We extend the definition of -blossoming, introduced by Simeonov, Zafiris, and Goldman, to the trivariate polynomials and we define the - Bézier volumes. We derive a subdivision algorithm for -Bézier volumes and illustrate it on examples using Mathematica.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] R. Farouki, The Bernstein polynomial basis: a centennial retrospective, Computer Aided Geometric Design, 29 (2012), 379-419.
[2] R. Goldman, P´olya’s urn model and computer aided geometric design, SIAM J. Alg. Disc. Meth., 6 (1985), 1-28.
[3] R. Goldman, Pyramid Algorithms, A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, The Morgan Kaufman Ser. in Computer Graphics and Geometric Modeling, Elsevier Science (2003).
[4] R. Goldman, P. Barry, Shape parameter deletion for P´olya curves, Numer. Algorithms, 1 (1991), 121-137.
[5] I. Jegdi´c, Algorithms and identities for bivariate (h1, h2)blossoming, International Journal of Applied Mathematics, 30, No 4 (2017), 321-343; doi: 10.12732/ijam.v30i4.5; available at: http://www.diogenes.bg/ijam/index.html.
[6] I. Jegdi´c, J. Larson, P. Simeonov, Algorithms and identities for (q, h)Bernstein polynomials and (q, h)-B´ezier curves – a non-blossoming approach, Analysis in Theory and Applications, 32 (2016), 373-386.
[7] H. Oru¸c, G. M. Phillips, A generalization of the Bernstein polynomials, Proc. Edinb. Math. Soc., 42 (1999), 403-413.
[8] H. Oru¸c, G. M. Phillips, q-Bernstein polynomials and B´ezier curves, J. Comput. Appl. Math., 151 (2003), 1-12.
[9] G.M. Phillips, A de Casteljau algorithm for generalized Bernstein polynomials, BIT, 37 (1997), 232-236.
[10] G.M. Phillips, Bernstein polynomials based on q-integers, Ann. Numer. Math., 4 (1997), 511-518.
[11] G.M. Phillips, A survey on the q-Bernstein polynomials, IMA J. Numer. Anal., 30 (2010), 277-288.
[12] M. Samuelˇc´ık, B´ezier and B-spline Volumes, Project of Dissertation, Comenius University, Bratislava, Slovakia (2005).
[13] P. Simeonov, V. Zafiris, R. Goldman, h-Blossoming: A new approach to algorithms and identities for h-Bernstein bases and h-B´ezier curves, Computer Aided Geometric Design, 28 (2011), 549-565.
[14] P. Simeonov, V. Zafiris, R. Goldman, q-Blossoming: A New Approach to Algorithms and Identities for q-Bernstein Bases and q-B´ezier Curves, J. Approx. Theory, 164(1) (2012), 77-104.
[15] D. Stancu, Approximations of functions by a new class of linear polynomial operators, Rev. Roumanie Math. Pures Appl., 13 (1968), 1173-1194.
[16] D. Stancu, Generalized Bernstein approximating operators, Itinerant Seminar on Functional Equations, Approximations and Convexity, ClujNapoca (1984), 185-192.