COMPLETE INTERSECTION CALABI-YAU NINE-FOLDS

Abstract

In this paper a complete intersection Calabi-Yau 9-folds are considered. Their Hodge diamond, Todd classes and Chern characters for sheaves of differential $k$-forms are calculated.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 6
Year: 2018

DOI: 10.12732/ijam.v31i6.13

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] P. Griphiths, J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, NY (1978).
  2. [2] V.N. Dumachev, Complete intersection Calabi-Yau six-folds, Appl. Math. Sci., 9, No 143 (2015), 7121-7137; doi: 10.12988/ams.2015.510620.
  3. [3] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, NY (1978).
  4. [4] J.A. Todd, The arithmetical invariants of algebraic loci, Proc. London Math. Soc., s-2 43, No 2178 (1938), 190-225.
  5. [5] O. Debarre, Cohomological characterizations of the complex projective space, arXiv: 1512.04321.
  6. [6] T. Hubsch, Calabi-Yau Manifolds. A Bestiaray for Physicist, World Sci. Publ., Singapore (1994).
  7. [7] J. Gray, A. Haupt, A. Lukas, All complete intersection Calabi-Yau four-folds, J. High Energy Phys., 1307 (2013), arXiv: 1303.1832, doi: 10.1007/JHEP07(2013)070.
  8. [8] A. Haupt, A. Lukas, K. Stelle, M-theory on Calabi-Yau five-folds, J. High Energy Phys., 05 (2009), arXiv: 0810.2685; doi: 10.1088/1126-6708/2009/05/069.
  9. [9] V.N. Dumachev, Seven folds of complete intersection Calabi-Yau, International Journal of Pure and Applied Mathematics, 116, No 4 (2017), 959-965; doi: 10.12732/ijpam.v116i4.12.
  10. [10] V.N. Dumachev, Eight-folds of complete intersection Calabi-Yau, Communications in Applied Analysis, 22, No 3 (2018), 447-457; doi: 10.12732/caa.v22i3.7.