q¢—1—-A(G) —deg(v) + 1
=7(G) + ¢ — A(G) — deg(v)
<Y(G)+ 2+ q— (A(G) + deg(v)), a contradiction.

Similarly we can prove that uv is not an edge in Cj.

One can prove the condition (b) of (iv) with similar arguments given in the
proof of (iii).

(v) Suppose there exist two edges zw; and ywsy in G such that wy,ws €
N(u) N N(v) and deg(wy) = deg(ws) = 3. Let E, and E, be the set of edges
incident at u and v respectively except the edge uwv. Let D, be the set of
vertices subdividing the edges in E, and D, be the set of vertices subdividing
the edges in F,. Let w; and wl2 be the vertices subdividing the edges uw; and
vws respectively. Let 2 and y be the vertices subdividing the edges zw; and
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ywy respectively. Then wll hop dominates all vertices in D, and the vertex
2. Similarly, wl2 hop dominates all vertices in D, and the vertex y in S (Q).
Therefore S U {wy,ws} U (D1 \ {z',y'}) is a hd-set of S(G). Hence,

W[S(G)] <v(G) +2+q—2— (A(G) + deg(v) — 1)
=7(G) + ¢ — A(G) — deg(v) + 1
<Y(G@)+2+q— (A(G) 4+ deg(v)), a contradiction.

Conversely, assume that the conditions (i) to (v) hold good.

Let wg be a vertex subdividing the edge uv. Then wy hop dominates all
vertices subdividing the edges incident at u and v. As deg(u) = A(G) and by
the choice of v, every hd-set of S(G) contains wy. Furthermore, as any two
vertices of V(G) in S(G) are of even distance, every vertex v € V(G) can be
hop dominated only by a vertex of V(G) in S(G). Therefore every ~yp-set of
S(G) contains v(G) vertices of V(G). Let e = wr € Ey. If w € N(u) and
x ¢ N(v), then by condition (ii-a), w is a weak support vertex of degree 2 in G.

If w e N(u) and x € N(v), then by condition (iii), wx is an edge in Cy that
contains the edge uv. Thus in both cases either the vertex subdividing the edge
uw or the vertex subdividing the edge wz is in every ~,-set of S(G).

If w € N(u) N N(v), then by condition (v) wz is the only edge not adjacent
to uv in G. Therefore, one of the vertices subdividing the edges uv, vw and wx
is in any ~p-set of S(G). If w ¢ N(u), then by condition (ii-b) the vertex w is
a weak support vertex of degree 2 in N(v) \ {u}. Then the vertex subdividing
the edge wx or vw is in every 7y,-set of S(G).

Thus in all cases we see that for every edge in FEj there corresponds a
subdividing vertex in every 7y,-set of S(G). Therefore every 7,-set of S(G)
contains at least v(G) + 1 + | E4| vertices. This implies

W[S(G)] 2v(G) + 1+ |E4|

(
=7(G) +1+4q— (A(G) + deg(v) — 1)
=v(G) + 2+ q — (A(GQ) + deg(v) — 1).
But by Theorem 8, v,[S(G)] < v(G) + 2+ ¢ — (A(G) + deg(v)).
Thus v, [S(G)] =v(G) + 2+ ¢ — (A(G) + deg(v)). O
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