International Journal of Applied Mathematics

Volume 31 No. 3 2018, 371-379

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v31i3.6

IDEALS IN SEMIRING WITH INVOLUTION

P. Dheena¹, B. Elavarasan² §, K. Porselvi²

¹Department of Mathematics

Annamalai University

Annamalainagar, 608002, INDIA

²Department of Mathematics

Karunya University

Coimbatore, 641 114, INDIA

Abstract: In this paper, we study the notion of *-prime ideal in semiring with involution and shown that if M is a non-void *-m-system in a semiring with involution and if I is a *-ideal of R with $I \cap M = \phi$, then there exists a *-prime ideal P of R such that $I \subseteq P$ and $P \cap M = \phi$. We also introduce the notion of *-k-prime ideal and we have shown that if P is a *-k-ideal of a semiring R with involution, then P is semiprime if and only if P is *-k-prime.

AMS Subject Classification: 16Y60

Key Words: semiring, involution, prime ideals, m-system and *-m-system

1. Introduction

The concept of semirings was introduced by H.S. Vandiver in 1935, and it has been studied by several authors. Throughout this paper R denotes a semiring.

A semiring R is a non-empty set R together with two binary operation + and . such that:

i) < R, +> is a commutative monoid with identity denoted by 0_R or simply 0,

Received: March 23, 2018

© 2018 Academic Publications

§Correspondence author

- ii) $\langle R, . \rangle$ is a semigroup,
- iii) For every $r, s, t \in R$, r(s+t) = rs + rt and (s+t)r = sr + tr,
- iv) For every $r \in R$, r0 = 0r = 0.

Recall from [3] that a semiring with involution is an algebra $R = \langle R, +, ., * \rangle$ such that $\langle R, +, . \rangle$ is a semiring, and the following identities are satisfied $(a+b)^* = a^* + b^*$; $(ab)^* = b^*a^*$; $(a^*)^* = a$.

For any nonempty set S, we define $S^* = \{s^* : s \in S\}$. Observe that involution of every non-zero element is non-zero. A non-empty subset I of a semiring R is called a left (resp. right) ideal of R if $a+b\in I$, $ra\in I$ (resp. $ar\in I$) for all $a,\ b\in I$ and for all $r\in R$. If I is both left and right ideal of R, then I is called an ideal of R. Following [2], we say that an ideal I of I is a *-ideal of I is an ideal of I is an ideal of I is an ideal of I is said to be prime if whenever I and I is a *-ideal of I is an ideal of I is said to be prime if whenever I is a *-ideal I of I is an ideal I is said to be *-prime if whenever I is a prime and *-ideal I of I is a *-prime ideal of I of I is a prime and *-ideal of I is a *-prime ideal of I of I is not prime.

Example 1.1. Consider the ring Z_6 and commutative semiring B = B(3,2) (F.E. Alarcon and D. Polkoska [1]).

Let $R = Z_6 \oplus Z_6 \oplus B$ be a semiring. Define *-on R via $(a_1, a_2, b_1)^* = (a_2, a_1, b_1)$. Let $A = \{0, 3\}$. Then P = (A, A, B) is a *-prime ideal but not a prime ideal, since if $I = \{0, 2, 4\}$ and if B = (I, 0, 0) and C = (0, I, 0), then $BC \subseteq P$ but neither B nor C is included in P and hence P is not prime.

But the notion of *-semiprime ideal and semiprime ideal are coincide. Indeed, if I is a *-semiprime ideal of R and J is an ideal of R with $J^2 \subseteq I$. Then $(J^*)^2 \subseteq I$ and $(J+J^*)^2 = J^2 + JJ^* + J^*J + (J^*)^2 \subseteq J+I$ which imply $(J+J^*)^4 \subseteq I$, so $J \subseteq J+J^* \subseteq I$.

In 1956, M. Henriksen [4] defined a more restricted class of ideals in semirings, which he called k-ideal. A left (resp. right) ideal I of R is called left (resp. right) k-ideal if $a \in I$ and $x \in R$ and if $a + x \in I$, then $x \in I$. If I is both left and right k-ideal of R, then I is k-ideal of R. Clearly intersection of k-ideals of R is again k-ideal of R and I is a k-ideal of R if and only if I^* is a k-ideal of R. A *-k-ideal I is a k-ideal and $I^* \subseteq I$. If I is a k-ideal of R, then $I \cap I^*$ is a *-k-ideal of R. For subsets A, B of R, we denote $(A : B)_I = \{r \in R/rB \subseteq A\}$ and $(A : B)_r = \{r \in R/Br \subseteq A\}$. For

any $a \in R$, < a > the principle ideal of R generated by a. One can easily prove that $< a >= \{na + sa + at + \sum_i s_i at_i / n \in N^+, s, t, s_i, t_i \in R\}$ and $< a^* >= < a >^*$.

2. Main Results

Lemma 2.1. Let R be a semiring.

- i) If A and B are left (resp. right) ideals of R, then $(A : B)_l$ (resp. $(A : B)_r$) is an ideal of R.
- ii) If A and B are left (resp. right)- k-ideal of R, then $(A : B)_l$ (resp. $(A : B)_r$) is a k-ideal of R.
- **Lemma 2.2.** Let R be a semiring with involution and let P be a *-ideal of R. Then P is a *-prime ideal of R if and only if whenever $AB \subseteq P$, we have $A \subseteq P$ or $B \subseteq P$ with either A or B is a *-ideal.
- *Proof.* Let P be a *-prime ideal of R. Without loss of generality, let us assume that A is an ideal of R and B is a *-ideal of R such that $AB \subseteq P$. Then $BA^* \subseteq P$ and $(A^*B)^2 = A^*BA^*B \subseteq P$ which imply $A^*B \subseteq P$. Thus $(A+A^*)B \subseteq P$. By assumption, we have $(A+A^*) \subseteq P$ or $B \subseteq P$. Hence $A \subseteq P$ or $B \subseteq P$. The converse is obvious.

Theorem 2.3. Let R be a semiring with involution and P be a *-ideal of R. Then the following conditions are equivalent:

- (i) P is a *-prime ideal.
- (ii) If $a, b \in R$ such that $aRb \subseteq P$; $a^*Rb \subseteq P$, then $a \in P$ or $b \in P$.
- (iii) If < a > and < b > are principal ideals of R such that $< a >< b > \subseteq P$; $< a^* >< b > \subseteq P$, then $a \in P$ or $b \in P$.
- (iv) If U and V are right ideals in R such that $UV \subseteq P$; $U^*V \subseteq P$, then $U \subseteq P$ or $V \subseteq P$.
- (v) If U and V are left ideals in R such that $UV \subseteq P$; $U^*V \subseteq P$, then $U \subseteq P$ or $V \subseteq P$.
- *Proof.* (i) \Rightarrow (ii) Suppose $aRb \subseteq P$ and $a^*Rb \subseteq P$. By Lemma 2.1, we have $< a > R < b > \subseteq P$ and $< a^* > R < b > \subseteq P$. Then $R(< a > + < a >^*)RR < b > R \subseteq R < a > R < b > R + R < a^* > R < b > R \subseteq P$. By Lemma 2.2, we have $R(< a > + < a^* >)R \subseteq P$ or $R < b > R \subseteq P$.

If $R(\langle a \rangle + \langle a^* \rangle)R \subseteq P$, then $(\langle a \rangle + \langle a^* \rangle)^3 \subseteq P$. Hence $a \in P$.

Otherwise $R < b > R \subseteq P$. Then $< b >^3 \subseteq P$ implies $b \in < b > \subset P$.

- $(ii) \Rightarrow (iii)$ It is obvious.
- $(iii) \Rightarrow (v)$ Let U and V be left ideals of R such that $UV \subseteq P$ and $U^*V \subseteq P$. Suppose $U \nsubseteq P$. Then there exists $u \in U$ such that $u \notin P$. Let $v \in V$. Then $< u >< v >\subseteq UV + RUV \subseteq P$ and $< u^* >< v >\subseteq U^*V + RU^*V \subseteq P$. By assumption, we have $< u >\subseteq P$ or $< v >\subseteq P$, but $u \notin P$. Hence $V \subseteq P$.

$$(v) \Rightarrow (i)$$
 It is clear.

A non-empty set M of elements of a semiring R is said to be m-system if $a,b \in M$, there exists $x \in R$ such that $axb \in M$. A non-empty set M of elements of a semiring R is said to *-m-system if $a,b \in M$, there exists $x \in R$ such that $axb \in M$ or $a^*xb \in M$. Obviously every m-system is a *-m-system. Also P is a *-m-system ideal if and only if its complement is a *-m-system.

The following example shows that there exists a *-m-system of R that is not an m-system of R.

Example 2.4. Let R be a semiring of non-negative integers where $a+b=max\{a, b\}$ and $ab=min\{a, b\}$. Let Z_6 be the ring of integer of modulo 6. Then $S=Z_6\oplus Z_6\oplus R\oplus R$ is a semiring. Define *-on R via $(a_1, a_2, b_1, b_2)^*=(a_2, a_1, b_2, b_1)$.

Let $M = \{(i, j, m, n) | i \neq j; i, j \neq 0; m, n < 3\}$. Clearly M is a *-m-system but not a m-system because $(2, 3, 1, 2)x(3, 2, 1, 2) \notin M$ for all $x \in S$.

Theorem 2.5. Let M be a non-void *-m-system in R and I be a *-ideal of R with $I \cap M = \phi$. Then I is contained in a *-prime ideal $P \neq R$ with $P \cap M = \phi$.

Proof. Let $A = \{J \mid J \text{ is } a * -ideal \text{ of } R \text{ with } I \subseteq J \text{ and } J \cap M = \phi\}$. Clearly $A \neq \phi$. By Zorn's lemma, A contains a maximal element (say) P with $P \subseteq I$ and $P \cap M = \phi$. Let A, B be *-ideals of R such that $AB \subseteq P$. Suppose $A \nsubseteq P$ and $B \nsubseteq P$. Then there exists $a \in A$ and $b \in B$ such that $a, b \notin P$. Now $P \subset P + (< a > + < a >^*)$ and $P \subset P + (< b > + < b >^*)$ which gives $(P + < a > + < a >^*) \cap M \neq \phi$ and $(P + < b > + < b >^*) \cap M \neq \phi$. Then there exists $x \in (P + < a > + < a >^*) \cap M$ and $y \in (P + < b > + < b >^*) \cap M$ such that $xty \in M$ or $x^*ty \in M$ for some $t \in R$. Clearly $xty \in (P + < a > + < a >^*)(P + < b > + < b >^*)$. Now $(P + < a > + < a >^*)(P + < b > + < b >^*)$ and $x^*ty \in (P + < b > + < b >^*) \subseteq P + < a > < b > + < a >< b >^* + < a >^* < b > + < a >^*$ Then

 $P \cap M \neq \phi$, a contradiction. Hence P is a *-prime ideal of R contains I.

3. *-k-Prime Ideal

In this section, we continue our investigation of interrelations between various types of ideals in semiring with involution. Also, we introduce the notions of *-k-prime and $*-m_k$ -system.

From [7], if I is any additive subsemigroup of R, then $\overline{I} = \{a \in R \mid a+x \in I\}$ I for some $x \in I$ is called k-closure of I. Observe that $I \subseteq \overline{I}$, $\overline{I^*} = \overline{I}^*$ and $\overline{\overline{I}} = \overline{I}$. It is easy to verify that if I is an ideal of R, then I is k-ideal if and only if $I = \overline{I}$. If I is an ideal of R, then \overline{I} is an ideal of R. Observe that $\overline{\langle a \rangle}$ is a principal k-ideal generated by a. Following [5], an ideal P is said to be k-prime if whenever A, B are k-ideals of R such that $AB \subseteq P$, then $A \subseteq P$ or $B \subseteq P$. A *-ideal P of R is said to be *-k-prime if whenever A, B are *-k-ideals of R such that $AB \subseteq P$, then $A \subseteq P$ or $B \subseteq P$. From [5], a non-empty set M of elements of a semiring R is said to be m_k -system if $a, b \in M$, there exists $x \in \langle a \rangle$ and $y \in \overline{\langle b \rangle}$ such that $xy \in M$. A non-empty set M of elements of a semiring R is said to be *-m_k-system if $a,b \in M$, there exists $x \in \overline{\langle a \rangle + \langle a^* \rangle}$ and $y \in \overline{\langle b \rangle + \langle b^* \rangle}$ such that $xy \in M$ or $x^*y \in M$. Observe that every m_k -system is a *- m_k -system. In Example 2.4 M is a *- m_k -system not an m_k system. It is easy to see that if P is a *-ideal in R, then P is *-k-prime if and only if R/P is $*-m_k$ -system. Also if P is an ideal of R, then P is k-prime if and only if R/P is an m_k -system. Let I be a additive subsemigroup of R and let $L(I) = \{x \in I \mid Rx \subseteq I\}$ and $H(I) = \{y \in L(I) \mid yR \subseteq L(I)\}$. Clearly L(I)is a left ideal of R.

Lemma 3.1. Let R be a semiring. If I is any additive subsemigroup of R, then H(I) is the (unique) largest ideal of R contained in I.

Proof. Clearly $H(I) \subseteq I$. From [10, Proposition 4], we have H(I) is the largest ideal of R contained in I.

It is well-known [7] that if I is an ideal of R, then \overline{I} is the smallest k-ideal containing I.

Lemma 3.2. Let R be a semiring. If I is a additive subsemigroup of R with $I = \overline{I}$, then I is an k-ideal of R or H(I) is a k-ideal of R and it is the largest k-ideal contained in I.

Proof. By Lemma 3.1, we have H(I) is the largest ideal of R contained in I. Clearly $H(I) \subseteq \overline{H(I)}$ and $\overline{H(I)}$ is an ideal of R. Let $x \in \overline{H(I)}$. Then $x+h \in H(I)$ for some $h \in H(I)$. Since $H(\underline{I}) \subseteq I$, we have $x+h \in I$ for some $h \in I$. Since $I = \overline{I}$, we have $x \in I$. Thus $\overline{H(I)} \subseteq I$. By Lemma 3.1, we have $\overline{H(I)} = I$ or $\overline{H(I)} = \overline{H(I)}$. Hence I is a k-ideal of R or $\overline{H(I)} = I$ or $\overline{H(I)$

Theorem 3.3. Let R be a semiring and let P be a k-ideal of R. Then P is a prime ideal if and only if P is a k-prime ideal.

Proof. If P is a prime then P is k-prime. Let A and B be ideals of R such that $AB \subseteq P$. From Lemma 2.1, we have $\overline{A} \ \overline{B} \subseteq P$. Then by assumption, we have $A \subseteq P$ or $B \subseteq P$. Hence P is a prime ideal. \square

Theorem 3.4. Let R be a semiring with involution and P be a *-k-ideal of R. Then P is *-prime if and only if P is *-k-prime.

Theorem 3.5. Let R be a semiring with involution and let P be a *-k-ideal of R. Then P is semiprime if and only if P is *-k-semiprime.

Proof. If P is a semiprime ideal, then clearly P is *-k-semiprime.

Conversely, let P be a *-k-semiprime ideal, and let J be any ideal of R with $J^2 \subseteq P$. Also $(J^*)^2 \subseteq P$. Then $(J+J^*)^4 \subseteq P$. Since $(P:(J+J^*)^2)_l$ and $(P:(J+J^*)^2)_r$ are k-ideals of R, we have $(J+J^*)^2 \subseteq P$. By assumption, we have $(J+J^*)^2 \subseteq P$. Then $(J+J^*)^2 \subseteq P$. Again by using $(P:(J+J^*))_l$ and $(P:(J+J^*))_r$, we have $(J+J^*)^2 \subseteq P$. Then $J+J^* \subseteq P$. Thus $J \subseteq P$. Hence P is a semiprime ideal.

Lemma 3.6. Let R be a semiring with involution. If P is a k-prime and *-ideal of R, then P is *-k-prime.

The converse of Lemma 3.6 is not true, in general as the following example shows.

Example 3.7. Consider the ring $A = Z_4$ of modulo 4 and semiring B = B(4,2) (F.E. Alarcon and D. Polkoska [5]).

	0					0	1	2	3
0	0	1	2	3				0	
1	1	2	3	2				2	
2	2	3	2	3	2	0	2	2	2
3	3	2	3	2	3	0	3	2	3

Here $R = A \oplus A \oplus B \oplus B$ is a semiring. Define *-on R via $(a_1, a_2, b_1, b_2)^* = (a_2, a_1, b_2, b_1)$. Let $A_1 = \{0, 2\}$, $P = (A, A, A_1, A_1)$, I = (A, A, B, 0) and J = (A, A, 0, B). Then P is a *-k-prime ideal of R but not a k-prime ideal because of $IJ \subseteq P$ but neither $I \subseteq P$ nor $J \subseteq P$.

Theorem 3.8. Let R be a semiring with involution and let P be a *-k-ideal of R. Then P is a *-k-prime ideal if and only if whenever $AB \subseteq P$, we have $A \subseteq P$ or $B \subseteq P$ with either A or B is a *-k-ideal of R.

Proof. Let P be a *-k-prime ideal of R. Without loss of generality, let us assume that A is a *-k-ideal of R and B is an ideal of R and $AB \subseteq P$. Then $B^*A \subseteq P$. Thus $(AB^*)^2 \subseteq P$. By Theorem 3.5, we have $AB^* \subseteq P$. Then $A(B+B^*) \subseteq P$. Since $(P:A)_r$ is a k-ideal of R, we have $A(B+B^*) \subseteq P$. By assumption, we have $A \subseteq P$ or $(B+B^*) \subseteq P$. Hence $A \subseteq P$ or $B \subseteq P$. Converse is clear.

Theorem 3.9. Let Q be a *-ideal of a semiring R with involution and let M be a *- m_k -system of R such that $\overline{Q} \cap M = \phi$. Then there exists a *-prime ideal $P \neq R$ such that $Q \subseteq P$ with $\overline{P} \cap M = \phi$.

Proof. Let $A = \{J \mid J \text{ is } *-ideal \text{ of } R \text{ such that } Q \subseteq J \text{ and } \overline{J} \cap M = \phi \}$. Clearly $A \neq \phi$. By Zorn's Lemma, A contains a maximal element (say) P with $Q \subseteq P$ and $\overline{P} \cap M = \phi$. Let A and B be *-ideals of R such that $AB \subseteq P$. Suppose $A \nsubseteq P$ and $B \nsubseteq P$. Then there exists $a \in A$ and $b \in B$ with $a, b \notin P$. Thus $P \subset P+ < a > + < a^* >$ and $P \subset P+ < b > + < b^* >$. By maximality of P, we have $\overline{P+ < a > + < a^* > \cap M \neq \phi}$ and $\overline{P+ < b > + < b^* > \cap M \neq \phi}$. Then there exists $x \in \overline{P+ < a > + < a^* >}$ and $y \in \overline{P+ < b > + < b^* >}$ such that $x_1y_1 \in M$ or $x_1^*y_1 \in M$ for some $x_1 \in \overline{< x > + < x^* >}$ and $y_1 \in \overline{< y > + < y^* >}$. Since $x \in \overline{P+ < a > + < a^* >}$ and $y \in \overline{P+ < b > + < b^* >}$, we have

$$x_1y_1 \in (\overline{P} + \langle a \rangle + \langle a^* \rangle)(\overline{P} + \langle b \rangle + \langle b^* \rangle)$$

and

$$x_1^*y_1 \in (\overline{P+ < a > + < a^* >})(\overline{P+ < b > + < b^* >}).$$

Let $s \in (\overline{P+ < a > + < a^* >})(\overline{P+ < b > + < b^* >})$. Then $s = \sum_{i=1}^n t_i t_i'$ for some $t_i \in \overline{P+ < a > + < a^* >}$ and $t_i' \in \overline{P+ < b > + < b^* >}$. Thus $t_i + x_i \in (P+ < a > + < a^* >)$ and $t_i' + x_i' \in (P+ < b > + < b^* >)$ for $x_i \in (P+ < a > + < a^* >)$ and $x_i' \in (P+ < b > + < b^* >)$ for each i. Clearly $(P+ < a > + < a^* >)(P+ < b > + < b^* >) \subseteq P$ and $x_i x_i' \in P \subseteq \overline{P}$. Now Consider $x_i t_i' + x_i x_i' = x_i (t_i' + x_i') \in (P+ < a > + < a^* >)(P+ < b > + < b^* >) \subseteq P$. Then $x_i t_i' \in \overline{P}$ since $x_i x_i' \in P$. Similarly, we can get $t_i x_i' \in \overline{P}$.

Since \overline{P} is an ideal of R, we have $t_i x_i' + x_i t_i' + x_i x_i' \in \overline{P}$. Now $t_i t_i' + x_i t_i' + t_i x_i' + x_i x_i' = (t_i + x_i)(t_i' + x_i') \in (P + \langle a \rangle + \langle a^* \rangle)(P + \langle b \rangle + \langle b^* \rangle) \subseteq P \subseteq \overline{P}$. Then $t_i t_i' \in \overline{P} = \overline{P}$ for each i. Thus $s \in \overline{P}$. Hence $(\overline{P} + \langle a \rangle + \langle a^* \rangle)(\overline{P} + \langle b \rangle + \langle b^* \rangle) \subseteq \overline{P}$. So $x_1 y_1$ and $x_1^* y_1 \in \overline{P}$, a contradicts to $\overline{P} \cap M = \phi$. Hence P is a *-prime ideal of R contains Q.

Theorem 3.10. Let Q be a *-ideal of semiring with involution of R, and let M be a *- m_k -system of R such that $\overline{Q} \cap M = \phi$. Then there exists a *-k-prime ideal $P \neq R$ such that $Q \subseteq P$ with $\overline{P} \cap M = \phi$.

References

- [1] F.E. Alarcon and D. Polkowska, Fully prime semirings, *Kyungpook Math. J.*, **40** (2000), 239-245.
- [2] G.F. Birkenmeier, N.J. Gronewald and H.E. Heatherly, Minimal and maximal ideals in rings with involution, *Contributions to Algebra and Geomentry*, **38**, No 2 (1997), 217-225.
- [3] I. Dolinka, Minimal varieties of semirings with involution, Algebra Universe, 44 (2000), 143-151.
- [4] M. Henriksen, Ideals in semirings with commutative addition, *Amer. Math. Soc. Notices*, 6 (1958), 321.
- [5] P. Nandakumar, On regular semiring, weakly π -commutative near-ring, semi-near-ring and their generalizations, *Ph.D. Thesis*, Annamalai University, 2002.
- [6] H.J. le Roux, A note on prime and semiprime bi-ideals, Kyungpook Math. J., 35 (1995), 83-85.
- [7] M.K. Sen, M.R. Adhikari, On k-ideals of semirings, Internet. J. Math. & Math. Sci., 15, No 2 (1992), 347-350.