NABLA INTEGRAL FOR FUZZY FUNCTIONS
ON TIME SCALES

Abstract

In this paper, we define fuzzy nabla integrals for fuzzy functions on time scales and obtain some of its fundamental properties and also we establish the relationship between nabla differentiation and integration.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 5
Year: 2018

DOI: 10.12732/ijam.v31i5.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Intro duction with Applications, Birkhauser, Boston (2001).
  2. [2] O.S. Fard, T.A. Bidgoli, Calculus of fuzzy functions on time scales (I), Soft Computing, 19, No 2 (2015), 293-305.
  3. [3] G.S. Guseinov, Integration on time scales, Journal of Mathematical Analysis and Applications 285 (2003), 107-127.
  4. [4] M. Hukahara, Integration des applications measurables dont la valeur est. un compact convexe, Funkcialaj Ekvacioj, 10 (1967), 205-223.
  5. [5] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.
  6. [6] V. Lakshmikantham, R.N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis (2003).
  7. [7] R. Leelavathi, G. Suresh Kumar, M.S.N. Murty, Nabla Hukuhara differentiability for fuzzy functions on time scales, Communicated.
  8. [8] R. Leelavathi, G. Suresh Kumar, M.S.N. Murty, Second type Nabla Hukuhara differentiability for fuzzy functions on time scales, Communicated.
  9. [9] C.H. Vasavi, G. Suresh Kumar, M.S.N. Murty, Fuzzy Hukahara delta differential and applications to fuzzy dynamic equations on time scales, Journal of Uncertain Systems, 10, No 1 (2016), 163-180.
  10. [10] C.H. Vasavi, G. Suresh Kumar, M.S.N. Murty, Fuzzy dynamic equations on time scales under second type Hukuhara delta derivative, International Journal of Chemical Sciences, 14, No 1 ( 2016), 49-66.
  11. [11] C.H. Vasavi, G. Suresh Kumar, M.S.N. Murty, Generalized differentiability and integrability for fuzzy set-valued functions on time scales, Soft Computing, 20 (2016), 1093-1104.