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Abstract: We present a new inequality which involves the Caputo fractional
derivative of the product of two continuously differentiable functions, and es-
tablish its various properties. The inequality and its properties enable us to
construct potential time-varying Lyapunov functions for the Lyapunov stability
analysis of fractional order systems. We use time-varying Lyapunov functions
to analyse the stability of nonautonomous fractional order systems. By con-
sidering time-varying quadratic Lyapunov function, we establish new stability
conditions for certain class of nonautonomous fractional order systems where
the fractional order lies between 0 and 1.
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1. Introduction

It is well-known that the Lyapunov method (Lyapunov direct method) [10] is
a genuine and powerful method for the stability analysis of nonautonomous
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differential systems (systems involving integer order derivatives). It allows us
to draw the conclusions about asymptotic behaviour of solutions to such differ-
ential systems without actually having the knowledge of its explicit solutions.
Many versions of Lyapunov theorems for integer order differential systems can
be found in the book [10]. Based on these theorems, one can ensure the sta-
bility, asymptotic stability, exponential stability etc., of the solutions to such
systems.

On the other hand, fractional order systems [17], which generalize the dif-
ferential systems of integer order to the non-integer order, are the center of
activity in many studies and have wide range of applications [17, 11, 15, 16, 21].
Recently, in [13, 14, 6], the authors proposed fractional order extension of Lya-
punov direct method for nonautonomous fractional order systems. It is worth
to mention that the fractional Lyapunov direct method is a powerful method
not only for the stability analysis of fractional order systems but also for estab-
lishing sufficient conditions for ensuring the stability as well as obtaining the
bounds of solutions to such systems.

However, the fractional Lyapunov direct method has a limitation and a
difficulty, when it comes to the stability analysis of fractional order systems.
First, the limitation lies in the fact that it is usually very difficult to find a
Lyapunov function for a given fractional order system. Second, the difficulty
lies in the calculation of fractional derivative of Lyapunov function if it exists
for a given fractional order system. That means even-if we have identified some
candidate functions (in terms of independent variable ‘time’ and dependent
variables ‘state variables’) for a given system, then the calculation of its frac-
tional derivative along the solutions to the given system is not easy. This is due
to the fact that the properties of fractional derivative operators (e.g., Leibniz
rule [18, 19], chain rule [20]) are not easy.

In recent years, great efforts have been made by many researchers to con-
struct various types of Lyapunov functions by establishing new inequalities
which involve fractional derivatives [4, 8, 22, 5]. For example, quadratic Lya-
punov function [4], general quadratic Lyapunov function [8], Volterra-type Lya-
punov function [22], convex Lyapunov function [5] have been established for the
Lyapunov stability analysis of fractional order systems.

It may be noted that all these works have been focused on time-invariant or
autonomous Lyapunov functions (functions depend only on the state variables
of fractional order system) which are continuously differentiable. However, in
general, it is very essential to construct continuously differentiable time-varying
or nonautonomous Lyapunov functions (functions in terms of independent vari-
able ‘time’ and the dependent variables ‘state variables’) for the stability of
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nonautonomous fractional order systems. On the other hand, in [1, 3, 12, 2]
continuous Lyapunov functions, Dini-like fractional derivative operators, initial
time difference have been introduced for the stability analysis of fractional order
systems.

In this paper, we attempt to construct the continuously differentiable time-
varying Lyapunov functions and see the implication of such functions for the
Lyapunov stability analysis of nonautonomous fractional order systems. First,
we propose an inequality which involves the Caputo fractional derivative of the
product of two continuously differentiable functions. Based on this inequality,
we develop few of its properties and establish several new inequalities. By
presenting a few illustrative examples, we show that it is possible to ensure
the Lyapunov stability of nonautonomous fractional order systems based on
the time-varying Lyapunov functions. Further, by considering time varying
quadratic Lyapunov function along with the fractional Lyapunov direct method,
we propose two stability theorems from which one can ensure the asymptotic
stability (Mittag-Leffler stability) of certain class of nonautonomous fractional
order systems. Finally, we demonstrate the applications of these theorems via
illustrative examples.

2. Preliminaries

Let us denote by Z
+ the set of positive integers, R+ the set of positive real

numbers, R the set of real numbers, C the set of complex numbers, R(z) the
real part of complex number z, Rn the n-dimensional Euclidean space, XT the
transpose of a vector or matrix X, ‖x‖ the Euclidean norm of a vector x, For
given symmetric matrices X, Y : the notation X ≤ Y (X ≥ Y ) means the
matrix X − Y is negative (positive) semi-definite, and X < Y (X > Y ) means
the matrix X − Y is negative (positive) definite.

Definition 1. ([17, 11]) The Euler Gamma function Γ is defined as

Γ(z) =

∫

∞

0
tz−1e−tdt, (1)

where z ∈ C and R(z) > 0.

Definition 2. ([17, 11]) The Riemann-Liouville fractional integral of order
α of function x : [t0, T ] → R is defined as

RLD−α
t0,t
x(t) =

1

Γ(α)

∫ t

t0

(t− τ)α−1 x(τ)dτ, (2)
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where α ∈ R
+.

Definition 3. ([17, 11]) The Caputo fractional derivative of order α of
function x : [t0, T ] → R is defined as

CDα
t0,tx(t) =

{

RLD
−(n−α)
t0,t

(

dnx(t)
dtn

)

, if α ∈ (n− 1, n) ,
dnx(t)
dtn , if α = n,

(3)

where α ∈ R
+, and n ∈ Z

+.

Consider the initial value problem of nonautonomous fractional order sys-
tem

CDα
0,tx(t) = g(t, x(t)), x(0) = x0, (4)

where α ∈ (0, 1], and g : [0,∞) × Ω → R
n is continuously differentiable and

Ω ⊆ R
n is a domain that contains the origin x = 0.

Definition 4. The origin x = 0 is an equilibrium point of (4) if g(t, 0) = 0,
∀ t ≥ 0.

Definition 5. The zero solution of the system (4) is said to be:

(i) stable if for each ǫ > 0, ∃ δ = δ(ǫ) such that

‖x(0)‖ < δ =⇒ ‖x(t)‖ ≤ ǫ, ∀ t ≥ 0, (5)

(ii) asymptotically stable if it is stable and ‖x(t)‖ → 0 as t→ ∞.

Definition 6. ([9]) The one parameter Mittag-Leffler function is defined
as

Eα(z) =
∞
∑

k=0

zk

Γ(αk + 1)
, α ∈ R

+, z ∈ C. (6)

Definition 7. ([14]) The zero solution of the system (4) is said to be
Mittag-Leffler stable if

‖x(t)‖ ≤ [m (x(0))Eα (−λtα)]b (7)

where α ∈ (0, 1], λ ≥ 0, b > 0, m(0) = 0, m(x) ≥ 0 andm(x) is locally Lipschitz
on x ∈ Ω ⊆ R

n with Lipschitz constant m0.
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Definition 8. ([10]) A continuous function γ : [0, a) → [0,∞) is said to
belong to class-K if it is strictly increasing and γ(0) = 0.

Theorem 9. [14] Let x = 0 be an equilibrium point for the nonau-
tonomous fractional order system (4) and Ω ⊆ R

n be the domain that contains
the origin x = 0. Suppose there exists a continuously differentiable function
V : [0,∞) ×Ω → R

n and class-K functions γi (i = 1, 2, 3) such that

γ1 (‖x‖) ≤ V (t, x) ≤ γ2 (‖x‖) , (8)

and
CDα

0,tV (t, x(t)) ≤ −γ3 (‖x‖) , (9)

where α ∈ (0, 1]. Then, the origin x = 0 of system (4) is asymptotically stable.

3. Inequalities

In this section, we develop few inequalities which not only will provide a way of
searching various types of time-varying Lyapunov functions but also will allow
us to utilize the Lyapunov theory for the stability analysis of nonautonomous
fractional order systems.

Lemma 10. Let φ : [t0,∞) → R be a monotonically decreasing and
continuously differentiable function. Suppose x : [t0,∞) → R is a non-negative
and continuously differentiable function. Then, the inequality

CDα
t0,t {φ(t)x(t)} ≤ φ(t)CDα

t0,tx(t), ∀t ≥ t0, ∀α ∈ (0, 1], (10)

holds.

Proof. Let

Fα(t) =
CDα

t0,t {φ(t)x(t)} − φ(t)CDα
t0,tx(t). (11)

In order to prove that the inequality (10) holds, it is sufficient to check Fα(t) ≤
0, ∀t > t0, ∀α ∈ (0, 1). This is because the inequality (10) holds for the case
when α = 1, and to the case, when t = t0 for α ∈ (0, 1). Note that by the
definition of Caputo fractional derivative, we have

CDα
t0,t {φ(t)x(t)} =

1

Γ(1− α)

∫ t

t0

(t− τ)−αψ(τ, x(τ))dτ , (12)
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where ψ(t, x(t)) = dφ(t)
dt · x(t) + dx(t)

dt · φ(t), and

φ(t)CDα
t0,t {x(t)} =

φ(t)

Γ(1− α)

∫ t

t0

(t− τ)−αdx(τ)

dτ
dτ. (13)

Substituting (12) and (13) into the right hand side of (11), gives

Fα(t) =
1

Γ(1− α)

∫ t

t0

(t− τ)−α d

dτ
{(φ(τ)− φ(t)) x(τ)} dτ. (14)

Let u(τ) = (φ(τ)− φ(t)) x(τ). After substituting it into (14), and then inte-
grating by parts, yields

Fα(t) =

[

u(τ)

Γ(1− α)(t− τ)α

]

τ=t

−
[

u(t0)

Γ(1− α)(t− t0)α

]

− α

Γ(1− α)

∫ t

t0

u(τ)

(t− τ)α+1
dτ. (15)

Since the first term in the right hand side of (15) is in 0
0 form, by L’ Hôpital

rule, it follows that the first term has a limiting value 0. Due to the monotonic
decreasing property of function φ, and non-negativity of function x, the second
and third terms of the right hand side of (15) become negative. Therefore, we
have Fα(t) ≤ 0 for t > t0. As a result, the inequality (10) holds.

Lemma 11. Let φ : [t0,∞) → R be a monotonically increasing and
continuously differentiable function. Suppose x : [t0,∞) → R is a non-negative
and continuously differentiable function. Then, the inequality

CDα
t0,t {φ(t)x(t)} ≥ φ(t)CDα

t0,tx(t), ∀t ≥ t0, ∀α ∈ (0, 1], (16)

holds.

Proof. Let the function ψ(t) = −φ(t). Then, it follows from Lemma 10 that

CDα
t0,t {ψ(t)x(t)} ≤ ψ(t)CDα

t0,tx(t), ∀t ≥ t0, ∀α ∈ (0, 1]. (17)

As a consequence, the inequality (16) holds.

Lemma 12. Let φ : [t0,∞) → R
n be a monotonically decreasing and

continuously differentiable vector function. Suppose x : [t0,∞) → R
n is a non-

negative and continuously differentiable vector function. Then, the inequality

CDα
t0,t

{

φT (t)x(t)
}

≤ φT (t)CDα
t0,tx(t), ∀t ≥ t0, ∀α ∈ (0, 1], (18)

holds.
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Proof. Let

φ(t) = (φ1(t), · · · , φn(t))T , and x(t) = (x1(t), · · · , xn(t))T .

Since φT (t)x(t) =
n
∑

i=1
φi(t)xi(t), by the linearity of Caputo fractional derivative

operator, we have

CDα
t0,t

{

φT (t)x(t)
}

=

n
∑

i=1

CDα
t0,t {φi(t)xi(t)}. (19)

Note that the functions φi’s are monotonically decreasing and continuously
differentiable for i = 1, 2, · · · , n, and xi’s are non-negative and continuously
differentiable for i = 1, 2, · · · , n. Then, applying Lemma 10 to the equation
(19), we get

CDα
t0,t

{

φT (t)x(t)
}

≤
n
∑

i=1

φi(t)
CDα

t0,txi(t) = φT (t)CDα
t0,tx(t). (20)

This completes the proof.

Lemma 13. ([4]) Let x : [t0,∞) → R be a continuous and derivable
function. Then, for any t ≥ t0, the following inequality holds

CDα
t0,tx

2(t) ≤ 2x(t)CDα
t0,tx(t), ∀ α ∈ (0, 1). (21)

Lemma 14. Let φ : [t0,∞) → R be a non-negative, monotonically de-
creasing and continuously differentiable function. Suppose x : [t0,∞) → R is a
continuously differentiable function. Then, the inequality

CDα
t0,t

{

φ(t)x2(t)
}

≤ 2φ(t)x(t)CDα
t0,tx(t), ∀t ≥ t0, ∀α ∈ (0, 1], (22)

holds.

Proof. It follows from Lemma 10 that

CDα
t0,t

{

φ(t)x2(t)
}

≤ φ(t)CDα
t0,tx

2(t), ∀t ≥ t0, ∀α ∈ (0, 1]. (23)

Then, by applying Lemma 13 to the inequality (23), we obtain the inequality
(22).
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Lemma 15. Let φ : [t0,∞) → R be a non-negative, monotonically de-
creasing and continuously differentiable function. Suppose x : [t0,∞) → R is a
continuously differentiable vector function. Then, for any t ≥ t0 and α ∈ (0, 1],
the following inequality holds

CDα
t0,t

{

aφ(t)x2(t) + bx2(t)
}

≤ 2aφ(t)x(t)CDα
t0,tx(t) + 2bx(t)CDα

t0,tx(t), (24)

where a > 0 and b > 0.

Proof. Since the Caputo fractional derivative operator is linear, we have

CDα
t0,t

{

aφ(t)x2(t) + bx2(t)
}

= aCDα
t0,t

{

φ(t)x2(t)
}

+ bCDα
t0,t

{

x2(t)
}

. (25)

Applying Lemma 14 and Lemma 13, to the inequality (25), we get the inequality
(24).

Lemma 16. [7] Let x : [0,∞) → R be a continuously differentiable
function. Then, for any t ≥ 0, the following inequality holds

CDα
0,tx

p(t) ≤ pxp−1(t)CDα
0,tx(t), ∀ α ∈ (0, 1), (26)

where p = 2n for n ∈ Z
+.

Lemma 17. Let φ : [t0,∞) → R be a non-negative, monotonically de-
creasing and continuously differentiable function. Suppose x : [t0,∞) → R is a
continuously differentiable vector function. Then, for any t ≥ t0 and α ∈ (0, 1],
the following inequality holds

CDα
t0,t {aφ(t)x

p(t) + bxp(t)} ≤ p(aφ(t) + b)xp−1(t)CDα
t0,tx(t), (27)

where a > 0 and b > 0.

Proof. Application of Lemma 10 and Lemma 16, leads to the inequality
(27).

Lemma 18. Let φi : [t0,∞) → R are non-negative, monotonically de-
creasing and continuously differentiable functions for i = 1, 2, · · · , n. Suppose
xi : [t0,∞) → R are continuously differentiable functions for i = 1, 2, · · · , n.
Let hi(t) = ciφi(t) + di, where ci, di > 0 for i = 1, 2, · · · , n. Then, for any
t ≥ t0, and α ∈ (0, 1], the following inequality holds

CDα
t0,t

{

n
∑

i=1

hi(t)x
2i
i (t)

}

≤
n
∑

i=1

2ihi(t)x
2i−1
i (t)CDα

t0,txi(t), (28)
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for i = 1, 2, · · · , n.

Proof. By using Lemma 17, one can easily obtain the inequality (28).

Lemma 19. Let φ : [t0,∞) → R be a non-negative, monotonically de-
creasing and continuously differentiable function. Suppose x : [t0,∞) → R

n is
a continuously differentiable vector function. Then, ∀t ≥ t0, ∀α ∈ (0, 1], the
following inequality holds

CDα
t0,t

{

φ(t)xT (t)Px(t)
}

≤ 2φ(t)xT (t)PCDα
t0,tx(t), (29)

where P ∈ R
n×n is a constant, symmetric, and positive definite matrix.

Proof. Since P ∈ R
n×n is a constant symmetric and positive definite matrix,

we can write xT (t)Px(t) = xT (t)UΛUTx(t), where U is an orthogonal matrix
and Λ is an diagonal matrix. Let y(t) = UTx(t). Then, we have

xT (t)Px(t) = yT (t)Λy(t) =

n
∑

i=1

λiiy
2
i (t), (30)

where y(t) = (y1(t), · · · , yn(t))T and λii’s are the diagonal elements of Λ. Note
that

CDα
t0,t

{

φ(t)xT (t)Px(t)
}

=
n
∑

i=1

λii
CDα

t0,t

{

φ(t)y2i (t)
}

. (31)

Since λii > 0 for i = 1, · · · , n, the application of Lemma 14 to the right hand
side of expression (31) gives

CDα
t0,t

{

φ(t)xT (t)Px(t)
}

≤
n
∑

i=1

2λiiφ(t)yi(t)
CDα

t0,t {yi(t)}

= 2φ(t)yT (t)ΛCDα
t0,ty(t) = 2φ(t)xT (t)UΛUT CDα

t0,tx(t)

= 2φ(t)xT (t)PCDα
t0,tx(t). (32)

Lemma 20. [8] Let x : [t0,∞) → R
n be a vector of differentiable function.

Then, for any t ≥ t0, the following relationship holds
CDα

t0,t

(

xT (t)Px(t)
)

≤ 2xT (t)P CDα
t0,tx(t), ∀ α ∈ (0, 1), (33)

where P ∈ R
n×n is a constant, square, symmetric and positive definite matrix
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Lemma 21. Let φ : [t0,∞) → R be a non-negative, monotonically de-
creasing and continuously differentiable function. Suppose x : [t0,∞) → R

n is a
continuously differentiable vector function. Then, for any t ≥ t0 and α ∈ (0, 1],
the following inequality holds

CDα
t0,t

{

φ(t)xT (t)Px(t) + xT (t)Qx(t)
}

(34)

≤ 2φ(t)xT (t)PCDα
t0,tx(t) + 2xT (t)QCDα

t0,tx(t), (35)

where P ∈ R
n×n, Q ∈ R

n×n are constant, symmetric, and positive definite
matrices.

Proof. The proof follows from the application of Lemma 19, and Lemma 20.

Definition 22. A symmetric matrix P (t) ∈ R
n×n is said to be positive

definite matrix if for each t ≥ t0, the inequality xTP (t)x > 0, holds ∀x 6= 0.

Assumption 23. Let P : [t0,∞) → R
n×n be a continuously differentiable,

symmetric and positive definite matrix function such that

(i) the matrix P (t) = UΛ(t)UT , where U is constant orthogonal matrix, and
Λ(t) = diag (λ11(t), λ22(t), · · · , λnn(t)).

(ii) the scalar functions λii(t) are monotonically decreasing and continuously
differentiable for all i = 1, 2 · · · , n.

Lemma 24. Let Assumption 23 holds. Suppose x : [t0,∞) → R
n is a

continuously differentiable function. Then, the inequality

CDα
t0,t{x

T (t)P (t)x(t)} ≤ 2xT (t)P (t)CDα
t0,tx(t), ∀α ∈ (0, 1], ∀t ≥ t0, (36)

holds.

Proof. Since P (t) = UΛ(t)UT (by condition (i) of Assumption 23), and x(t)
is a vector function, we can write

xT (t)P (t)x(t) = xT (t)UΛ(t)UT x(t). (37)

Let y(t) = UTx(t). Then, the equation (37) becomes

xT (t)P (t)x(t) = yT (t)Λ(t)y(t). (38)
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Since yT (t)Λ(t)y(t) =
n
∑

i=1
λii(t)y

2
i (t), where y(t) = (y1(t), · · · , yn(t))T , we have

CDα
t0,t{y

T (t)Λ(t)y(t)} =

n
∑

i=1

CDα
t0,t

(

λii(t)y
2
i (t)

)

, ∀α ∈ (0, 1], ∀t ≥ t0. (39)

Since λii(t) are monotonically decreasing and continuously differentiable for all
i = 1, 2 · · · , n (by the condition (ii) of Assumption 23), and y2i (t) are non-
negative continuously differentiable function for i = 1, 2 · · · , n, by applying
Lemma 10 (or Lemma 12) to the equation (39), we get

CDα
t0,t{y

T (t)Λ(t)y(t)} ≤
n
∑

i=1

λii(t)
CDα

t0,t

(

y2i (t)
)

, ∀α ∈ (0, 1], ∀t ≥ t0. (40)

Now by using Lemma 13 in (40), and since λii(t) > 0, we obtain

CDα
t0,t{y

T (t)Λ(t)y(t)} ≤ 2
n
∑

i=1

λii(t)yi(t)
CDα

t0,t (yi(t)), (41)

∀α ∈ (0, 1], and ∀t ≥ t0. Note that λii(t) are the diagonal entries of matrix
Λ(t). We can write

n
∑

i=1

λii(t)yi(t)
CDα

t0,t (yi(t)) = yT (t)Λ(t)CDα
t0,ty(t). (42)

Substituting the equation (42) into the inequality (41), we get

CDα
t0,t{y

T (t)Λ(t)y(t)}≤2yT (t)Λ(t)CDα
t0,ty(t), ∀α ∈ (0, 1], ∀t ≥ t0. (43)

From the inequality (43), it follows that the inequality (36) is true.

Assumption 25. Let P : [t0,∞) → R
n×n be a continuously differentiable,

symmetric and positive definite matrix function such that

(i) the matrix P (t) = U(t)Λ(t)UT (t), where U(t) is continuously differen-
tiable orthogonal matrix, and the matrix Λ(t) = diag (λ11(t), · · · , λnn(t)).

(ii) the scalar functions λii(t) are monotonically decreasing and continuously
differentiable for all i = 1, 2 · · · , n.

(iii) the real valued functions uij(t) of matrix U(t) are non-negative and mono-
tonically decreasing for all i, j = 1, 2, · · · , n.
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Lemma 26. Let Assumption 25 holds. Suppose x : [t0,∞) → R
n is a

non-negative continuously differentiable function. Then, the inequality

CDα
t0,t{x

T (t)P (t)x(t)} ≤ 2xT (t)P (t)CDα
t0,tx(t), ∀α ∈ (0, 1], ∀t ≥ t0, (44)

holds.

Proof. Based on the condition (i) of Assumption 25, we can write

xT (t)P (t)x(t) = xT (t)U(t)Λ(t)UT (t)x(t). (45)

Let us define the transformation by y(t) = UT (t)x(t). Then, it follows from the
proof of Lemma 24 (where the condition (ii) of Assumption 25 is utilized) that

CDα
t0,t{y

T (t)Λ(t)y(t)}≤2yT (t)Λ(t)CDα
t0,ty(t), ∀α ∈ (0, 1], ∀t ≥ t0. (46)

Note that under the condition (iii) of Assumption 25, the application of Lemma 12
gives

CDα
t0,ty(t) =

CDα
t0,t

{

UT (t)x(t)
}

≤ UT (t)CDα
t0,tx(t). (47)

Then, by substituting (47) into (46), one obtains the inequality (44).

4. Main discussion

In the previous section, we have established various inequalities which involve
fractional derivatives. In this section, we analyse the stability of zero solution to
nonautonomous fractional order systems and establish few sufficient conditions
for such systems.

Here, first, we will present a few motivating examples. We shall try to verify
the conditions of fractional extension of Lyapunov theorem by considering time-
varying Lyapunov functions and using appropriate inequalities.

Example 27. Consider the following scalar nonautonomous nonlinear
fractional differential equation

CDα
0,tx(t) = −x3(t)− etx3(t), x(0) = x0, 0 < α ≤ 1. (48)

Let V (t, x) = x2+ e−tx2 be the function, which depends on time t and variable
x. Then, by using Lemma 15, we obtain the Caputo fractional derivative of
V (t, x) along the solution x(t) to (48) as follows
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CDα
0,tV (t, x(t)) ≤

[

−2x4(t)− 2etx4(t)
]

+
[

−2e−tx4(t)− 2x4(t)
]

= −2
(

1 + e−t
)

x4(t)− 2
(

1 + et
)

x4(t)

≤ −4x4(t), ∀ x ∈ R, ∀ t ≥ 0. (49)

Note that x2 ≤ V (t, x) ≤ 2x2, ∀x ∈ R, ∀t ≥ 0. Let γ1(ρ) = ρ2, γ2(ρ) = 2ρ2 and
γ3(ρ) = 4ρ4, where ρ = |x|. Then, we see that all the assumptions of Theorem 9
are satisfied. This observation confirms that V (t, x) is indeed a time-varying
Lyapunov function. Hence, it follows from Theorem 9 that the zero solution is
asymptotically stable.

Example 28. Consider the following nonautonomous linear fractional
order system

CDα
0,tx1(t) = −x1(t)− h(t)x2(t), x1(0) = x10

CDα
0,tx2(t) = x1(t)− x2(t), x2(0) = x20

(50)

where 0 < α ≤ 1, h(t) is a monotonically decreasing, continuously differentiable
and satisfies

0 ≤ h(t) ≤M, ∀t ≥ 0. (51)

Let us choose the time-varying Lyapunov function V (t, x) = x21+x
2
2+h(t)x

2
2.

Note that x21 + x22 ≤ V (t, x) ≤ x21 + (1 +M)x22, ∀x = (x1, x2)
T ∈ R

2, where the
condition (51) is used. Then, the application of Lemma 21, enables us to
calculate the Caputo fractional derivative of V (t, x) along the solution x(t) to
(50)

CDα
0,tV (t, x(t)) ≤

[

−2x21(t)− 2h(t)x1(t)x2(t)
]

+
[

(2 + 2h(t))x1(t)x2(t)− (2 + 2h(t))x22(t)
]

= −2x21(t) + 2x1(t)x2(t)− (2 + 2h(t))x22(t)

≤ −2x21(t) + 2x1(t)x2(t)− 2x22(t)

= −xT (t)
(

2 −1
−1 2

)

x(t), ∀ x =

(

x1
x2

)

∈ R
2. (52)

Since xT
(

2 −1
−1 2

)

x is a positive definite quadratic function, it follows from

(52) that
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CDα
0,tV (t, x(t)) ≤ −‖x(t)‖2. (53)

Let γ1(ρ) = ρ2, γ2(ρ) = (1 +M)ρ2 and γ3(ρ) = ρ2, where ρ = ‖x‖. Then,
all the assumptions of Theorem 9 are satisfied. Hence, the zero solution is
asymptotically stable. Further, from (52), we deduce

V (t, x(t)) ≤ Eα

(

− 1

M + 1
tα
)

V (0, x(0)), ∀t ≥ 0. (54)

Thus, it follows that

‖x(t)‖ ≤
[

(1 +M)Eα

(

− 1

M + 1
tα
)

‖x(0)‖2
]1/2

, ∀t ≥ 0. (55)

As a result, the zero solution is Mittag-Leffler stable.

Example 29. Consider the nonautonomous nonlinear fractional order
system

CDα
0,tx1(t) = −x1(t) +

3

1 + t
x32(t), x1(0) = x10

CDα
0,tx2(t) = −x2(t)−

1

1 + t
x31(t), x2(0) = x20

(56)

We observe that V (t, x) = 2x41 + 6x42 +
1

1+tx
4
1 +

3
1+tx

4
2 is the time-varying Lya-

punov function. In fact, by Lemma 18, it follows that the Caputo derivative of
V (t, x) along the solution x(t) to (56) is

CDα
0,tV (t, x(t)) ≤ 4

(

2 +
1

1 + t

)(

−x41(t) +
3

1 + t
x31(t)x

3
2(t)

)

+ 4

(

6 +
3

1 + t

)(

−x42(t)−
1

1 + t
x31(t)x

3
2(t)

)

≤ −8
(

x41(t) + 3x42(t)
)

, ∀x =

(

x1
x2

)

∈ R
2, ∀t ≥ 0 (57)

Let γ1(ρ) = ρ4, γ2(ρ) = 9ρ4 and γ3(ρ) = 4ρ4, where ρ =
√

x21 + x22. Interest-
ingly, all the assumptions of Theorem 9 are satisfied. Therefore, we conclude
from Theorem 9 that the zero solution is asymptotically stable.

In the above mentioned examples, we notice that the time-varying Lyapunov
functions are indeed good choice of candidate functions for the Lyapunov sta-
bility analysis of nonautonomous fractional order systems. The discussion in-
dicates that the choice of time-varying Lyapunov functions and inequalities are
very essential for the Lyapunov stability analysis of nonautonomous fractional
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order systems. By a similar analysis to these examples, one may wish to con-
struct various types of time-varying Lyapunov functions and try to investigate
the stability of nonautonomous fractional order systems.

Here, we are interested in the stability of nonautonomous fractional order
system (4). Mainly, we consider the system (4) described in the following form

CDα
0,tx(t) = A(t)x(t) + f(t, x(t)), x(0) = x0, (58)

where α ∈ (0, 1], A(t) ∈ R
n×n is continuous with its elements are bounded,

and f : [0,∞) × Ω ⊆ R
n → R

n is a continuously differentiable function with
f(t, 0) = 0 for all t ≥ 0.

We specifically focus on the application of time-varying quadratic Lyapunov
function xTP (t)x and aim to establish some sufficient conditions for the system
(58). Here, we make the following assumptions on the function f :

Assumption 30. ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, L > 0, ∀x, y ∈ R
n,

∀t ≥ 0.

Assumption 31. ‖f(t, x)‖ ≤ ℓ‖x‖2, ℓ > 0, ∀‖x‖ ≤ r, r > 0, ∀t ≥ 0.

Theorem 32. Under Assumption 30, if there exists a matrix P (t) such
that the following conditions are satisfied

(i) the matrix P (t) satisfies Assumption 23,

(ii) the matrix P (t) is bounded, i.e. 0 < k1I ≤ P (t) ≤ k2I, ∀t ≥ 0,

(iii) there exists a constant µ > 0 such that

P (t)A(t) +AT (t)P (t) + L2I + P 2(t) ≤ −µI, (59)

then, the zero solution of system (58) is globally Lyapunov asymptotically
stable (globally Mittag-Leffler stable).

Proof. Let us consider the time-varying quadratic Lyapunov function V (t, x) =
xTP (t)x, where the matrix P (t) satisfies the condition (i). Then, by Lemma 24,
it follows that the Caputo fractional derivative of V (t, x) along the solution to
system (58) is

CDα
0,tV (t, x(t)) ≤ 2xT (t)P (t)CDα

t0,tx(t)

= xT (t)
[

P (t)A(t) +AT (t)P (t)
]

x(t) + 2fT (t, x(t))P (t)x(t)
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≤ xT (t)
[

P (t)A(t) +AT (t)P (t)
]

x(t)

+ fT (t, x(t))f(t, x(t)) + xT (t)P 2(t)x(t)

≤ xT (t)
[

P (t)A(t) +AT (t)P (t) + L2I + P 2(t)
]

x(t) (60)

≤ −µxT (t)x(t), ∀ x ∈ R
n, (61)

where in (60) the condition (iii) is used. Note that k1‖x‖2 ≤ V (t, x) ≤ k2‖x‖2,
where k1, k2 are positive constants (by condition (ii)). Hence, by fractional
order Lyapunov Theorem 9, we conclude that the zero solution is asymptotically
stable. Further, the inequality (61) becomes

CDα
0,tV (t, x(t)) ≤ − µ

k2
V (t, x(t)). (62)

From (62), we deduce

V (t, x(t)) ≤ Eα

(

− µ

k2
tα
)

V (0, x(0)) ≤ Eα

(

− µ

k2
tα
)

k2‖x(0)‖2. (63)

Then, from (63), we get

‖x(t)‖ ≤
√

k2

k1
Eα

(

− µ

k2
tα
)

‖x(0)‖2. (64)

Hence, it follows from (64) that the zero solution is Mittag-Leffler stable.

Theorem 33. Under Assumption 31, if there exists a matrix P (t) such
that the following conditions are satisfied

(i) the matrix P (t) satisfies Assumption 23,

(ii) the matrix P (t) is bounded, i.e. 0 < k1I ≤ P (t) ≤ k2I, ∀t ≥ 0,

(iii) there exists a constant µ > 0 such that

P (t)A(t) +AT (t)P (t) ≤ −µI, (65)

then, we have the following estimation for solution

‖x(t)‖ ≤
√

k2

k1
Eα

(

−(µ− 2k2rℓ)

k2
tα
)

‖x(0)‖2, (66)

where r < µ
2ℓk2

. Thus, the zero solution to system (58) is locally asymptotically
stable (locally Mittag-Leffler stable).
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Proof. Let V (t, x) = xTP (t)x be the time varying quadratic Lyapunov
function, where the matrix P (t) satisfies the condition (i). Then, by using
Lemma 24, the Caputo fractional derivative of V (t, x) along the solution x(t)
to system (58) is estimated as given below:

CDα
0,tV (t, x(t)) ≤ xT (t)

[

P (t)A(t) +AT (t)P (t)
]

x(t)

+ 2xT (t)P (t)f(t, x(t))

≤ xT (t)
[

P (t)A(t) +AT (t)P (t)
]

x(t) + 2k2ℓ‖x(t)‖3 (67)

≤ −µ‖x(t)‖2 + 2k2rℓ‖x(t)‖2 (68)

≤ − (µ− 2k2rℓ) ‖x(t)‖2, ∀ ‖x‖ < r, (69)

where from (67)-(68), the condition (ii), condition (iii) and Assumption 31
are used. Note that CDα

0,tV (t, x(t)) is negative definite in the region ‖x‖ < r, if
r < µ

2ℓk2
holds. Therefore, the conditions of Theorem 9 are satisfied in the region

‖x‖ < r. Thus, we conclude that the zero solution is locally asymptotically
stable. Observe that V (t, x) is a positive definite function. From the inequality
(69), we deduce

‖x(t)‖ ≤
√

k2

k1
Eα

(

−(µ− 2k2rℓ)

k2
tα
)

‖x(0)‖2. (70)

Hence, the zero solution is Mittag-Leffler stable (asymptotically stable).

In the next, we shall discuss two illustrative examples for the above men-
tioned results.

Example 34. Consider the fractional order system (58), where the coef-
ficient matrix

A(t) =

(

−2− e−(t+1) −3

3 −3
2 − e−(t+1)

)

, (71)

and the nonlinear function

f(t, x(t)) = (sin(t) sin(x2(t)), sin(t) sin(x1(t)))
T . (72)

In order to examine the asymptotic stability of this system, let us consider the
continuously differentiable, symmetric, positive definite and bounded matrix

P (t) =

(

1 + e−t 0
0 1 + e−t

)

. (73)

Note that the function f satisfies Assumption 30, and the matrix P (t) satisfies
the conditions (i) and (ii) of Theorem 32. Here, we estimate
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P (t)A(t) +AT (t)P (t) + L2I + P 2(t) =

(

h1(t) + L2 0
0 h2(t) + L2

)

, (74)

where L = 1, h1(t) = −3 − 2e−t − 2e−(t+1) + e−2t − 2e−(2t+1), and h2(t) =
−2− e−t − 2e−(t+1) + e−2t − 2e−(2t+1).

Let m1(t) = h1(t) + L2, and m2(t) = h2(t) + L2. Since

sup
t
{m1(t)} = −2, sup

t
{m2(t)} = −1, inf

t
(−m1(t)) = − sup

t
{m1(t)},

and inf
t
(−m2(t)) = − sup

t
{m2(t)}, for

0 < µ < min
{

inf
t
(−m1(t)), inf

t
(−m2(t))

}

,

the following relationship holds

P (t)A(t) +AT (t)P (t) + L2I + P 2(t) ≤ −µI. (75)

Therefore, the condition (iii) of Theorem 32 is satisfied. Hence, we conclude
from Theorem 32 that the zero solution is asymptotically stable.

Example 35. Consider the fractional order system (58), where the coef-
ficient matrix

A(t) =

(

−2− e−(t+1) −3

3 −3
2 − e−(t+1)

)

, (76)

and the nonlinear function

f(t, x(t)) =
(

sin(t)
(

x21(t) + x22(t)
)

, cos(t)
(

x21(t) + x22(t)
))T

. (77)

Here, we assume the matrix P (t) to be as given in (73). Then, we estimate

P (t)A(t) +AT (t)P (t) =

(

h1(t) 0
0 h2(t)

)

, (78)

where h1(t) = −4 − 2e−(t+1) − 4e−t − 2e−(2t+1), and h2(t) = −3 − 2e−(t+1) −
3e−t − 2e−(2t+1). Taking the value of µ = 2, and the bounds of matrix P (t) as
k1 = 1 and k2 = 2, we see that all the conditions from (i)-(iii) of Theorem 33
are satisfied. Since the function f satisfies Assumption 31 with ℓ = 1. Then,
we conclude from Theorem 33 that the zero solution is asymptotically stable in
the region ‖x‖ < r = 1

2 , and we have the estimation

‖x(t)‖ ≤
√
2
√

Eα (−(1− 2r)tα)‖x(0)‖. (79)
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5. Conclusions

We have developed an elementary inequality which involves the Caputo frac-
tional derivative of the product of two functions. It opens up an opportunity of
constructing the continuously differentiable time-varying Lyapunov functions in
order to analyse the stability of fractional order systems. Indeed, we have shown
the use of such type of Lyapunov functions, inequalities along with fractional
Lyapunov direct method for the stability analysis of fractional order systems.
Finally, by taking time-varying quadratic Lyapunov function, we have proposed
two stability theorems that provide sufficient conditions for the stability of cer-
tain class of nonautonomous fractional order systems.
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[16] I. Petráš, Fractional Order Nonlinear Systems: Modeling, Analysis and

Simulation, Springer (2011).

[17] I. Podlubny, Fractional Differential Equations, Academic Press (1999).

[18] V.E. Tarasov, No violation of the Leibniz rule. No fractional derivative,
Commun. Nonlinear Sci. Numer. Simulat. 18 (2013), 2945–2948.

[19] V.E. Tarasov, Leibniz rule and fractional derivatives of power functions,
J. Comput. Nonlinear Dynam. 11 (2016), 031014–4.

[20] V.E. Tarasov, On chain rule for fractional derivatives, Commun. Nonlinear

Sci. Numer. Simulat. 30 (2016), 1–4.
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