ON THE SYMMETRIC BLOCK DESIGN WITH PARAMETERS
(231,70,21) ADMITTING A GROUP OF ORDER 23
Menderes Gashi
Department of Mathematics
Faculty of Mathematics and Natural Sciences
University of Prishtina
Avenue Mother Teresa 5, 10000 Prishtina, KOSOVA
In this paper we have proved that up to isomorphism there are at least eighty-six orbit structures for a putative symmetric block design D with parameters (231,70,21), admitting a group G of order 23.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M. Aschbacher, On collineation groups of symmetric block designs, J. Comb. Theory Ser. A, 11 (1971), 272-281.
[2] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Bibliographisches Institut, Mannheim-Wien-Z¨urich (1999).
[3] A. Beutelspacher, Einfuhrung in die endliche Geometrie I, Bibliographisches Institut, Mannheim-Wien-Zurich (1985).
[4] V. Cepulic, On symmetric block designs (40, 13, 4) with automorphisms of order 5, Discrete Math., 28, No 1-3 (1994), 45-60.
[5] D. Crnkovic, Some new Menon designs with parameters (196,91,42), Mathematical Communications, 10, No 2 (2005), 169-175.
[6] R. Gjergji, On the symmetric block design with parameters (153, 57, 21), Le Matematiche, 64, No 1 (2009), 147-159.
[7] M. Gashi, A construction of a symmetric design with parameters (195,97,48) with help of Frobenius group of order 4656, International Mathematical Forum, 5, No 8 (2010), 383-388.
[8] Z. Janko and Tran van Trung, Construction of a new symmetric block design for (78, 22, 6) with help of tactical decompositions, J. Comb. Theory, Ser. A, 40 (1995), 451-455.
[9] Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Combinatorics, 90 (1992), 275-277.
[10] C.W.H. Lam, The search for a finite projective plane of order 10, Amer. Math. Monthly, 98 (1991), 305-318.
[11] E. Lander, Symmetric Designs: An Algebraic Approach, Cambridge University Press (1983).