International Journal of Applied Mathematics

Volume 32 No. 1 2019, 51-58

 $ISSN:\ 1311\text{-}1728\ (printed\ version);\ ISSN:\ 1314\text{-}8060\ (on\mbox{-line}\ version)$

doi: http://dx.doi.org/10.12732/ijam.v32i1.5

CHARACTERIZATION OF SPAN OF BASE β -INDUCED 1-UNIFORM DCSL GRAPHS

K.A. Germina^{1 §}, Gency Joseph², L. Benedict Michael Raj³

¹Department of Mathematics Central University of Kerala Kasargod, Kerala, INDIA

² Department of Mathematics St. Joseph's College, Trichy Tamilnadu, INDIA

Abstract: A distance compatible set labeling (dcsl) of a connected graph G is an injective set assignment $f:V(G)\to 2^X$, X being a non empty ground set, such that the corresponding induced function $f^{\oplus}:E(G)\to 2^X\setminus\{\phi\}$ given by $f^{\oplus}(uv)=f(u)\oplus f(v)$ satisfies $|f^{\oplus}(uv)|=k_{(u,v)}^f d_G(u,v)$ for every pair of distinct vertices $u,v\in V(G)$, where $d_G(u,v)$ denotes the path distance between u and v and $k_{(u,v)}^f$ is a constant, not necessarily an integer, depending on the pair of vertices u,v chosen. A dcsl f of G is k-uniform if all the constants of proportionality with respect to f are equal to f0, and if f0 admits such a dcsl then f0 is called a f1-uniform dcsl graph. Let f2-be a family of subsets of a set f2. A tight path between two distinct sets f2-induced f3-between any two of its distinct sets. In this paper we characterize problem of determining those f3-induced graph f3-between distinct distinct sets. In this paper we characterize problem of determining those f3-induced graph is 1-uniform dcsl.

AMS Subject Classification: 05C07, 05C38, 05C75, 05C85 Key Words: dcsl graphs, 1-uniform dcsl graphs, wg-family of sets

Received: August 15, 2018

© 2019 Academic Publications

[§]Correspondence author

1. Introduction

Throughout this paper by a graph we mean a connected, finite, simple graph. Unless otherwise mentioned, for all terminology in graph theory the reader is referred to [4]. Acharya [1] introduced the notion of vertex set valuation as a set analogue of number valuation. For a graph G = (V, E) and a non empty set X, Acharya defined a set valuation of G as an injective set valued function $f: V(G) \to 2^X$, and he defined a set-indexer as a set valuation such that the function $f^{\oplus}: E(G) \to 2^X \setminus \{\phi\}$ given by $f^{\oplus}(uv) = f(u) \oplus f(v)$ for every $uv \in E(G)$ is also injective, where 2^X is the set of all the subsets of X and \oplus is the binary operation of taking the symmetric difference of subsets of X.

Acharya and Germina [2], having studying topological set valuation, introduced the particular kind of set valuation for which a metric, especially the cardinality of the symmetric difference, is associated with each pair of vertices in proportion to the distance between them [2]. In otherwords, the question is whether one can determine those graphs G = (V, E) that admit an injective function $f: V \to 2^X$, X being a non empty ground set such that the cardinality of the symmetric difference $f^{\oplus}(uv)$ is proportional to the usual path distance $d_G(u, v)$ between u and v in G, for each pair of distinct vertices u and v in G. They called f a distance compatible set labeling (dcsl) of G, and the ordered pair (G, f), a distance compatible set labeled (dcsl) graph.

Definition 1. ([2]) Let G = (V, E) be any connected graph. A distance compatible set labeling (dcsl) of a graph G is an injective set assignment $f: V(G) \to 2^X$, X being a non empty ground set, such that the corresponding induced function $f^{\oplus}: E(G) \to 2^X \setminus \{\phi\}$ given by $f^{\oplus}(uv) = f(u) \oplus f(v)$ satisfies $|f^{\oplus}(uv)| = k_{(u,v)}^f d_G(u,v)$ for every pair of distinct vertices $u,v \in V(G)$, where $d_G(u,v)$ denotes the path distance between u and v and $k_{(u,v)}^f$ is a constant, not necessarily an integer, depending on the pair of vertices u,v chosen.

A distance compatible set labeling f of G is k-uniform if all the constants of proportionality with respect to f in Definition 1 are equal to k, and if G admits such a distance compatible set labeling then G is called a k-uniform distance compatible set labeled graph.

Listed below are the definitions and known results which are used in this paper.

Definition 2. ([5]) A family of sets \mathcal{F} is well-graded if any two sets in \mathcal{F} can be connected by a sequence of sets formed by single element insertion and

deletion, without redundant operations, such that all intermediate sets in the sequence belong to \mathcal{F} .

Definition 3. ([5]) Let \mathcal{F} be a family of subsets of a set X. A tight path between two distinct sets P and Q(or from P to Q) in \mathcal{F} is a sequence $P_0 = P, P_1, P_2 \dots P_n = Q$ in \mathcal{F} such that $d(P,Q) = |P \oplus Q| = n$ and $d(P_i, P_{i+1}) = 1$ for 0 < i < n-1.

The family \mathcal{F} is well-graded family (or wg-family), if there is a tight path between any two of its distinct sets.

Definition 4. ([5]) Any family \mathcal{F} of subsets of X defines a graph $G_{\mathcal{F}} = (\mathcal{F}, E_{\mathcal{F}})$, where $E_{\mathcal{F}} = \{\{P, Q\} \subseteq \mathcal{F} : |P \oplus Q| = 1\}$ and we call $G_{\mathcal{F}}$, an \mathcal{F} -induced graph.

Definition 5. ([5]) A family of sets \mathcal{F} is closed under union or \bigcup —closed if for any nonempty $\mathcal{H} \subseteq \mathcal{F}$, we have $U\mathcal{H} \in \mathcal{F}$. The span of a family of sets \mathcal{F} is the family \mathcal{F}' containing any set which is the union of some nonempty subfamily of \mathcal{F} .

The following universal theorem has been established in [2].

Theorem 6. ([2]) Every graph admits a distance compatible set labeling.

Germina and Jinto [7] established some interesting results relating 1-uniform distance compatible set labeled graphs and well-graded family of sets.

Theorem 7. ([7]) A graph G is a 1-uniform distance compatible set labeled graph if and only if there exists a family of subsets \mathcal{F} of X, which is well-graded.

Theorem 8. ([8]) The set of vertex labelings of any 1-uniform dcsl graph form a well-graded family of sets \mathcal{F} , there exist the \mathcal{F} - induced graph $G_{\mathcal{F}}$, which is 1-uniform dcsl graph.

Definition 9. ([7]) The span of a 1- uniform dcsl graph G is the graph induced by the span of the vertex labelings of G, denoted by SpanG.

Theorem 10. ([8]) If \mathcal{F}' is the span of a well-graded family of sets \mathcal{F} , then the \mathcal{F}' - induced graph $G_{\mathcal{F}'}$ is 1-uniform dcsl graph.

Theorem 11. ([8]) A 1– uniform distance compatible set labeled graph G can be isometrically embedded in its span.

Germina and Jinto [7] while discussing the \mathcal{F} -induced graph $G_{\mathcal{F}}$, paused an open problem [8] of determining those \mathcal{F} -induced graph $G_{\mathcal{F}}$, in which the base \mathcal{B} -induced graph is 1-uniform dcsl. In this paper we discuss this open problem and completely characterize the classes of \mathcal{F} -induced graph $G_{\mathcal{F}}$, in which the base \mathcal{B} -induced graph is a 1-uniform dcsl.

2. Main Results

Towards establishing this open problem, we first study the structure of \mathcal{B} -induced 1-uniform distance compatible set labeled graph with \mathcal{B} as the basis and, the structure of the respective \mathcal{F} -induced graph.

One may note that a family \mathcal{B} , spanning a family \mathcal{F} , is a base of \mathcal{F} , if and only if, none of the sets in \mathcal{B} is the union of some other sets in \mathcal{B} . Let \mathcal{F} be a \bigcup -closed wg-family, and \mathcal{B} be a base of \mathcal{F} . Then \mathcal{B} need not necessarily be a wg-family and hence $G_{\mathcal{B}}$, the \mathcal{B} -induced graph in general, need not necessarily be a 1-uniform dcsl graph. In particular, the \mathcal{B} -induced graph may even be disconnected so that it is not 1-uniform dcsl graph.

Theorem 12. The base \mathcal{B} -induced graph $G_{\mathcal{B}}$ is 1- uniform distance compatible set labeled graph if and only if for every pair of vertices $u, v \in V(G_{\mathcal{B}})$ with $f(u) = \{\emptyset\}$, there exist a tight path between u and v.

Proof. Suppose that the base \mathcal{B} -induced graph $G_{\mathcal{B}}$ is 1- uniform dcsl. Let $u \in V(G_{\mathcal{B}})$ with $f(u) = \{\emptyset\}$ and v be any vertex in $G_{\mathcal{B}}$. Since $G_{\mathcal{B}}$ is 1-uniform distance compatible set labeled graph there exist a tight path between every pair of vertices u_i, v_j and in particular between u, v.

Conversely, let $G_{\mathcal{B}}$ be the \mathcal{B} - induced graph with \mathcal{B} as the basis with a vertex u identified as $f(u) = \{\emptyset\}$ and, which is minimal with respect to the set inclusion. Suppose that there exist a tight path $P = P_0, P_1, P_2, \ldots, P_n = Q$ between every pair of vertices u, v of $G_{\mathcal{B}}$ and let $u = u_0, u_1, u_2, \ldots, u_n = v$ be the shortest path between u and v. Without loss of generality, let $P_0 = \{\emptyset\} = f(u)$. and $P_1 = f(u_1), P_2 = f(u_2), \ldots, f(u_n) = f(v) = Q$. Hence, for $u \in G_{\mathcal{B}}$, let $u - v_j$ $(j = 1, 2, 3, \ldots, k)$ be the tight path between u and v_j $(j = 1, 2, 3, \ldots, k)$. That is, there exist $P_0 = \{\emptyset\} = f(u), Q_1 = f(v_1), Q_2 = f(v_2), \ldots, f(v_j) = Q$ is the 1- uniform dcsl labeling of the path $u - v_j$. Let $u_i, v_j \in V(G_{\mathcal{B}})$ be any two arbitrary vertices. If $u_i v_j \in E(G_{\mathcal{B}})$ then, $|f(u_i) \oplus f(v_j)| = 1$. Otherwise, if $u_i v_j$

is not an edge in $G_{\mathcal{B}}$, then $|f(u_i) \oplus f(v_j)| = d(u_i, v_j) = |Q_i \oplus Q_j| = j - i$.

Corollary 13. The base \mathcal{B} -induced graph $G_{\mathcal{B}}$ is a 1-uniform distance compatible labeled path P_n if and only if there exists exactly one path $u, v \in V(G_{\mathcal{B}})$ with $f(u) = \{\emptyset\}$ and of length n. Also the \mathcal{B} -induced graph $G_{\mathcal{B}}$ is isomorphic to the path P_n .

Theorem 14. Let $G_{\mathcal{B}}$ be the base \mathcal{B} - induced 1-uniform dcsl graph. Then the \mathcal{F} -induced graph $G_{\mathcal{F}}$ is 1-uniform dcsl if and only if, there exists an isometric embedding of $G_{\mathcal{B}}$ to $G_{\mathcal{F}}$.

Proof. Invoking Theorem 12 and Corollary 13, if there exists a vertex u with $f(u) = \{\emptyset\}$ and if the u - v path with $f(u) = \{\emptyset\}$ is a unique 1-uniform dcsl path, then the \mathcal{B} -induced graph $G_{\mathcal{B}}$ is isomorphic to the path P_n , which is clearly an isometric embedding of $G_{\mathcal{B}}$ to $G_{\mathcal{F}}$. On the other hand, if the path is not unique and there exists a unique vertex u with $f(u) = \{\emptyset\}$ with all the u - v paths with initial vertex as u, is 1 uniform dcsl then, since $G_{\mathcal{F}}$ is U-closed, we get $G_{\mathcal{F}}$ as an isometric embedding of $G_{\mathcal{B}}$, whose span is clearly 1-uniform dcsl.

Conversely, let u-w path be the path of maximum length say n. Then $f(u) = \{\emptyset\}$, and $|f(u_i)|$ should necessarily equal to $i : 1 \le i \le n$, where n is the largest length of the path. This necessarily implies that in $G_{\mathcal{B}}$ all the vertices adjacent to u should necessarily be assigned with singleton set and all the vertices adjacent with vertices of assignments, as the sets of cardinality 1 will have the set assignment with cardinality 2 and so on. Now, \mathcal{B} is a basis and minimal with respect to set inclusion. Hence, to move from the initial vertex u to the immediate next vertex in any u-v path, the vertex assignment should defer by one in cardinality. Also any 1- uniform dcsl graph G can be isometrically embedded in its span. Now the span of \mathcal{B} is \mathcal{F} and the $\mathcal{B}-$ induced graph $G_{\mathcal{B}}$ is 1-uniform and is an induced subgraph of $G_{\mathcal{F}}$. By defining the isometry from \mathcal{B} to \mathcal{F} by the identity map we get $G_{\mathcal{F}}$, an isometric embedding of $G_{\mathcal{B}}$. Hence the $\mathcal{F}-$ induced graph $G_{\mathcal{F}}$ with $G_{\mathcal{B}}$ the base \mathcal{B} induced 1—uniform dcsl are the graphs nothing but the isometric embedding of $G_{\mathcal{B}}$ to $G_{\mathcal{F}}$.

Theorem 15. Let $G_{\mathcal{B}}$ be the \mathcal{B} -base induced graph. If $G_{\mathcal{B}} \cong P_n$ then $G_{\mathcal{F}}$ is isomorphic to an induced subgraph of a partial cube or is isomorphic to a partial cube.

Proof. Let \mathcal{B} be the base of a u-v path P_n and \mathcal{B} is a minimal with respect

to the inclusion. If $G_{\mathcal{B}}$ is 1-uniform dcsl with $f(u) = \{\emptyset\}$, then the result is obvious as $G_{\mathcal{F}} \cong P_n$. If $G_{\mathcal{B}}$ is 1-uniform dcsl with any other vertex other than the initial vertex u receives the labeling $\{\emptyset\}$,in which case the collection of vertex assignments need not form a basis. But, since \mathcal{F} is U-closed, union of all pairs of vertices that are not in \mathcal{B} should necessarily be assigned to some isolated vertices in $G_{\mathcal{F}}$. Define the edges so that the induced graph is 1-uniform dcsl so that the span of \mathcal{B} is a 1-uniform dcsl graph which can be isometrically embedded in its span. Thus, for every pair of vertices u, w in $G_{\mathcal{F}}$, there exist a tight path with $|f(u_i) \oplus f(u_{i+1})| = 1$ and $|f(u) \oplus f(w)| = d(u, w)$, which in turn implies that either $G_{\mathcal{F}}$ is an induced subgraph of partial cube or is isomorphic to a partial cube.

Theorem 16. If the base \mathcal{B} induced graph $G_{\mathcal{B}} \cong K_{1,n}$ then $G_{\mathcal{F}}$ isomorphic to partial cube of dimension n or n+1.

Proof. Let \mathcal{B} be the base of a star graph $K_{1,n}$. If $\{\emptyset\} \in \mathcal{B}$, and is assigned to some vertex of $K_{1,n}$, then the other vertices of $K_{1,n}$ should necessarily be labeled with distinct singleton sets or with the sets such that they are not union of any two vertex assignments. Now consider the span \mathcal{F} of \mathcal{B} , and add enough number of isolated vertices so as to assign the sets in \mathcal{F} that are not assigned to any vertex of $G_{\mathcal{B}}$, to these isolated vertices. If $\{\emptyset\} \notin \mathcal{B}$, then add an isolated vertex to assign $\{\emptyset\}$. Also, since, \mathcal{B} is a minimal with respect to the inclusion, $G_{\mathcal{B}}$ is a \mathcal{B} -induced 1-uniform dcsl graph. Hence, by defining edges with the isolated vertices one may find that the span \mathcal{F} is nothing but the power set 2^n or 2^{n+1} according as $\{\emptyset\} \in \mathcal{B}$ or $\{\emptyset\} \notin \mathcal{B}$ respectively. Hence $G_{\mathcal{F}}$ isomorphic to partial cube of dimension n or n+1.

Theorem 17. If $G_{\mathcal{B}} \cong C_n$ where n is even then, $G_{\mathcal{F}}$ isomorphic to partial cube.

Proof. Let \mathcal{B} be the base of a cycle C_n where n is even and \mathcal{B} is a minimal with respect to the inclusion. Let $G_{\mathcal{B}}$ be the induced 1-uniform desl graph. Then, there exists exactly two distinct tight paths namely, $u, u_1, u_2, \ldots, u_{\frac{n}{2}}$ and $u, u_n, u_{n-1}, \ldots, u_{\frac{n}{2}}$. Also if $\{\emptyset\}$ is not assigned to a vertex in $V(G_{\mathcal{B}})$, then there exists exactly two distinct tight paths namely the $u, u_1, u_2, \ldots, u_{\frac{n}{2}}$ and, $u, u_n, u_{n-1}, \ldots, u_{\frac{n}{2}}$ with |f(u)| = 1. In both the cases $G_{\mathcal{F}}$ isomorphic to partial cube of dimension n or n+1 according as whether or not the $\{\emptyset\}$ is assigned to a vertex of C_n .

Theorem 18. Let $G_{\mathcal{B}}$ be the base $\mathcal{B}-$ induced 1-uniform dcsl graph. Then the \mathcal{F} -induced graph $G_{\mathcal{F}}$ -a partial cube if there exists a vertex u in $V(G_{\mathcal{B}})$ such that degree of u is equal to the eccentricity of the induced graph $G_{\mathcal{B}}$.

Proof. Let there exist a vertex $u \in V(G_{\mathcal{B}})$ such that the degree of u is equal to eccentricity of $G_{\mathcal{B}}$. Let eccentricity of $G_{\mathcal{B}} = n$, so that is there exist a u-v path of length n in $G_{\mathcal{B}}$. Since $G_{\mathcal{B}}$ being 1-uniform dcsl, this u-vpath should necessarily be a tight path. Hence $f(u) = \{\emptyset\}, f(u_1) = A_1$ with $|A_1| = 1, f(u_2) = A_2 \text{ with } |A_2| = 2, \dots, f(v) = f(u_n) = A_n, \text{ with } |A_n| = n.$ Also \mathcal{B} being the basis, it is minimal with respect to set inclusion and hence $A_i \subset A_{i+1}, 1 \le i \le n-1 \text{ and } |A_i \oplus A_{i+1}| = 1 \text{ and } |A_0 \oplus A_n| = n. \text{ If } d(u) = n \text{ and } d(u) = n \text$ let $u_1 = v_1, v_2, \dots, v_n$ be the *n* neighbours of *u*. Hence, these *n* vertices should necessarily be assigned with sets of cardinality 1. That is, each of the vertices in the neighbourhood of u receive the labeling of $\{1\}, \{2\}, \ldots, \{n\}$. Hence, $u, v_1, \ldots, v_i; u, v_2, \ldots, v_k; \ldots; u, v_n, \ldots, v_l$ are all the paths originating from uand should necessarily be a tight path of length j, k, \ldots, l respectively. That is, there exists, distinct 1 – uniform dcsl paths with a common vertex u with f(u) = $\{\emptyset\}$, and the neighbouring vertices say u_1, u_2, \ldots, u_n of u with labeling singleton sets. The paths being tight path, all the vertices in the neighbourhoods of each of the vertices $v_i, 1 \le i \le n$ will necessarily receive the assignments with sets of cardinality 2 and so on. Since \mathcal{F} is U-closed, if needed add enough number of isolated vertices and assign the isolated vertices with subsets from 2^X where |X|=n, which are not being assigned to the vertices of the above considered paths. Apply the isometric embedding of $G_{\mathcal{B}}$ in such a way that for every pair of vertices u, v there exist a tight path with $|f(u_i) \oplus f(u_{i+1})| = 1$ and $|f(u) \oplus f(v)| = d(u,v)$. Hence the embedded graph $G_{\mathcal{F}}$ is nothing but a partial cube.

Now we characterize the open problem mentioned in the paper.

Theorem 19. Let \mathcal{B} be a basis and $\mathcal{G}_{\mathcal{B}}$ be induced graph induced by the basis \mathcal{B} . Then, classes of \mathcal{F} -induced graph $G_{\mathcal{F}}$ in which the base \mathcal{B} -induced graph is 1-uniform are isomorphic to a bipartite graph that are embedable in a partial cube.

Proof. Let \mathcal{B} be a basis and $\mathcal{G}_{\mathcal{B}}$ be the \mathcal{B} induced graph. Hence, \mathcal{B} contains all unions and is minimal with respect to inclusion. Assume $\mathcal{G}_{\mathcal{B}}$ is 1-uniform dcsl. Being a 1-uniform dcsl, $\mathcal{G}_{\mathcal{B}}$ is bipartite and so is the span \mathcal{F} . The span \mathcal{F} is always 1-uniform and invoking Theorem 12, there exists a unique vertex u such that $f(u) = \{\emptyset\}$ such that all u - v paths are tight. Again invoking Theorems,

[15,16,17,18], these bipartite graphs are embedable in a partial cube. Converse is obvious as any induced subgraph of a 1-uniform dcsl is again 1-uniform. \Box

References

- [1] B.D. Acharya, Set-valuations of Graphs and Their Applications, MRI Lecture Notes in Applied Mathematics, No 2, Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad (1983).
- [2] B.D. Acharya and K.A. Germina, Distance compatible Set-labeling of graphs, *Indian J. Math. and Comp. Sci.* **1** (2011) 49-54.
- [3] B.K. Thomas and K.A. Germina, Distance compatible set-labeling index of graphs, *Int. J. Contemp. Math. Sciences*, **5**, No 19 (2010), 911-919.
- [4] F. Harary, Graph Theory, Addison Wesley, Reading Massachusetts (1969).
- [5] J.-P. Doignon, J.-Cl. Falmagne, Well-graded families of relations, *Discrete Math.*, **173** (1997), 35-44.
- [6] K.A. Germina, Limiting Probability transition matrix of a condensed Fibonacci Tree, *International Journal of Applied Mathematics*, 31, No 2 (2018), 241-249; doi: 10.12732/ijam.v31i2.6; available at http://www.diogenes.bg/ijam/.
- [7] K.A. Germina and Jinto James, Characterization of 1-uniform dcsl graphs and well-graded family of sets, Advances and Applications in Discrete Mathematics, 15 (2015), 113-123.
- [8] J. James, K.A. Germina, P. Shaini, Learning graphs and 1-uniform dcsl graphs, Discrete Mathematics, Algorithms and Applications 09, No 04 (2017), Art. 1750046.
- [9] M. Deza and M. Laurent, *Geometry of Cuts and Metrices*, LIENS-Ecole Normale Superieure, France (1996).
- [10] S. Ovchinnikov, Partial cubes: Structures, characterizations, and constructions, *Discrete Mathematics*, **308**, No 23 (2008), 5597-5621.