## International Journal of Applied Mathematics Volume 32 No. 1 2019, 101-110 $ISSN:\ 1311\text{-}1728\ (printed\ version);\ ISSN:\ 1314\text{-}8060\ (on\mbox{-line}\ version)$ doi: http://dx.doi.org/10.12732/ijam.v32i1.10 ## PERMUTABLE SUBGROUPS OF GROUPS OF ORDER 16 Bilal N. Al-Hasanat<sup>1 §</sup>, Awni Aldabaseh<sup>2</sup>, Asma Alissah<sup>3</sup> <sup>1,2,3</sup>Department of Mathematics Al Hussein Bin Talal University Ma'an, JORDAN **Abstract:** A subgroup H of a group G is said to be permutable subgroup if and only if HK = KH for every subgroup K of G. Certainly, every normal subgroup is permutable. The converse is not true. In this research we will find all permutable subgroups of the groups of order 16. Then, find which subgroup is permutable and not normal. AMS Subject Classification: 11E57, 20B05 Key Words: permutable subgroup, normal subgroup, group centre, factor group ### 1. Introduction A subgroup H of a finite group G is permutable (quasinormal) if and only if $HK = KH = \langle H, K \rangle$ for all $K \leq G$ . Permutable subgroups of finite groups have certain properties, such as; any permutable subgroup of finite group is nilpotent module their core [6]. S.E. Stonehewer in [4], proved that a permutable subgroup is locally subnormal. In [1] the authors developed several local approaches for a classes of finite groups which called PT-groups (permutability is a transitive relation). In [5], J. Evan considered permutability within a direct product of finite groups. Clearly, if H is normal subgroup of a finite group G, then HK = KH for all subgroup K of G. The converse is not always true. That is, the current Received: November 14, 2018 © 2019 Academic Publications <sup>§</sup>Correspondence author work has been considered to construct the permutable subgroups structure of groups of order 16, which leads to the fact that not all permutable subgroups of finite groups are normal. This will be shown by a counterexample. ## 2. Notations and preliminaries For a finite group G, the centre of G will be denoted by Z(G). The order of the group will be denoted by |G|. If G is a p-group (|G| is a power of prime p), then Z(G) is a non-trivial subgroup of G. So, for a group of order $16 = 2^4$ the order of the group centre will be $2, 2^2, 2^3$ or $2^4$ . Therefore, the factor group G/Z(G) will be of order $\frac{|G|}{|Z(G)|} = 2^3, 2^2, 2$ or 1. We deduce the properties of the group for various cases using the Correspondence Theorem, which indicates that, for a normal subgroup N of a group G, the structure of the subgroups of the factor group is exactly the same as the structure of the subgroups containing N, with N collapsed to the identity element, this is shown in the next theorem. **Theorem 1.** ([7]) If N is a normal subgroup of a group G, let $\mathfrak{S}$ be the set of all subgroups A of G such that $N \subseteq A \subseteq G$ and $\mathfrak{F}$ be the set of all subgroups of G/N. Then there is a bijection map $\phi: \mathfrak{S} \to \mathfrak{F}$ such that $\phi(A) = A/N$ for all $A \in \mathfrak{S}$ . Furthermore, the normal subgroups in $\mathfrak{F}$ correspond to normal subgroups in $\mathfrak{F}$ . In order to describe a finite group G of generators set $\{a_1, a_2, \dots, a_n\}$ , the next representation which found in [3] will be used: $$G = \{a_1^{\alpha_1} a_2^{\alpha_2} a_3^{\alpha_3} \cdots a_n^{\alpha_n} \mid a_1^{\beta_1} = a_2^{\beta_2} = a_3^{\beta_3} = \cdots = a_n^{\beta_n} = e,$$ $$a_2 a_1 = a_1 a_2 a_{1,2},$$ $$a_3 a_2 = a_2 a_3 a_{2,3},$$ $$\vdots$$ $$a_n a_{n-1} = a_{n-1} a_n a_{n-1,n} \}.$$ The preceding representation shows clearly the elements of G in terms of generators and the orders of these generators. Also it describes how the generators commute, so we can condense a string of the elements into the form used in this presentation. ## 3. Classifying all groups of order 16 The classification of all 2-generators non-abelian groups of order $2^n$ , $n \geq 4$ is found in [2]. To classify both cases abelian and non-abelian groups of order 16, we will use David Clausen method [3], which based on considering the different cases for the order of the centre. Since Z(G) is a nontrivial subgroup (G is p-group), then the possibilities of |Z(G)| are 16, 8, 4, and 2. Therefore, |G/Z(G)| = 1, 2, 4 or 8. The next tools will be used to complete our classification. **Definition 2.** Denote the subgroups of order 8 in a group G containing Z(G) by $G_i$ where i indexes the subgroup. Also, unless specified z denotes an element of Z(G), and $g_i$ denotes an element of $G_i$ not in Z(G). **Remark 1.** ([3]) The centre of $G_i$ contains the centre of G, i.e. $Z(G) \subseteq Z(G_i)$ , also The intersection of two $G_i$ must be a group of order 4. Note that, if H and K be two subgroups of G. Then the subset $HK = \{hk \mid h \in H, k \in K\}$ has order $|HK| = \frac{|H||K|}{|H \cap K|}$ . **Theorem 3.** ([3]) If |Z(G)| = 2 and $G_i$ contains only one subgroup of order 4 with the centre, then $G_i$ is either isomorphic to $\mathbb{Z}_8$ or $\mathbb{Z}_4 \times \mathbb{Z}_2$ . **Theorem 4.** ([3]) If $G/Z(G) \cong D_4$ , then one of the subgroups $G_i$ is cyclic. **Theorem 5.** ([3]) If G has two $G_i$ that are abelian (could also be isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ ), then the centre has order at least 4. For a non-abelian group G of order 16, the group centre Z(G) is of order 8,4,2 or 1. (the case that |Z(G)| = 1 will omitted, since G is a p-group). So, we have the following cases: ## Case(1): |Z(G)| = 8. Let G be a non-abelian group of order 16. If |Z(G)| = 8, then |G/Z(G)| = 2. Implies that G/Z(G) is cyclic. Which indicates that G is abelian, therefore Z(G) = G, which is a contradiction. Hence, no non-abelian group of order 16 have a centre of order 8. Case(2): |Z(G)| = 4. Let G be a non-abelian group of order 16. If |Z(G)| = 4, then |G/Z(G)| = 4. Thus $$G/Z(G) \cong \mathbb{Z}_4 \text{ or } G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$ If $G/Z(G) \cong \mathbb{Z}_4$ which is cyclic. Thus G is abelian, which is a contradiction. Hence $G/Z(G) \ncong \mathbb{Z}_4$ . If $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ . Note that $\mathbb{Z}_2 \times \mathbb{Z}_2$ has three subgroups of order 2, and by the Correspondence Theorem, there are three $G_i$ of order 8, where the intersection of any two $G_i$ is the centre, and it is a subgroup of order 4. Certainly, for |Z(G)| = 4 the only possibilities of $G_i$ are that all $G_i$ are abelian, since the centre of $G_i$ would have at least four elements $|Z(G_i)| \geq 4$ . So, we have 3 abelian subgroups $G_i$ of order 8, where each $G_i$ has at least one subgroup of order 4. This implies that each $G_i$ isomorphic to one of the following: $\mathbb{Z}_8$ , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_4 \times \mathbb{Z}_2$ . Since the centre is of order 4, it is isomorphic to either $\mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ . This will be considered by the next two cases: - (a) If $Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ , and each $G_i$ contains a subgroup isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ . Since all $G_i$ are abelian, and $\mathbb{Z}_8$ contains no subgroup isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ , then the only possible isomorphism classes for the three $G_i$ are $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_4 \times \mathbb{Z}_2$ . For the subgroups $G_i$ , i = 1, 2, 3, see the following possibilities: - 1. $G_i \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ for i = 1, 2, 3, which gives no non-abelian group G of order 16 with this classification. - 2. $G_1, G_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and $G_3 \cong \mathbb{Z}_4 \times \mathbb{Z}_2$ . Then $G \cong D_4 \times \mathbb{Z}_2$ . - 3. $G_1 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and $G_2, G_3 \cong \mathbb{Z}_4 \times \mathbb{Z}_2$ . Then $G \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_4$ . - 4. Finally, If $G_i \cong \mathbb{Z}_4 \times \mathbb{Z}_2$ , i = 1, 2, 3, then $G \cong Q_8 \times \mathbb{Z}_2$ or $G \cong \mathbb{Z}_4 \rtimes \mathbb{Z}_4$ . - (b) Each $G_i$ contains a subgroup isomorphic to $\mathbb{Z}_4$ . Since all the $G_i$ are abelian, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ has no subgroup isomorphic to $\mathbb{Z}_4$ , so the only possible isomorphism classes are $\mathbb{Z}_8$ or $\mathbb{Z}_4 \times \mathbb{Z}_2$ . See the next four possibilities: - 1. $G_1, G_2, G_3 \cong \mathbb{Z}_4 \times \mathbb{Z}_2$ . Then, the group is Pauli matrices (SU(2)). - 2. $G_1, G_2 \cong \mathbb{Z}_4 \times \mathbb{Z}_2$ and $G_3 \cong \mathbb{Z}_8$ . Then, there are no groups with this property. - 3. $G_1 \cong \mathbb{Z}_4 \times \mathbb{Z}_2$ and $G_2, G_3 \cong \mathbb{Z}_8$ . Then, the group G is Isanowa or Modular Group of order 16 $(M_{16})$ . - 4. $G_1, G_2, G_3 \cong \mathbb{Z}_8$ . Then, there are no groups with this property. ## Case(3): |Z(G)| = 2. Let G be a non-abelian group of order 16, if |Z(G)| = 2, then |G/Z(G)| = 8. So we have: - 1. G/Z(G) is isomorphic to $\mathbb{Z}_8$ , $\mathbb{Z}_4 \times \mathbb{Z}_2$ , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or $Q_8$ . Implies that, there are no group G with this property. - 2. Let $G/Z(G) \cong D_4$ . In this case we can indicate that $G_1 \cong \mathbb{Z}_8$ , and $G_2$ and $G_3$ are isomorphic to $Q_8$ or $D_4$ . Let $G_1 \cong \mathbb{Z}_8$ . Using Theorem 3 and Theorem 4, gives the next scenarios: - 1. If $G_2, G_3 \cong Q_8$ , then G is dicyclic group of degree 4 (Dic<sub>4</sub>). - 2. If $G_2 \cong Q_8, G_3 \cong D_4$ , then G is semidihedral group of degree 2 $(SD_2)$ . - 3. If $G_2, G_3 \cong D_4$ , then G is dihedral group of degree 8 $(D_8)$ . # 4. Permutable subgroups structure of groups of order 16 In this section we will use GAP (Groups, Algorithms and Programming) to find all subgroup structure of groups of order 16. The next GAP's code will be used to find our results: ## Algorithm 4.1 GAP code used to find all subgroups of group of order 16 ``` gap> Y:=AllGroups(16);;n:=Size(Y);; gap> for i in [1..n] do; > Print(StructureDescription(Y[i])); > S:=AllSubgroups(Y[i]);k:=Size(S); > for j in [1..k] do; > Print("\n S=",StructureDescription(S[j]),"\n Size(S)",Size(S[j]),"\n Normal: ",IsNormal(Y[i],S[j]),"\n Permutable: ",IsPermutable(Y[i],S[j]),"\n\n"); > od;od; ``` The data in Table 1 are deduced from the results obtained by Algorithm 4.1. | Groups | Number of<br>permutable<br>subgroups | Permutable subgroup | | | |---------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | $(\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_4$ or Small Group(16, 3) | 11 | Trivial group $\begin{array}{l} \langle b \rangle \cong \mathbb{Z}_2 \ \ (\mathrm{It} \ \mathrm{is} \ \mathrm{the} \ \mathrm{commutator} \ \mathrm{subgroup}) \\ \langle a^2 \rangle \cong \mathbb{Z}_2 \\ \langle a^2 b \rangle \cong \mathbb{Z}_2 \\ \langle a^2 b \rangle \cong \mathbb{Z}_2 \\ \langle a^2, b \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle b, a^2 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle b, a^2 c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle a, b \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2 \\ \langle a, b \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2 \\ \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ $\begin{array}{l} \langle a^2, b, c \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{array}$ | | | | $\mathbb{Z}_4 \rtimes \mathbb{Z}_4$ | 11 | Trivial group $ \{e, x^2\} \cong \mathbb{Z}_2 \text{ (It is the commutator subgroup)} $ $ \{e, x^2y^2\} \cong \mathbb{Z}_2 $ $ \{e, x^2y^2\} \cong \mathbb{Z}_2 $ $ \{e, x^2, y^2, x^2y^2\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \text{ (It is the centre of the group)} $ $ \langle x \rangle \cong \mathbb{Z}_4 $ $ \langle xy^2 \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2 $ $ \langle x^2, xy \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2 $ $ \langle x^2, xy \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2 $ $ \langle x^2, y \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2 $ The whole group | | | | $M_{16}$ | 11 | Trivial group $ \{e, a^4\} \cong \mathbb{Z}_2 \text{ (It is the commutator subgroup)} $ $ \{e, x\} \cong \mathbb{Z}_2 \text{ (not normal)} $ $ \{e, a^4x\} \cong \mathbb{Z}_2 \text{ (not normal)} $ $ \{e, a^2, a^4, a^6\} \cong \mathbb{Z}_4 \text{ (It is the centre of the group)} $ $ \{e, a^2, a^4, a^6x\} \cong \mathbb{Z}_4 $ $ \{e, x, a^4, a^4x\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 $ $ \{e, x, a^4, a^6x, a^7x, a^4, a^5x, a^2, a^3x\} \cong \mathbb{Z}_8 $ $ (a) \cong \mathbb{Z}_8 $ $ \{e, a^2, a^4, a^6, x, a^2x, a^4x, a^6x\} \cong \mathbb{Z}_4 \times \mathbb{Z}_2 $ The whole group | | | Table 1: Permutable subgroups of non-abelian groups of order 16. # 5. Example of permutable subgroup which is not normal for group of order 16 Let $G = M_{16}$ , the group G is defined as follows: $$M_{16} = \langle a, x \mid a^8 = x^2 = e , xax^{-1} = a^5 \rangle.$$ The elements of G are $$\{e, a, a^2, a^3, a^4, a^5, a^6, a^7, x, ax, a^2x, a^3x, a^4x, a^5x, a^6x, a^7x\}.$$ (1) The following table represents all subgroups of $M_{16}$ : **Remark 2.** All the preceding subgroups of $M_{16}$ in Table 2 are permutable and normal subgroups except the subgroups $H_1 = \{e, x\}$ and $H_2 = \{e, a^4x\}$ , which are permutable but not normal. | 7 | Trivial group $\{e, a^4\} \cong \mathbb{Z}_2$ (It is the centre of the group) $\{e, a^2, a^4, a^6\} \cong \mathbb{Z}_4$ (It is the commutator subgroup) $(a) \cong \mathbb{Z}_8$ $(a^2, x) \cong D_8$ $(a^2, ax) \cong D_8$ The whole group | |----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7 | Trivial group $\{e, a^4\} \cong \mathbb{Z}_2$ (It is the centre of the group) $\{e, a^2, a^4, a^6\} \cong \mathbb{Z}_4$ (It is the commutator subgroup) $\langle a \rangle \cong \mathbb{Z}_8$ $\langle a^2, x \rangle \cong D_8$ $\langle a^2, ax \rangle \cong Q_8$ The whole group | | 7 | Trivial group $ \langle z = a^4 = b^2 = c^2 \rangle \cong \mathbb{Z}_2 \text{ (It is the centre of the group)} $ $ \langle a^2 \rangle \cong \mathbb{Z}_4 \text{ (It is the commutator subgroup)} $ $ \langle a \rangle \cong \mathbb{Z}_8 $ $ \langle a^2, b \rangle \cong Q_8 $ $ \langle a^2, ab \rangle \cong Q_8 $ The whole group | | 19 | Trivial group $ \langle y \rangle \cong \mathbb{Z}_2 \\ \langle a^2y \rangle \cong \mathbb{Z}_2 \\ \langle a^2 \rangle \cong \mathbb{Z}_2 \text{ (It is the commutator subgroup)} \\ \langle a^2, y \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \text{ (It is the centre of the group)} \\ \langle a^2, y \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \text{ (It is the centre of the group)} \\ \langle a^2, x \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle a^2, ax \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle a^2, ax \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle a^2, ax \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle a^2, ax \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle a \rangle \cong \mathbb{Z}_4 \\ \langle ay \rangle \cong \mathbb{Z}_4 \\ \langle a^2, x, y \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle a^2, ax, y \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \langle a, x \rangle \cong D_8 \\ \langle a, xy \rangle \cong D_8 \\ \langle ay, yy \rangle \cong \mathcal{Z}_4 \times \mathbb{Z}_2 \\ \text{The whole group}$ | | 7 | All subgroups are permutable and normal | | 17 | Trivial group $ \langle a^2 \rangle \cong \mathbb{Z}_2 \ (\text{It is the commutator subgroup}) $ $ \langle y \rangle \cong \mathbb{Z}_4 \ (\text{It is the centre of the group}) $ $ \langle a \rangle \cong \mathbb{Z}_4 \ (\text{It is the centre of the group}) $ $ \langle a \rangle \cong \mathbb{Z}_4 \ (xy) \cong \mathbb{Z}_4 \ (xy) \cong \mathbb{Z}_4 \ (xy) \cong \mathbb{Z}_4 \ (axy) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 $ $ \langle a^2, ax \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \ (a^2, ax) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 $ $ \langle a^2, ay \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \ (ax, y) \cong \mathbb{Z}_4 \times \mathbb{Z}_2 \ (x, y) \cong \mathbb{Z}_4 \times \mathbb{Z}_2 \ (x, y) \cong \mathbb{Z}_4 \times \mathbb{Z}_2 \ (xx, y) \cong \mathbb{Z}_4 \times \mathbb{Z}_2 \ (xx, y, ay) \cong \mathbb{D}_8 \ (xy, \mathbb{D}_8$ | | | 7 7 19 | Table 1: (Continuation) Permutable subgroups of non-abelian groups of order 16. Next, we will prove that $H_1$ and $H_2$ are permutable subgroup of $M_{16}$ but not normal. | List of subgroups | Isomorphism class | Order of<br>subgroups | Index of<br>subgroups | |---------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|-----------------------| | $K_1 = \{e\}$ | trivial group | 1 | 16 | | $K_2 = \{e, a^4\}$ | $\mathbb{Z}_2$ | 2 | 8 | | $H_1 = \{e, x\}, H_2 = \{e, a^4 x\}$ | $\mathbb{Z}_2$ | 2 | 8 | | $K_3 = \{e, a^2, a^4, a^6\}$ | $\mathbb{Z}_4$ | 4 | 4 | | $K_4 = \{e, a^2x, a^4, a^6x\}$ | $\mathbb{Z}_4$ | 4 | 4 | | $K_5 = \{e, x, a^4, a^4x\}$ | Klein four-group | 4 | 4 | | $K_6 = \{e, a, a^2, a^3, a^4, a^5, a^6, a^7\}$ $K_7 = \{e, ax, a^6, a^7x, a^4, a^5x, a^2, a^3x\}$ | $\mathbb{Z}_8$ | 8 | 2 | | $K_8 = \{e, a^2, a^4, a^6, x, a^2x, a^4x, a^6x\}$ | $\mathbb{Z}_4 imes\mathbb{Z}_2$ | 8 | 2 | | $M_{16}$ | $M_{16}$ | 16 | 1 | Table 2: The subgroups of $M_{16}$ . *Proof.* For $H_1 = \{e, x\}$ . Consider Equation (1), as $a \in M_{16}$ and $a^{-1} = a^7$ . Then, $$\begin{array}{rcl} axa^{-1} & = & axa^{7} \\ & = & aa^{5}xa^{6} \\ & = & a^{6}a^{5}xa^{5} \\ & = & a^{3}a^{5}xa^{4} \\ & = & exa^{4} \\ & = & xa^{4} \\ & = & a^{4}x \not\in H_{1}. \end{array}$$ Hence, $H_1$ is not normal subgroup of $M_{16}$ . To show that $H_1$ is permutable, we have $$K_1H_1 = H_1K_1 = \{e, x\} = H_1$$ $$K_2H_1 = H_1K_2 = \{e, x, a^4, a^4x\} = K_5$$ $$K_3H_1 = H_1K_3 = \{e, a^2, a^4, a^6, x, a^2x, a^4x, a^6x\} = K_8$$ $$K_4H_1 = H_1K_4 = \{e, a^2, a^4, a^6, x, a^2x, a^4x, a^6x\} = K_8$$ $$K_5H_1 = H_1K_5 = \{e, x, a^4, a^4x\} = K_5$$ $$K_6H_1 = H_1K_6 = M_{16}$$ $K_7H_1 = H_1K_7 = M_{16}$ $K_8H_1 = H_1K_8 = \{e, a^2, a^4, a^6x, a^2x, a^4x, a^6x\} = K_8$ $H_1H_2 = H_2H_1 = K_5$ . Therefore, $H_1$ is permutable and not normal subgroup of $M_{16}$ . For $H_2 = \{e, a^4x\}$ . Consider Equation (1), as $a \in M_{16}$ and $a^{-1} = a^7$ , then $$\begin{array}{rcl} aa^4xa^{-1} & = & a^5xa^7 \\ & = & a^5xaa^6 \\ & = & a^5a^5xa^6 \\ & = & a^2xaa^5 \\ & = & a^2a^5xa^5 \\ & = & a^7xaa^4 \\ & = & \vdots \\ & = & a^3a^5x \\ & = & x \not\in H_2. \end{array}$$ Hence, $H_2$ is not normal in $M_{16}$ . To show that $H_2$ is permutable, we have: $$K_{1}H_{2} = H_{2}K_{1} = \{e, a^{4}x\} = H_{2}$$ $$K_{2}H_{2} = H_{2}K_{2} = \{e, x, a^{4}, a^{4}x\} = K_{5}$$ $$K_{3}H_{2} = H_{2}K_{3} = \{e, a^{2}, a^{4}, a^{6}, x, a^{2}x, a^{4}x, a^{6}x\} = K_{8}$$ $$K_{4}H_{2} = H_{2}K_{4} = \{e, a^{2}, a^{4}, a^{6}, x, a^{2}x, a^{4}x, a^{6}x\} = K_{8}$$ $$K_{5}H_{2} = H_{2}K_{5} = \{e, x, a^{4}, a^{4}x\} = K_{5}$$ $$K_{6}H_{2} = H_{2}K_{6} = M_{16}$$ $$K_{7}H_{2} = H_{2}K_{7} = \{e, x, a^{4}, a^{4}x\} = M_{16}$$ $$K_{8}H_{2} = H_{2}K_{8} = \{e, a^{2}, a^{4}, a^{6}, x, a^{2}x, a^{4}x, a^{6}x\} = K_{8}.$$ So, $H_2$ is permutable and not normal subgroup of $M_{16}$ . The previous description shows that $M_{16}$ has two permutable subgroups $H_1$ and $H_2$ , and both subgroups are not normal. ### 6. Conclusions This research interest in the classification of groups of order 16. Basically, the classification used to determine which of the resulted subgroups is: normal, permutable or permutable and not normal. The results obtained in this research asserts that, permutability does not coincide with normality. The obtained example in Section 5, that is the modular group $M_{16}$ , is a group of order 16 that has two permutable subgroups which are not normal. ## References - [1] A. Ballester-Bolinches, J.C. Beidleman and H. Heineken, A local approach to certain classes of finite groups, *Communications in Algebra*, **31**, No 12 (2003), 5931–5942; https://doi.org/10.1081/AGB-120024860. - [2] B.N. Al-Hasanat, J.M. Alhasanat and E.M. Salah, On non-abelian groups of order $2^n$ , $n \ge 4$ using GAP, International Journal of Applied Mathematics, **31**, No 1 (2018), 41–51; http://doi.org/10.12732/ijam.v31i1.4. - [3] D. Clausen, Classifying All Groups of Order 16, Math. 434 Ed. University of Puget Sound (2012). - [4] S.E. Stonehewer, Permutable subgroups of some finite p-groups, Journal of the Australian Mathematical Society, 16, No 1 (1973), 90–97; https://doi.org/10.1017/S1446788700013975. - [5] J. Evan, Permutability of subgroups of $G \times H$ that are direct products of subgroups of the direct factors, Arch. Math., 77 (2001), 449–455; https://doi.org/10.1007/PL00000516. - [6] N. Ito, J. Szép, Uber die quasinormalteiler von endlichen gruppen, Act. Sci. Math., 23 (1962), 168–170. - [7] T.W. Judson, Abstract Algebra: Theory and Applications, PWS Publishing Company, TN (2010).