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Abstract: In this paper, we study the notion of ∗-prime ideal in semiring
with involution and shown that if M is a non-void ∗-m-system in a semiring
with involution and if I is a ∗-ideal of R with I ∩ M = φ, then there exists
a ∗-prime ideal P of R such that I ⊆ P and P ∩ M = φ. We also introduce
the notion of ∗-k-prime ideal and we have shown that if P is a ∗-k-ideal of a
semiring R with involution, then P is semiprime if and only if P is ∗-k-prime.
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1. Introduction

The concept of semirings was introduced by H.S. Vandiver in 1935, and it has
been studied by several authors. Throughout this paper R denotes a semiring.

A semiring R is a non-empty set R together with two binary operation +
and . such that:

i) < R,+ > is a commutative monoid with identity denoted by 0R or simply
0,
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ii) < R, . > is a semigroup,
iii) For every r, s, t ∈ R, r(s+ t) = rs+ rt and (s + t)r = sr + tr,
iv) For every r ∈ R, r0 = 0r = 0.

Recall from [3] that a semiring with involution is an algebra R =< R,+, ., ∗ >
such that < R, +, . > is a semiring, and the following identities are satisfied
(a+ b)∗ = a∗ + b∗; (ab)∗ = b∗a∗; (a∗)∗ = a.

For any nonempty set S, we define S∗ = {s∗ : s ∈ S}. Observe that involu-
tion of every non-zero element is non-zero. A non-empty subset I of a semiring
R is called a left (resp. right) ideal of R if a + b ∈ I, ra ∈ I (resp. ar ∈ I)
for all a, b ∈ I and for all r ∈ R. If I is both left and right ideal of R, then
I is called an ideal of R. Following [2], we say that an ideal I of R is said to
be ∗-ideal if I∗ ⊆ I. Clearly if I is ∗-one sided ideal of R, then I is a ∗-ideal of
R. Observe that if K is an ideal of R, then K∗K, KK∗, K ∩K∗ and K +K∗

are ∗-ideals of R and K∗ is also an ideal of R. An ideal P is said to be prime
if whenever A,B are ideals of R such that AB ⊆ P, then A ⊆ P or B ⊆ P.
Following [2], we say that a ∗-ideal P of R is said to be ∗-prime if whenever
A, B are ∗-ideals of R such that AB ⊆ P, then A ⊆ P or B ⊆ P. Observe that
if P is a prime and ∗-ideal of R, then P is a ∗-prime ideal of R. The following
example shows that there exists a ∗-prime ideal of R which is not prime.

Example 1.1. Consider the ring Z6 and commutative semiring B =
B(3, 2) (F.E. Alarcon and D. Polkoska [1]).

Let R = Z6 ⊕ Z6 ⊕ B be a semiring. Define ∗-on R via (a1, a2, b1)
∗ =

(a2, a1, b1). Let A = {0, 3}. Then P = (A,A,B) is a ∗-prime ideal but not a
prime ideal, since if I = {0, 2, 4} and if B = (I, 0, 0) and C = (0, I, 0), then
BC ⊆ P but neither B nor C is included in P and hence P is not prime.

But the notion of ∗-semiprime ideal and semiprime ideal are coincide. In-
deed, if I is a ∗-semiprime ideal of R and J is an ideal of R with J2 ⊆ I.
Then (J∗)2 ⊆ I and (J + J∗)2 = J2 + JJ∗ + J∗J + (J∗)2 ⊆ J + I which imply
(J + J∗)4 ⊆ I, so J ⊆ J + J∗ ⊆ I.

In 1956, M. Henriksen [4] defined a more restricted class of ideals in semir-
ings, which he called k-ideal. A left (resp. right ) ideal I of R is called left
(resp. right) k-ideal if a ∈ I and x ∈ R and if a + x ∈ I, then x ∈ I. If
I is both left and right k-ideal of R, then I is k-ideal of R. Clearly inter-
section of k-ideals of R is again k-ideal of R and I is a k-ideal of R if and
only if I∗ is a k-ideal of R. A ∗-k-ideal I is a k-ideal and I∗ ⊆ I. If I is a
k-ideal of R, then I ∩ I∗ is a ∗-k-ideal of R. For subsets A,B of R, we de-
note (A : B)l = {r ∈ R/rB ⊆ A} and (A : B)r = {r ∈ R/Br ⊆ A}. For
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any a ∈ R, < a > the principle ideal of R generated by a. One can easily
prove that < a >= {na + sa + at +

∑
i
siati/ n ∈ N+, s, t, si, ti ∈ R} and

< a∗ >=< a >∗ .

2. Main Results

Lemma 2.1. Let R be a semiring.
i) If A and B are left (resp. right) ideals of R, then (A : B)l (resp. (A : B)r)

is an ideal of R.
ii) If A and B are left (resp. right)- k-ideal of R, then (A : B)l (resp.

(A : B)r) is a k-ideal of R.

Lemma 2.2. Let R be a semiring with involution and let P be a ∗-ideal
of R. Then P is a ∗-prime ideal of R if and only if whenever AB ⊆ P, we have
A ⊆ P or B ⊆ P with either A or B is a ∗-ideal.

Proof. Let P be a ∗-prime ideal of R. Without loss of generality, let us
assume that A is an ideal of R and B is a ∗-ideal of R such that AB ⊆ P.
Then BA∗ ⊆ P and (A∗B)2 = A∗BA∗B ⊆ P which imply A∗B ⊆ P. Thus
(A+A∗)B ⊆ P. By assumption, we have (A+A∗) ⊆ P or B ⊆ P. Hence A ⊆ P
or B ⊆ P. The converse is obvious.

Theorem 2.3. Let R be a semiring with involution and P be a ∗-ideal of
R. Then the following conditions are equivalent:

(i) P is a ∗-prime ideal.
(ii) If a, b ∈ R such that aRb ⊆ P ; a∗Rb ⊆ P, then a ∈ P or b ∈ P.
(iii) If < a > and < b > are principal ideals of R such that < a >< b >⊆

P ; < a∗ >< b >⊆ P, then a ∈ P or b ∈ P.
(iv) If U and V are right ideals in R such that UV ⊆ P ; U∗V ⊆ P, then

U ⊆ P or V ⊆ P.
(v) If U and V are left ideals in R such that UV ⊆ P ; U∗V ⊆ P, then U ⊆ P

or V ⊆ P.

Proof. (i) ⇒ (ii) Suppose aRb ⊆ P and a∗Rb ⊆ P. By Lemma 2.1, we have
< a > R < b >⊆ P and < a∗ > R < b >⊆ P. Then R(< a > + < a >∗)RR <
b > R ⊆ R < a > R < b > R + R < a∗ > R < b > R ⊆ P. By Lemma 2.2, we
have R(< a > + < a∗ >)R ⊆ P or R < b > R ⊆ P.

If R(< a > + < a∗ >)R ⊆ P, then (< a > + < a∗ >)3 ⊆ P. Hence a ∈ P.
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Otherwise R < b > R ⊆ P. Then < b >3⊆ P implies b ∈< b >⊂ P.

(ii) ⇒ (iii) It is obvious.

(iii) ⇒ (v) Let U and V be left ideals of R such that UV ⊆ P and U∗V ⊆ P.
Suppose U * P. Then there exists u ∈ U such that u /∈ P. Let v ∈ V. Then
< u >< v >⊆ UV + RUV ⊆ P and < u∗ >< v >⊆ U∗V + RU∗V ⊆ P. By
assumption, we have < u >⊆ P or < v >⊆ P, but u /∈ P. Hence V ⊆ P.

(v) ⇒ (i) It is clear.

A non-empty set M of elements of a semiring R is said to be m-system if
a, b ∈ M, there exists x ∈ R such that axb ∈ M. A non-empty set M of elements
of a semiring R is said to ∗-m-system if a, b ∈ M, there exists x ∈ R such that
axb ∈ M or a∗xb ∈ M. Obviously every m-system is a ∗-m-system. Also P is a
∗- prime ideal if and only if its complement is a ∗-m-system.

The following example shows that there exists a ∗-m-system of R that is
not an m-system of R.

Example 2.4. Let R be a semiring of non-negative integers where a+ b =
max{a, b} and ab = min{a, b}. Let Z6 be the ring of integer of modulo 6.
Then S = Z6 ⊕Z6 ⊕R⊕R is a semiring. Define ∗-on R via (a1, a2, b1, b2)

∗ =
(a2, a1, b2, b1).

Let M = {(i, j, m, n)/ i 6= j; i, j 6= 0; m, n < 3}. Clearly M is a
∗-m-system but not a m-system because (2, 3, 1, 2)x(3, 2, 1, 2) /∈ M for all
x ∈ S.

Theorem 2.5. Let M be a non-void ∗-m-system in R and I be a ∗-ideal
of R with I ∩ M = φ. Then I is contained in a ∗-prime ideal P 6= R with
P ∩M = φ.

Proof. Let A = {J / J is a ∗ −ideal of R with I ⊆ J and J ∩M = φ}.
Clearly A 6= φ. By Zorn’s lemma, A contains a maximal element (say) P with
P ⊆ I and P ∩M = φ. Let A,B be ∗-ideals of R such that AB ⊆ P. Suppose
A * P and B * P. Then there exists a ∈ A and b ∈ B such that a, b /∈ P.
Now P ⊂ P + (< a > + < a >∗) and P ⊂ P + (< b > + < b >∗) which gives
(P+ < a > + < a >∗) ∩ M 6= φ and (P+ < b > + < b >∗) ∩M 6= φ. Then
there exists x ∈ (P+ < a > + < a >∗)∩M and y ∈ (P+ < b > + < b∗ >)∩M
such that xty ∈ M or x∗ty ∈ M for some t ∈ R. Clearly xty ∈ (P+ < a > + <
a >∗)(P+ < b > + < b >∗) and x∗ty ∈ (P+ < a > + < a >∗)(P+ < b >
+ < b >∗). Now (P+ < a > + < a >∗)(P+ < b > + < b >∗) ⊆ P+ < a ><
b > + < a >< b >∗ + < a >∗< b > + < a >∗< b >∗⊆ P + AB ⊆ P. Then
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P ∩M 6= φ, a contradiction. Hence P is a ∗-prime ideal of R contains I.

3. ∗-k-Prime Ideal

In this section, we continue our investigation of interrelations between various
types of ideals in semiring with involution. Also, we introduce the notions of
∗-k-prime and ∗-mk-system.

From [7], if I is any additive subsemigroup of R, then I = {a ∈ R / a+x ∈
I for some x ∈ I} is called k-closure of I. Observe that I ⊆ I, I∗ = I

∗
and

I = I. It is easy to verify that if I is an ideal of R, then I is k-ideal if and only
if I = I. If I is an ideal of R, then I is an ideal of R. Observe that < a > is a
principal k-ideal generated by a. Following [5], an ideal P is said to be k-prime
if whenever A,B are k-ideals of R such that AB ⊆ P, then A ⊆ P or B ⊆ P. A
∗-ideal P of R is said to be ∗-k-prime if whenever A, B are ∗-k-ideals of R such
that AB ⊆ P, then A ⊆ P or B ⊆ P. From [5], a non-empty set M of elements
of a semiring R is said to be mk-system if a, b ∈ M, there exists x ∈ < a > and
y ∈ < b > such that xy ∈ M. A non-empty set M of elements of a semiring
R is said to be ∗-mk-system if a, b ∈ M, there exists x ∈ < a > + < a∗ >
and y ∈ < b > + < b∗ > such that xy ∈ M or x∗y ∈ M. Observe that every
mk-system is a ∗-mk-system. In Example 2.4 M is a ∗-mk-system not an mk-
system. It is easy to see that if P is a ∗-ideal in R, then P is ∗-k-prime if and
only if R/P is ∗-mk-system. Also if P is an ideal of R, then P is k-prime if and
only if R/P is an mk-system. Let I be a additive subsemigroup of R and let
L(I) = {x ∈ I / Rx ⊆ I} and H(I) = {y ∈ L(I) / yR ⊆ L(I)}. Clearly L(I)
is a left ideal of R.

Lemma 3.1. Let R be a semiring. If I is any additive subsemigroup of
R, then H(I) is the (unique) largest ideal of R contained in I.

Proof. Clearly H(I) ⊆ I. From [10, Proposition 4], we have H(I) is the
largest ideal of R contained in I.

It is well-known [7] that if I is an ideal of R, then I is the smallest k-ideal
containing I.

Lemma 3.2. Let R be a semiring. If I is a additive subsemigroup of R
with I = I, then I is an k-ideal of R or H(I) is a k-ideal of R and it is the
largest k-ideal contained in I.
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Proof. By Lemma 3.1, we have H(I) is the largest ideal of R contained
in I. Clearly H(I) ⊆ H(I) and H(I) is an ideal of R. Let x ∈ H(I). Then
x+ h ∈ H(I) for some h ∈ H(I). Since H(I) ⊆ I, we have x+ h ∈ I for some
h ∈ I. Since I = I, we have x ∈ I. Thus H(I) ⊆ I. By Lemma 3.1, we have
H(I) = I or H(I) = H(I). Hence I is a k-ideal of R or H(I) is a k-ideal of
R.

Theorem 3.3. Let R be a semiring and let P be a k-ideal of R. Then P
is a prime ideal if and only if P is a k-prime ideal.

Proof. If P is a prime then P is k-prime. Let A and B be ideals of R such
that AB ⊆ P. From Lemma 2.1, we have A B ⊆ P. Then by assumption, we
have A ⊆ P or B ⊆ P. Hence P is a prime ideal.

Theorem 3.4. Let R be a semiring with involution and P be a ∗-k-ideal
of R. Then P is ∗-prime if and only if P is ∗-k-prime.

Theorem 3.5. Let R be a semiring with involution and let P be a ∗-k-
ideal of R. Then P is semiprime if and only if P is ∗-k-semiprime.

Proof. If P is a semiprime ideal, then clearly P is ∗-k-semiprime.

Conversely, let P be a ∗-k-semiprime ideal, and let J be any ideal of R
with J2 ⊆ P. Also (J∗)2 ⊆ P. Then (J + J∗)4 ⊆ P. Since (P : (J + J∗)2)l
and (P : (J + J∗)2)r are k-ideals of R, we have (J + J∗)2 (J + J∗)2 ⊆ P. By
assumption, we have (J + J∗)2 ⊆ P. Then (J + J∗)2 ⊆ P. Again by using
(P : (J + J∗))l and (P : (J + J∗))r, we have (J + J∗)2 ⊆ P. Then J + J∗ ⊆ P.
Thus J ⊆ P. Hence P is a semiprime ideal.

Lemma 3.6. Let R be a semiring with involution. If P is a k-prime and
∗-ideal of R, then P is ∗-k-prime.

The converse of Lemma 3.6 is not true, in general as the following example
shows.

Example 3.7. Consider the ring A = Z4 of modulo 4 and semiring
B = B(4, 2) (F.E. Alarcon and D. Polkoska [5]).
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+ 0 1 2 3

0 0 1 2 3
1 1 2 3 2
2 2 3 2 3
3 3 2 3 2

. 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

Here R = A⊕A⊕B⊕B is a semiring. Define ∗-on R via (a1, a2, b1, b2)
∗ =

(a2, a1, b2, b1). Let A1 = {0, 2}, P = (A,A,A1, A1), I = (A,A,B, 0) and J =
(A,A, 0, B). Then P is a ∗-k-prime ideal of R but not a k-prime ideal because
of IJ ⊆ P but neither I ⊆ P nor J ⊆ P.

Theorem 3.8. Let R be a semiring with involution and let P be a ∗-k-
ideal of R. Then P is a ∗-k-prime ideal if and only if whenever AB ⊆ P, we
have A ⊆ P or B ⊆ P with either A or B is a ∗-k-ideal of R.

Proof. Let P be a ∗-k-prime ideal of R. Without loss of generality, let us
assume that A is a ∗-k-ideal of R and B is an ideal of R and AB ⊆ P. Then
B∗A ⊆ P. Thus (AB∗)2 ⊆ P. By Theorem 3.5, we have AB∗ ⊆ P. Then
A(B + B∗) ⊆ P. Since (P : A)r is a k-ideal of R, we have A(B +B∗) ⊆ P.
By assumption, we have A ⊆ P or (B +B∗) ⊆ P. Hence A ⊆ P or B ⊆ P.
Converse is clear.

Theorem 3.9. Let Q be a ∗-ideal of a semiring R with involution and let
M be a ∗-mk-system of R such that Q ∩M = φ. Then there exists a ∗-prime
ideal P 6= R such that Q ⊆ P with P ∩M = φ.

Proof. Let A = {J / J is ∗−ideal of R such that Q ⊆ J and J ∩M = φ}.
Clearly A 6= φ. By Zorn’s Lemma, A contains a maximal element (say) P with
Q ⊆ P and P ∩ M = φ. Let A and B be ∗-ideals of R such that AB ⊆ P.
Suppose A * P and B * P. Then there exists a ∈ A and b ∈ B with a, b /∈ P.
Thus P ⊂ P+ < a > + < a∗ > and P ⊂ P+ < b > + < b∗ > . By maximality
of P, we have P+ < a > + < a∗ > ∩ M 6= φ and P+ < b > + < b∗ > ∩ M 6=
φ. Then there exists x ∈ P+ < a > + < a∗ > and y ∈ P+ < b > + < b∗ >
such that x1y1 ∈ M or x∗1y1 ∈ M for some x1 ∈ < x > + < x∗ > and y1 ∈
< y > + < y∗ >. Since x ∈ P+ < a > + < a∗ > and y ∈ P+ < b > + < b∗ >,
we have

x1y1 ∈ (P+ < a > + < a∗ >)(P+ < b > + < b∗ >)

and

x∗1y1 ∈ (P+ < a > + < a∗ >)(P+ < b > + < b∗ >).
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Let s ∈ (P+ < a > + < a∗ >)(P+ < b > + < b∗ >). Then s =
∑

n

i=1 tit
′

i

for some ti ∈ P+ < a > + < a∗ > and t
′

i
∈ P+ < b > + < b∗ >. Thus ti + xi ∈

(P+ < a > + < a∗ >) and t
′

i
+ x

′

i
∈ (P+ < b > + < b∗ >) for xi ∈ (P+ <

a > + < a∗ >) and x
′

i
∈ (P+ < b > + < b∗ >) for each i. Clearly (P+ <

a > + < a∗ >)(P+ < b > + < b∗ >) ⊆ P and xix
′

i
∈ P ⊆ P . Now Consider

xit
′

i
+ xix

′

i
= xi(t

′

i
+ x

′

i
) ∈ (P+ < a > + < a∗ >)(P+ < b > + < b∗ >) ⊆ P.

Then xit
′

i
∈ P since xix

′

i
∈ P. Similarly, we can get tix

′

i
∈ P .

Since P is an ideal of R, we have tix
′

i
+ xit

′

i
+ xix

′

i
∈ P . Now tit

′

i
+

xit
′

i
+ tix

′

i
+ xix

′

i
= (ti + xi)(t

′

i
+ x

′

i
) ∈ (P+ < a > + < a∗ >)(P+ < b >

+ < b∗ >) ⊆ P ⊆ P . Then tit
′

i
∈ P = P for each i. Thus s ∈ P . Hence

(P+ < a > + < a∗ >)(P+ < b > + < b∗ >) ⊆ P . So x1y1 and x∗1y1 ∈ P , a
contradicts to P ∩M = φ. Hence P is a ∗-prime ideal of R contains Q.

Theorem 3.10. Let Q be a ∗-ideal of semiring with involution of R,
and let M be a ∗-mk-system of R such that Q ∩ M = φ. Then there exists a
∗-k-prime ideal P 6= R such that Q ⊆ P with P ∩M = φ.
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