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1,2 Department of Mathematics
University of Central Florida

Orlando – 32816, USA

Abstract: Generalized functions, called transfunctions, are defined as maps
between spaces of measures on measurable spaces (X,ΣX) and (Y,ΣY ). Mea-
surable functions f : (X,ΣX) → (Y,ΣY ) can be identified with transfunctions
via the push forward operator f#(µ)(B) = µ(f−1(B)). In this paper we in-
troduce the notion of localization of transfunctions that gives an insight into
which transfunctions arise from continuous functions or measurable functions
or are close to such functions. We also introduce the notion of a graph of a
transfunction and describe what it tells us about the transfunction. In our
investigation of transfunctions, we are motivated by applications that include
Monge-Kantorovich transportation problems and population dynamics.
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1. Introduction

Let (X,ΣX) and (Y,ΣY ) be measurable spaces with sets of finite measures MX

and MY , respectively. A transfunction is any function Φ : MX → MY , [8].
One can think of transfunctions as maps where the inputs and outputs

are “probability clouds” rather than points. While this intuitive interpretation
is useful, we are not restricting the domain and range of a transfunction to
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probability measures. In fact there are situations where it is natural to consider
transfunctions on signed measures or vector measures.

Another way to think of transfunctions is as follows. A family {Φt : t ≥ 0} of
transfunctions from MX to MX can be viewed instead as a family {Φ•(µ) : µ ∈
MX} of measure-valued functions on [0,∞). Then the measure-valued function
Φ•(µ) can describe the evolution of µ as time grows, while the transfunction Φt

can represent an overall rule on how measures will change from time 0 to time
t. When {Φt : t ≥ 0} form a (C0) semigroup, many results follow as regular
finite measures form Banach spaces, [7].

While formally a transfunction is a map Φ : MX → MY we are interested
in its properties as a “generalized function” from X to Y . To emphasize this
point of view we will use the notation Φ : X  Y when the context is clear.

Every measurable function is a transfunction. More precisely, if (X,ΣX)
and (Y,ΣY ) are measurable spaces and f : (X,ΣX) → (Y,ΣY ) is a measur-
able function, then the push forward operator f# : MX → MY defined by
f#(µ)(B) = µ(f−1(B)) is a transfunction. We will say that the transfunction
Φ corresponds to f , or simply Φ is f , if Φ = f#.

While every measurable function is a transfunction, we are obviously in-
terested in transfunctions that do not necessarily correspond to measurable
functions. In this paper we investigate the following general questions:

• Under what conditions will a tranfunction Φ be a measurable function?

• Under what conditions will a tranfunction Φ be a continuous function?

• If a tranfunction Φ is not a function, under what conditions is Φ “close”
to a measurable or continuous function?

We also introduce the notion of a graph of a transfunction, which is related
to the above questions and gives us additional intuition about the nature of
transfunctions. The main tool in our investigation is the idea of localization of
transfunctions which is introduced in Section 3.

Our long term goal is to investigate to what extent the tools developed
for functions can be extended to transfunctions and to use transfunctions to
describe and solve problems arising from applications. In our study of theo-
retical properties of transfunctions we are motivated by applications to specific
problems, including the two areas described below.

Transfunctions provide a natural framework for population dynamics mod-
els. A population can be described as a measure µ on X ⊆ R

2 which contains
information about the size of the population and its spatial distribution. A
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transfunction captures the dynamics of the population over one unit of time.
For example, the transfunction

Φ(µ) = g · ((f#µ) ∗ κ) :=

∫

�

g d((f#µ) ∗ κ),

models how a population µ will migrate via a function f : X → X to become
f#µ, disperse by convolution with measure κ from territorial behavior/offspring
to become (f#µ) ∗ κ, and grow/shrink locally via environmental factors g :
X → [0,∞) (which accounts for food, water, shelter, predators, etc) to become
g · ((f#µ) ∗ κ) after some set amount of time.

The discrete logistic growth model with location-dependent growth rate can
be described by the transfunction

Φ(µ) = µ+ r

(

1−
dµ

dν

)

· µ,

where µ is a given population, ν is a measure describing the (non-uniform)
carrying capacity, r > 0 is the population growth rate, and dµ

dν
is the Radon-

Nikodym derivative of µ with respect to ν. To account for dispersive behavior,
one may instead substitute µ ∗ γ into the formula of Φ, where γ is a measure of
dispersal. See [4] for comparison/contrast.

A tree population can be described by an l1-valued vector measure

µ(S) = (µ0(S), µ1(S), µ2(S), . . . ),

where µj(S) represents the number of trees in S that are j years old. Note that
for every j ∈ N0, µj is a positive measure. A basic discrete model for the tree
population dynamics can be described as a transfunction

Φ(µ) = AV µ+ e0

∞
∑

j=0

pjµj ∗ γj,

where A is the right shift operator (aging operator) on l1, V ∈ l∞ is the
survivalship of trees at various ages (applied component-wise), pj represents
the fecundity of j-year-old trees, γj represents the distribution of seeds from
one tree of age j at the origin, and e0 = (1, 0, 0, . . . ). Altogether, Φ describes
how a tree population changes over the course of one year.

Now we briefly describe an application of transfunctions to problems related
to the Monge-Kantorovich transportation problem, [1], [9].

Let (X,ΣX) = (Y,ΣY ) = (Rd,Rd) be the usual measurable space with the
Lebesgue measure λ. Let Mλ denote the space of finite measures on Rd that



692 J. Bentley, P. Mikusiński

are absolutely continuous with respect to λ. Let ρX , ρY ∈ Mλ be prior and
posterior probability measures. Let c : Rd × R

d → [0,∞) be a cost function.
We consider the collection P of all transport plans – that is, all measures on

the product σ-algebra of ΣX and ΣY – that have ρX and ρY as their marginals.
The goal is to find a transport plan with minimum cost

inf
µ∈P

{
∫

X×Y

c dµ

}

.

Since a transport plan “maps” a prior measure ρX to a posterior measure
ρY , it can be described in the framework of transfunctions. There are a few main
advantages when using transfunctions. First, all transport plans with the same
“instructions” but with different prior and posterior measures correspond to
the same transfunction, see [3]. Second, while transport plans are by definition
measure preserving, it may not be a reasonable assumption in some applications.
Finally, while a transport plan optimizes how ρX is transformed into ρY , it
may be more natural to optimize how ρX is transformed into one of several
acceptable measures. However, describing how a transfunction (not necessarily
corresponding to a transport plan) will be optimal with respect to cost function
c and prior/posterior measures ρX , ρY is not as simple as with transport plans.

Now we discuss how transfunctions compare and contrast with fuzzy func-
tions. While the intuition behind transfunctions is similar to that of fuzzy
functions, the mathematical formalisms of these two approaches are very dif-
ferent.

For an arbitrary set X, by a fuzzy subset of X we mean any function
m : X → [0, 1] (see, for example, [5]). Such a function m describes the degree
of membership of an x ∈ X, with m(x) = 0 meaning that x is not in the set,
0 < m(x) < 1 meaning that x is partially in the set, and m(x) = 1 meaning
that x is fully in the set. Let X and Y be two sets and let F(X) and F(Y )
denote all fuzzy subsets of X and Y , respectively. A fuzzy function F from X
to Y is simply a function mapping F(X) to F(Y ).

Now assume that X and Y are measurable spaces. Since, in general, mea-
sures on X do not assign values to points in X, not every measure can be identi-
fied in a natural way with a fuzzy set. Consequently, transfunctions operate on
objects that are not fuzzy sets, which means that there are transfunctions that
cannot be identified with fuzzy functions. On the other hand, fuzzy functions
operate on nonmeasurable membership functions and therefore they cannot be
identified with transfunctions.

Finally, we describe a special situation when fuzzy functions can be identi-
fied with transfunctions. Let (X,ΣX , µ) and (Y,ΣY , ν) be topological measure
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spaces such that µ and ν are strictly positive measures onX and Y , respectively.
Let F be a fuzzy function that maps measurable fuzzy sets FΣ(X) to measur-
able fuzzy sets FΣ(Y ) such that µ-equivalent functions in FΣ(X) are mapped
via F to ν-equivalent functions in FΣ(Y ). Let Mµ = {mµ : m ∈ FΣ(X)},
Mν = {mν : m ∈ FΣ(Y )}, and let ιµ : FΣ(X) → Mµ and ιν : FΣ(X) → Mν

be defined by ιµ(m) = mµ and ιν(m) = mν, respectively. Then F is identified
by the unique transfunction Φ : Mµ → Mν such that the diagram

commutes. We can also determine F from Φ by a similar commuting diagram.

2. Preliminaries

Unless otherwise specified, all instantiated measures shall be finite and positive.
Occasionally, we may sum countably many measures together. When this oc-
curs, the sum may be finite or infinite and we will not determine the finiteness
of the measure whenever it is inconsequential to the argument at hand.

If µ is a positive or a vector measure on (X,ΣX) and A ∈ ΣX , then we say
that A is a carrier of µ and write µ ⊏ A if |µ|(Ac) = 0, where |µ| denotes the
variation measure of µ. If µ is a positive measure, then µ ⊏ A is also equivalent
to the simpler condition that µ(Ac) = 0.

If A ⊆ X, B ⊆ Y , and Φ : MX → MY is a transfunction such that µ ⊏ A
implies Φµ ⊏ B for every µ, we shall write Φ(A) ⊏ B.

Let µ be a measure on measurable space (X,ΣX) and let A ∈ ΣX . Then
the projection of µ onto A, denoted as πAµ, is the measure defined as πAµ(B) =
µ(B ∩A) for B ∈ ΣX . If MX is a space of measures on (X,ΣX), then we say
that MX is closed under projections if µ ∈ MX implies that πAµ ∈ MX for
all A ∈ ΣX .

If µ, ν are measures in MX , then they are called orthogonal, written as
µ ⊥ ν, if there exists A ∈ ΣX such that µ ⊏ A and ν ⊏ Ac. A countable
sequence of measures {µn}

∞
n=1 is called (pairwise) orthogonal if µi ⊥ µj for

i 6= j.

If a sequence of measures (µi)
∞
i=1 satisfies

∑∞
i=1 ||µi|| < ∞, then we call

the finite measure µ =
∑∞

i=1 µi the bounded sum of (µi)
∞
i=1. A bounded sum
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µ =
∑∞

i=1 µi with {µi}
∞
i=1 being orthogonal will be called a bounded orthogonal

sum.

Definition 1. Let (X, τ) be a topological space. A space of finite positive
measures or of vector measures MX on (X,ΣX) is called ample if the following
conditions hold:

(i) MX is closed under projections;

(ii) MX is closed under bounded orthogonal sums;

(iii) Every nonempty open set in X carries some nonzero measure in MX .

A measure λ on a topological measurable space (X,ΣX) is called strictly-
positive if λ(U) > 0 for every nonempty open set U in X. If λ is a finite strictly-
positive measure on a topological measurable space (X,ΣX) and Mλ = {πAλ :
A ∈ ΣX}, then Mλ is an ample space of finite measures. Certain spaces (e.g.
2nd-countable locally compact non-atomic Hausdorff spaces, compact groups)
admit finite strictly-positive measures, hence they also admit ample spaces of
measures, [2].

Ample spaces will be useful for transfunctions because we will decompose a
measure into bounded orthogonal sums of projections and use local properties
to determine the behavior of each projection. If the transfunctions are of a
certain type, then summing the outputs will result in the output of the original
measure.

In this paper we will assume that X and Y are second-countable topological
spaces, that ΣX and ΣY are collections of Borel subsets ofX and Y , respectively,
and that any transfunction Φ : MX → MY will be defined on an ample space
MX unless otherwise specified.

Definition 2. Let Φ : X  Y be a transfunction with MX closed under
bounded orthogonal sums.

(i) Φ is called weakly monotone if Φµ ≤ Φ(µ+ ν) for each orthogonal pair of
measures µ and ν.

(ii) Φ is called weakly σ-additive if Φ(
∑∞

i=1 µi) =
∑∞

i=1 Φµi for every bounded
orthogonal sum

∑∞
i=1 µi in MX .

(iii) Φ is called strongly σ-additive if Φ(
∑∞

i=1 µi) =
∑∞

i=1Φµi for every bounded
sum

∑∞
i=1 µi in MX .
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Notice that strong σ-additivity implies weak σ-additivity and weak σ-additivity
implies weak monotonicity. The transfunction f# : X  Y with MX closed
under bounded orthogonal sums is strongly σ-additive for any measurable func-
tion f : X → Y .

The properties of weakly σ-additive transfunctions listed in the following
proposition are often used in arguments.

Proposition 3. Let Φ : X  Y be a weakly σ-additive transfunction. Let
A, A′, and the sequence (Ai)

∞
i=1 be from ΣX and let B, B′, and the sequence

(Bj)
∞
j=1 be from ΣY .

(i) If Φ(A) ⊏ B, if A′ ⊆ A and if B′ ⊇ B, then Φ(A′) ⊏ B′;

(ii) If Φ(Ai) ⊏ Bj for all i, j ∈ N, then Φ(∪∞
i=1Ai) ⊏ ∩∞

j=1Bj .

(iii) If Φ(Ai) ⊏ Bi for all i ∈ N, then Φ(∩∞
i=1Ai) ⊏ ∩∞

j=1Bj and Φ(∪∞
i=1Ai) ⊏

∪∞
j=1Bj.

The following proposition will be useful in the characterization of trans-
functions that correspond to continuous functions.

Proposition 4. Let Φ : X  Y be a weakly σ-additive transfunction.

Let U be open in X with open cover {Si : i ∈ I}, and let B be measurable in

Y . Then Φ(Si) ⊏ B for all i ∈ I implies that Φ(U) ⊏ B. In particular, if µ is

a measure on X and if Φ(πSi
µ) ⊏ B for all i ∈ I, then Φ(πUµ) ⊏ B.

A transfunction Φ : X  Y is said to vanish on an open set U if Φ(U) ⊏ ∅.
Let VΦ denote the collection of all vanishing open sets of Φ.

Let Φ : X  Y be a weakly σ-additive transfunction. Then ∪VΦ is called
the null space of Φ, denoted as null Φ. Its complement, (∪VΦ)

c, is called the
spatial support of Φ, denoted as suppΦ.

Note that Φµ = Φ(πsuppΦµ), which implies that Φ is essentially a trans-
function between the subspace suppΦ and Y , that is, Φ : suppΦ Y .

A transfunction Φ : X  Y is called non-vanishing if Φ has no non-empty
vanishing sets, that is, if suppΦ = X. Furthermore, Φ is norm-preserving if
||Φµ|| = ||µ|| for all µ on X.
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3. Localized Transfunctions

In this and the following two sections we assume that X and Y are metric
spaces. We use B(z; ρ) to denote the open ball of radius ρ centered at z.

Definition 5. Let x ∈ X and ε > 0. We say that a transfunction
Φ : X  Y is ε-localized at x if there exist δ > 0 and y ∈ Y such that
Φ(B(x, δ)) ⊏ B(y, ε). We say that Φ is 0-localized at x if Φ is ε-localized at x
for all ε > 0. If Φ is ε-localized at x for some ε > 0, then we say that Φ is
localized at x. If Φ is localized at every point in some set A ∈ ΣX , then we say
that Φ is localized on A.

If y needs emphasis, we can say that Φ is ε-localized at (x, y). If we need to
emphasize δ, we can say that Φ is (δ, ε)-localized at (x, y).

Note in the definition of 0-localization that the values for δ and y may
depend on ε.

Definition 6. Let A ⊆ X. We say that that a transfunction Φ : X  Y
is uniformly localized on A if there exist ε > 0 and δ > 0 such that Φ is
(δ, ε)-localized on A.

If δ and ε are to be emphasized, then we say that Φ is uniformly (δ, ε)-
localized on A. If only ε is to be emphasized, then we say that Φ is uniformly
ε-localized on A.

Definition 7. For a transfunction Φ : X  Y we define a function
EΦ : X → [0,∞] via

EΦ(x) = inf{ε : Φ is ε-localized at x}.

The function EΦ measures how localized Φ is be throughout X. Note that
Φ is (E(x) + η)-localized at x for all η > 0 whenever E(x) < ∞ and that Φ is
not localized at x when E(x) = ∞.

Definition 8. Let A ⊆ X and let f : X → Y be function. We say that
Φ is ε-localized on A via f or that Φ is ε-close to f on A if Φ is ε-localized at
(x, f(x)) for all x ∈ A.

It is worth noting that transfunctions are not necessarily localized anywhere.
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When verifying whether a transfunction is localized the following simple propo-
sition is often useful.

Proposition 9. Let f be a measurable function, let µ ∈ MX be a positive

measure or a vector measure and let A ∈ ΣX . Then |f#µ| ≤ f#|µ|. If µ is a

positive measure, then µ ⊏ f−1(A) if and only if f#µ ⊏ A, and if µ is a vector

measure, the forward implication holds.

Now we consider some examples.

1. If f : X → Y is a continuous function, then for Φ = f# we have EΦ = 0.

2. Let H : R → R be the Heaviside function centered at 0 and let Φ = H#.
Since H is continuous everywhere except at 0, it follows that EΦ(x) = 0
for all x 6= 0. However, EΦ(0) = 1/2.

3. Consider the measurable function g : R → R via g =
∑∞

n=0 2
nHn, where

Hn is the Heaviside function centered at n, and define Φ = g#. Then
EΦ(n) = 2n−1 for each n ∈ N and E(x) = 0 for x ∈ R \ N, meaning that
Φ is localized on R but that supx∈RE(x) = ∞.

4. Let A ∈ ΣX . Then the projection transfunction Φ = πA is 0-localized via
the identity function since every carrier of µ is also a carrier of πAµ.

5. Let Y = R, ΣY = B(R), and let ν be a strictly positive finite measure on
R. The transfunction Φ : R R defined via Φ(µ) = ‖µ‖ν is not localized
anywhere.

6. Let X = Y = R
d and let λd be the Lebesgue measure on R

d. For some
ε > 0, define κ = πB(0;ε)λ

d. The transfunction Φ : Rd  R
d defined via

Φ(µ) = µ ∗ κ, the convolution of measures µ and κ, is ε-localized on X.

If U denotes the set of points in X where a transfunction Φ is localized,
then the function EΦ|U : U → [0,∞) does not have to be continuous. However,
as the next proposition states, it does have to be upper-semi-continuous on U ,
implying that U is an open set.

Proposition 10. Let Φ : X  Y be a transfunction and let U denotes

the set of points in X where Φ is localized. Then the function EΦ|U is an

upper-semi continuous function and U is an open set.
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Proof. Let x ∈ U with E(x) = η and let ε > η. Then there exists a y ∈ Y
and a δ > 0 such that Φ(B(x; δ)) ⊏ B(y; ε). Choose an x1 ∈ B(x; δ) different
from x. Then there exists a δ1 > 0 such that B(x1; δ1) ⊂ B(x; δ), so that
Φ(B(x1; δ1)) ⊏ B(y; ε). Therefore, Φ is ε-localized at (x1, y), yielding that
EΦ(x1) ≤ ε and that x1 ∈ U . Since x1 ∈ B(x; δ) was arbitrary, this means
that supEΦ(B(x; δ)) ≤ ε and that B(x; δ) ⊆ U . Since ε was arbitrary, this
means that lim sup

δ→0
EΦ(B(x; δ)) ≤ η = EΦ(x), meaning that E is upper-semi-

continuous. Since x was arbitrary, this means that U is open.

4. 0-Localized Transfunctions

When f : X → Y is continuous, we know that f# is weakly σ-additive, norm-
preserving, and 0-localized on X. We will show that these three properties
characterize transfunctions that correspond to continuous functions.

Proposition 11. Let X be a metric space with an ample family of mea-

sures MX and let Y be a complete metric space. For any A ∈ ΣX and for any

non-vanishing transfunction Φ : X  Y which is 0-localized on A there is a

unique continuous function f : A → Y such that Φ is 0-close to f on A.

Proof. Since Φ is 0-localized on A, it follows that EΦ(x) = 0 for all x ∈ A.
Then for any fixed x ∈ A, there are δn > 0 and yn ∈ Y indexed by n ∈ N such
that Φ(B(x, δn)) ⊏ B

(

yn,
1
n

)

for every n ∈ N.

First we show that d(ym, yn) ≤
1
m
+ 1

n
for all m,n ∈ N. Suppose d(ym, yn) >

1
m

+ 1
n

for some m,n ∈ N. Then B
(

ym; 1
m

)

∩ B
(

yn;
1
n

)

= ∅. Since MX is
ample, there is a non-zero measure ν ⊏ B(x; δm) ∩ B(x; δn). But then Φ(ν) ⊏
B
(

ym; 1
m

)

∩B
(

yn;
1
n

)

= ∅, which is impossible since Φ is non-vanishing.
Since d(ym, yn) ≤

1
m

+ 1
n
for all m,n ∈ N, (yn) is a Cauchy sequence in the

complete metric space Y . So there exists y ∈ Y with yn → y. Furthermore,
B
(

yn,
1
n

)

⊆ B
(

y, 1
n
+ d(yn, y)

)

for n ∈ N. Indeed, y is the unique point in Y
with this property and Φ is 0-localized at (x, y). Now we define f : A → Y by
f(x) = y, where y ∈ Y is the unique point such that Φ is 0-localized at (x, y).
Clearly Φ is 0-localized on A via f .

We now show that f is continuous on A. Let xn → x0 in A. Define y0 =
f(x0) and yn = f(xn) for n ∈ N. Let ε > 0. Then there is a δ > 0 such that
Φ(B(x0, δ)) ⊏ B(y0, ε). Let N ∈ N be such that d(xm, x0) < δ/2 for m ≥ N .
For every m ≥ N there is a δm < δ/2 such that Φ(B(xm, δm)) ⊏ B(ym, ε).
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Then B(xm, δm) ⊂ B(x0, δ) implies that Φ(B(xm, δm)) ⊏ B(y0, ε) ∩ B(ym, ε).
Consequently, d(ym, y0) ≤ 2ε, since MX is ample and Φ is non-vanishing.

Theorem 12. Let X be a metric space with an ample family of measures

MX , Y a complete metric space, and Φ : X  Y a non-vanishing transfunction.

Then Φ = f# for some continuous function f : X → Y if and only if Φ is norm-

preserving, weakly σ-additive, and 0-localized on X.

Proof. We only need to show that if Φ is norm-preserving, weakly σ-additive,
and 0-localized on X, then Φ = f# for some continuous function f : X → Y .
Let f : X → Y be the unique continuous function guaranteed by Proposition
11. We will show that Φ = f#.

Let V ⊆ Y be an open set. Define U = f−1(V ). By Proposition 11, there
exists an open ball cover {B(x; δx) : x ∈ U} of U such that Φ(B(x; δx)) ⊏ V for
all x ∈ X. By Proposition 4, we have that Φ(U) ⊏ V . Similarly, if we define
W = f−1

((

V
)c)

, which is also open, we have that Φ(W ) ⊏
(

V
)c
.

Next, we define Z = f−1(∂V ) = f−1(V ∩ V c), which is closed, and for each
n ∈ N, let Ln = ∪y∈∂V B(y; 1/n), which is an open set. Since Φ is 0-localized,
for each x ∈ Z and n ∈ N, there exists δx,n > 0 such that Φ(B(x; δx,n)) ⊏ Ln.
For Kn = ∪x∈ZB(x; δx,n) we have Φ(Kn) ⊏ Ln for all n ∈ N, by Proposition 4.
Noting that ∩∞

n=1Kn = Z and ∩∞
n=1Ln = ∂V , it is clear that Φ(Z) ⊏ ∂V , by

Proposition 3.

Let µ ∈ MX . Since πUµ ⊏ U and Φ(U) ⊏ V , we have that Φ(πUµ) ⊏ V
and we have via norm-preservation of Φ that

Φ(πUµ)(V ) = ||Φ(πUµ)|| = ||πUµ|| = µ(U) = f#(µ)(V ).

Since Φ(W ) ⊏
(

V
)c

and V ∩
(

V
)c

= ∅, it follows that Φ(πWµ)(V ) = 0.
Similarly, since Φ(Z) ⊏ ∂V and V ∩ ∂V = ∅, it follows that Φ(πZµ)(V ) = 0.
From the above we obtain

Φ(µ)(V ) = Φ(πUµ)(V ) + Φ(πWµ)(V ) + Φ(πZµ)(V ) = f#(µ)(V ).

Moreover, since Φ(µ) and f#(µ) are finite measures which agree on open sets,
they must agree on all sets in ΣY by the π−λ Theorem. Finally, since µ ∈ MX

is arbitrary, we have Φ = f#.

Now we characterize transfunctions which correspond to measurable func-
tions, but under stricter settings. First, we define restrictions of transfunctions.
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Definition 13. Let Φ : X  Y be a transfunction, and let A ⊆ X be
measurable. Then the composition Φ ◦ πA is called the restriction of Φ to A.

Note that Φ ◦ πA = Φ when suppΦ ⊆ A and that Φ ◦ πB = 0 when
B ⊆ null Φ.

Theorem 14. Let X be locally compact, let λ be a finite regular measure

on X, and let MX only have measures absolutely continuous with respect to

λ. Let Φ : X  Y be a weakly σ-additive transfunction. Then Φ corresponds

to a measurable function if and only if there exists a sequence of compact sets

{Fn}
∞
n=1 such that λ(F c

n) <
1
n
and that Φ◦πFn

is identified with some continuous

function on Fn.

Proof. The forward direction is a straight-forward consequence of Lusin’s
theorem, where the measurable and continuous functions are identified with the
respective transfunctions.

We now prove the reverse direction. For each natural n, let Φ ◦ πFn
be

identified with continuous function fn : Fn → Y . Let i 6= j. If λ(Fi ∩ Fj) > 0,
then there exists some compact subset Gi,j ⊆ Fi ∩ Fj such that λ(Gi,j) =
λ(Fi∩Fj) and λ(U∩Gi,j) > 0 whenever U∩Gi,j 6= ∅ for open U , [6]. Otherwise,
if λ(Fi ∩ Fj) = 0, then define Gi,j = ∅.

For the latter case, fi = fj is vacuously true on Gi,j . For the former case,
let x ∈ Gi,j . Suppose that fi(x) 6= fj(x). If we let ε < d(fi(x), fj(x))/2, this
would imply by 0-localization of Φ ◦ πFi

and Φ ◦ πFj
the existence of δ > 0

such that Φ(B(x; δ) ∩ Gi,j) ⊏ B(fi(x); ε) ∩ B(fj(x); ε) = ∅. Choosing µ0 to
be the projection of λ onto B(x; δ) ∩ Gi,j , we observe that µ0 6= 0 and that
Φ(µ0) = Φ ◦ πFi

(µ0) = 0, which contradicts the norm-preservation of Φ ◦ πFi

on Fi. It follows that fi = fj on Gi,j ⊆ Fi ∩ Fj . Having i, j arbitrary, we have
that outside the λ-null Borel set N = (∪∞

i,j=1 (Fi ∩ Fj −Gi,j)) ∪ (∩∞
i=1F

c
i ), the

functions (fi)
∞
i=1 coincide, allowing them to be glued to a measurable function

h : X → Y , where h(N) = {y0} for some fixed y0 ∈ Y .

We now show that Φ = h#. Let µ ∈ MX and let An = N c∩(Fn−∪m<nFm).
Since λ(N) = 0 and µ ≪ λ, µ(N) = 0. This means that

Φ(µ)(B) = Φ (πNµ+
∑∞

n=1 πAn
µ) (B) =

∑∞
n=1Φ(πAn

µ)(B)

=
∑∞

n=1 fn#(πAn
µ)(B) =

∑∞
n=1 µ

(

An ∩ h−1(B)
)
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= µ
(

N ∩ h−1(B)
)

+ µ
(

N c ∩ h−1(B)
)

= h#(µ)(B).

5. ε-Localized Transfunctions

When Φ is not indentifiable with a measurable function, under what condition
is it “close” to a measurable function? We consider this question for uniformly
localized transfunctions. Given that Φ : X  Y is uniformly ε-localized, can we
find a measurable function f : X → Y such that Φ is uniformly ε-close to f? If
we can find such a function, then it gives a rough idea of how the transfunction
behaves. In our settings, we can always find such a measurable function: in
fact, it can be chosen so that f is σ-simple. Can we choose a continuous f in
this way? The answer is also affirmative, but it requires a more demanding
setting.

Proposition 15. LetX and Y be metric spaces, withX second-countable.

Then every transfunction Φ which is uniformly ε-localized on X is uniformly

ε-close to some measurable function f : X → Y .

Proof. Let Φ : X  Y be a uniformly (δ, ε)-localized transfunction on X.
This means that for all x ∈ X, there exists some yx ∈ Y with Φ(B(x; δ)) ⊏
B(yx; ε). This choice function x 7→ yx will be used later. Note that the collection
{B(x; δ/3) : x ∈ X} is an open cover of X. It follows from second-countability
of X that there is a countable subcover, which shall be indexed as {B(xn; δ/3) :
n ∈ N}. For each natural n, let yn = yxn

from the choice function above.
Next we create a function f : X → Y given by f(x) = yn whenever x ∈
B(xn; δ/3) − ∪m<nB(xm; δ/3). It follows that f is a σ-simple function, and
therefore is measurable. Furthermore, when f(x) = yn, it follows that x ∈
B(x; δ/3) ⊆ B(xn; δ).

Therefore, it follows that Φ(B(x; δ/3)) ⊏ B(yn; ε) = B(f(x); ε), which
shows that Φ is uniformly (δ/3, ε)-localized on X via f .

We build upon the proof of Proposition 15 to develop the next theorem.
First, we define left-translation-invariance of a metric on locally compact groups.

Definition 16. Let X be a locally compact group with identity e, and let
d be a metric on X. Then d is left-translation-invariant if d(x, y) = d(zx, zy)
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for all x, y, z ∈ X. When the metric is understood by context, the equivalent
definition is that xB(e; ε) = B(x; ε) for all x ∈ X and ε > 0.

Theorem 17. Let X be a second-countable metrizable locally compact

group with left-translation-invariant metric and let Y be a normed space. Then

every Φ which is uniformly ε-localized on X is uniformly ε-close to some con-

tinuous function g : X → Y .

Proof. Let e denote the identity of X and let 0Y denote the zero in Y .
Take from Proposition 15 the measurable f : X → Y as described in the
previous proof with the same details. Then there exists α > 0 such that for
all x ∈ X, B(x;α) has compact closure. Let x ∈ X be arbitrary. Since
{B(xn; δ/3) : n ∈ N} covers B(x;α), it follows that there is a finite subcover
{B(xn; δ/3) : n ≤ Nx} for some natural number Nx depending on x. Therefore,
f(B(x;α)) ⊆ {yn : n ≤ Nx} ⊆ B(0Y ;Mx) for some real Mx depending on x.
Since x was arbitrary, this means that f is locally bounded.

Now let β = min{δ/3, α/2}. Since X is a locally compact group, there
exists a non-zero (uniformly) continuous function ϕ : X → [0,∞) with compact
support within B(e;β). Now choose the unique appropriately scaled left Haar
measure κ on X such that

∫

ϕ(u−1)dκ(u) = 1.

Now consider the function g : X → Y given by g = f ∗ ϕ, the convolution
of f : X → Y and ϕ : X → R using the (vector-valued) integral

g(x) = f ∗ ϕ(x) =

∫

f(t)ϕ(t−1x)dκ(t) =

∫

f(xu)ϕ(u−1)dκ(u).

Note that the integral above is well-defined, because t 7→ ϕ(t−1x) is zero
outside of xB(e;β) = B(x;β) and f is bounded and finitely-valued on the
set B(x;β) by an earlier argument. Also, the second equality holds due to
left-invariance of κ and the substitution u = x−1t which yields xu = t and
u−1 = t−1x.

We shall now show that g is continuous. Let x ∈ X and let ε > 0 and choose
some η ∈ (0, β) with respect to uniform continuity of ϕ. Let x′ be η-close to
x in X: that is, let x−1x′ ∈ B(e; η). This implies that (t−1x)−1(t−1x′) =
x−1x′ ∈ B(e; η) for all t ∈ X, so that t−1x and t−1x′ are also η-close in X for
all t ∈ X. Since d(x, x′) < α/2, it follows that B(x′;α/2) ⊆ B(x;α), which
means that f(B(x′;α/2)) ⊆ f(B(x;α)) ⊆ B(0Y ;Mx). Therefore Mx bounds
the vectors obtained by f in both B(x;β) and B(x′;β). Then it follows that
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|ϕ(t−1x)− ϕ(t−1x′)| < ε for all t ∈ X and that

||g(x) − g(x′)|| =

∣

∣

∣

∣

∣

∣

∣

∣

∫

f(t)[ϕ(t−1x)− ϕ(t−1x′)]dκ(t)

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2 ·Mx · ε · κ(B(e;β)).

Continuity of g follows since Mx only depends on x, κ(B(e;β)) is a constant,
and ε was arbitrary.

To show that Φ is uniformly (β, ε)-localized via g, let x ∈ X be arbitrary
and let µ ⊏ B(x;β). Recall that B(x;β) is covered by ∪Nx

m=1B(xm; δ/3). Notice
that for every xm with B(xm; δ/3) ∩ B(x; δ/3) 6= ∅ we have that B(x; δ/3) ⊆
B(xm; δ) which implies that Φ(B(x; δ/3)) ⊏ B(ym; ε).

If we denote R = {ym : m ≤ Nx and B(xm; δ/3) ∩ B(x; δ/3) 6= ∅}, and if
we denote C = Conv(R), the convex hull of R, this implies that

Φµ ⊏
⋂

y∈R

B(y; ε) =
⋂

y∈C

B(y; ε).

If we can show that g(x) ∈ C, then it follows from above that Φ is (β, ε)-
localized at (x, g(x)).

For each natural m ≤ Nx, we define Am = B(e;β) ∩ x−1f−1(ym) which is

empty if ym 6∈ R and we define cm =

∫

Am

ϕ(u−1)dκ(u) which is zero if ym 6∈

R. Then
∑Nx

m=1 cm =
∫

ϕ(u−1)dκ(u) = 1, and by looking at the convolution
function g, we see that g(x) equals

∫

B(e;β)
f(xu)ϕ(u−1)dκ(u) =

∫

B(e;β)

[

Nx
∑

m=1

ymχAm
(u)

]

ϕ(u−1)dκ(u)

=
Nx
∑

m=1

ym

∫

Am

ϕ(u−1)dκ(u) =
Nx
∑

m=1

cmym ∈ C.

Therefore, it follows that Φµ ⊏ B(g(x); ε), meaning that Φ is uniformly
ε-close to g.

Corollary 18. Give R
n and R

m the usual norms. Every uniformly ε-
localized Φ : Rn  R

m is uniformly ε-close to some continuous function g :
R
n → R

m.

For transfunctions not uniformly localized, there is a result analogous to
Proposition 15 with appropriate modifications of its proof.
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Proposition 19. Let X and Y be metric spaces with X second-countable.

Then every transfunction Φ : X  Y which is ε-localized on X is ε-close to

some measurable function f : X → Y .

Proof. We use the same framework as the proof from Proposition 15. Each
x ∈ X has some associated δx > 0 from definition of ε-localization at x. We form
the cover {B(x; δx/3) : x ∈ X} ofX which has a countable subcover {B(xn; δn) :
n ∈ N}, where δn = δxn

. We define f(x) = yn when x ∈ B(xn; δn/3) −
∪m<nB(xm; δm/3). For x with f(x) = yn, we have that x ∈ B(x; δn/3) ⊆
B(xn; δn). This means for all x with f(x) = yn, we have that Φ(B(x; δn/3)) ⊏
B(yn; ε) = B(f(x); ε), meaning that Φ is ε-localized on X via f .

Alternatively, we develop a proposition analogous to the statement that
continuous functions on compact sets are uniformly continuous.

Proposition 20. Let Φ : X  Y be a transfunction which is ε-localized
on X. Define

Dε(x) := sup{δ > 0 : Φ is (δ, ε)-localized at x}.

Then Dε : X → (0,∞) is continuous on X and if X is compact, then Φ is

uniformly ε-localized on X.

Proof. Let x0 ∈ X. Let x ∈ B(x0;Dε(x0)). It must follow by definition of
Dε that

Dε(x0)− d(x, x0) ≤ Dε(x) ≤ Dε(x0) + d(x, x0);

this is becauseB(x;Dε(x0)−d(x, x0)) ⊆ B(x0;Dε(x0)) ⊆ B(x;Dε(x0)+d(x, x0)).

Therefore, |Dε(x) − Dε(x0)| ≤ d(x, x0) → 0 as x → x0. Hence, Dε is
continuous on X. If X is compact, then Dε obtains its minimum, positive
value on X; call that value δX . Then for any positive δ < δX , we have that
δ < Dε(x) for all x ∈ X, meaning that Φ is (δ, ε)-localized at every x ∈ X.
This precisely means that Φ is uniformly (δ, ε)-localized on X.

6. Graphs of Transfunctions

We introduce a concept analogous to the graph of a function and prove
three theorems that shed some light on the nature of localized transfunctions.
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Definition 21. Let Φ : X  Y be a transfunction, and let Γ ⊆ X × Y
be measurable with respect to the product σ-algebra. We say that Γ carries Φ,
denoted as Φ ⊏ Γ, if for every measurable rectangle A×B

(A×B) ∩ Γ = ∅ implies Φ(A) ⊏ Bc.

Similar to how carriers of a measure describe its support, the carriers of a
transfunction describe its graph. This is a generalization of the concept of a
graph of a function, as indicated by the following theorem.

Proposition 22. For every measurable function f : X → Y the graph of

f carries f#, that is,
f# ⊏ {(x, f(x)) : x ∈ X}.

Proof. If (A× B) ∩ {(x, f(x)) : x ∈ X} = ∅, then A ∩ f−1(B) = ∅, so for
every µ ⊏ A,

f#(µ)(B) = µ(f−1(B)) = µ(A ∩ f−1(B)) = 0.

We also have the reverse situation: a subset of X×Y can generate a carried
transfunction.

Proposition 23. Let (X,ΣX) be a measurable space and let (Y,ΣY , λ)
be a finite measure space. If Γ ⊆ X ×Y is a measurable set with respect to the

product σ-algebra, then

Φ(µ)(B) = (µ × λ)(Γ ∩ (X ×B))

defines a strongly σ-additive transfunction from X to Y such that Φ ⊏ Γ.

Proof. If U1, U2, · · · ∈ ΣY are disjoint, then

Φ(µ)(∪∞
n=1Un) = (µ× λ)(Γ ∩ (X × ∪∞

n=1Un))

= (µ× λ)(Γ ∩ ∪∞
n=1(X × Un)) = (µ × λ)(∪∞

n=1(Γ ∩ (X × Un)))

=

∞
∑

n=1

(µ× λ)(Γ ∩ (X × Un)) =

∞
∑

n=1

Φ(µ)(Un),

so Φ(µ) is a measure on Y . Strong σ-additivity of Φ follows from the equality
(
∑∞

i=1 µi)× λ =
∑∞

i=1(µi × λ). Moreover, if (A×B) ∩ Γ = ∅ and µ ⊏ A, then

Φ(µ)(B) = (µ× λ)(Γ ∩ (X ×B)) = (µ× λ)(Γ ∩ (A×B)) = 0.
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Some localized transfunctions which are “close” to measurable functions
turn out to be carried by what one might call “fat graphs”. And if a transfunc-
tion has a “fat continuous graph”, then it is localized. The following proposition
makes these claims precise.

Proposition 24. Let f : X → Y be measurable. If Φ is weakly σ-additive
and ε-localized on X via f , then

Φ ⊏ Γ :=
⋃

x∈X

({x} ×B(f(x), ε)) .

If f is continuous and Φ ⊏ Γ, then Φ is localized on X via f with EΦ ≤ ε.

Proof. If Φ is weakly σ-additive and ε-localized on X via f , then for each
x ∈ X there is a δx > 0 such that Φ is (δx, ε)-localized at (x, f(x)). If (A ×
B) ∩ Γ = ∅, then B ∩

(
⋃

a∈AB(f(a), ε)
)

= ∅ and thus
⋃

a∈A B(f(a), ε) ⊆ Bc.
Note that {B(a; δa) : a ∈ A} is an open cover of A with a countable subcover
{B(an; δn) : n ∈ N}, where δn = δan . Let An = B(an; δn). Since Φ(An) ⊏ Bc

for each n ∈ N, we have Φ(∪∞
n=1An) ⊏ Bc, by Proposition 3. It then follows

from A ⊆ ∪∞
n=1An that Φ(A) ⊏ Bc, again by Proposition 3.

Now assume that f is continuous and Φ ⊏ Γ. Let x ∈ X and n ∈ N be
arbitrary. Then there exists a δ such that f(B(x; δ)) ⊆ B(f(x); 2−n) and it
follows by definition of Γ and by our previous argument that

B(x; δ) ×B(f(x); ε+ 2−n)c ∩ Γ = ∅.

Since Φ ⊏ Γ, it follows that Φ(B(x; δ)) ⊏ B(f(x); ε+2−n), resulting in Φ being
localized on X via f . Moreover EΦ(x) ≤ ε + 2−n for all x ∈ X and n ∈ N.
Since x and n were arbitrary, we have EΦ ≤ ε.
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