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Abstract: In this paper we prove the existence of radial solutions having
a prescribed number of sign change to the p-Laplacian Apu + f(u) = 0 on
exterior domain of the ball of radius R > 0 centered at the origin in RN. The
nonlinearity f is odd and behaves like |u|?~!u when u is large with 1 < p < g+1
and f <0on (0,8), f >0 on (8,00) where 8 > 0. The method is based on a
shooting approach, together with a scaling argument.

AMS Subject Classification: 35J92, 35J66, 35B05, 35A24
Key Words: exterior domain, p-Laplacian, sign changing radial solution,
scaling argument

1. Introduction and Statement Result

In this paper we deal with the existence and multiplicity of classical radial sign-
changing solutions to the Dirichlet boundary problem involving the p-Laplacian

Apu+ f(u) =0 in Q, (1)
u=0 in 09, (2)
| l|im u(z) = 0. (3)

Here Q = {x € R"| |z| > R} is the complement of the ball of radius R > 0 cen-
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tred at the origin with |z| = \/:c% + 22 + ... + 2% is the standard norm of RV,

Also, Ayu is the p-Laplacian of the function v with Aju = div<|Vu|1"_2 Vu).
We will assume henceforth that the function f satisfies the following hy-
potheses:

(H1) f:R — R is odd and locally Lipschitzian,
(H2) f(u) = |u|9'u + g(u) with 1 <p < g+ 1 and

L2 _

ful =00 [ul®
(H3) There exists 8 > 0 such that

f(0) = f(B) =0 where f <0on (0,8), f >0 on (5,0),

(H4) If p > 2 we also assume for some > 0

o1
/ —du = o0,
0 [F(u)lr

where F(u) = [ f(s)ds.

As a consequence of the previous assumptions we have:

(i) F(u) — oo as |u| — co. F' is even and bounded below by some —Fj < 0
on R, i.e.
F(u) > —-Fy YueR. (4)
(i) F is strictly increasing in (3, 00) and decreasing in (0, 3).

(@ii) F has a unique positive zero,y >  and F' < 0 on (0,7), F > 0 on (v, c0).

Remark 1. If 1 < p < 2 it follows from the fact that f is locally Lips-
chitzian the assumption (H4) also holds.

The radial symmetric solutions to (1)-(3) satisfy the problem
!/
(rN*@p(u')) + V) =0 if R <, (5)

u(R)=0 and wu(r)—0 as r — oo, (6)
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where ®,(s) = |s[P~2s. Also ' denotes the derivative with respect to r = |z| >
0,7 € RY and for radial functions as it is usual we shall write u(z) = u(r)
with 7 = |2]. We note that @, is odd and differentiable on R\ {0} with ®},(s) =
(p—1)|s[P~2 and @;1 = ®,/, where p’ the Holder conjugate exponent of p. We
will be interested only in classical solutions of (5)-(6) i.e., u € C*([R,0),R)
and ®,(uv') € CY([R, ), R).

The research of radial solution of elliptic equations with zero Dirichlet
boundary conditions (1)-(3) with the usual Laplace operator (p = 2) has widely
studied by many authors via variational methods when ) is bounded domain
or the whole space R, under different regularity and growth assumptions of
nonlinearity of f, see for instance [1, 2], exploring the symmetry of the problem
(1)-(3) to prove the existence of infinity radial solution by means the Moun-
tain pass theorem. In particular when € is a ball and is f non increasing by an
other argument well-know plane method to prove the existence and multiplicity
of radial solution to this problem, see [4]. However, these arguments are quite
difficult and provide no specific information of qualitative properties. Then it
was an open question as to whether solutions exist with prescribed number of
zeros. Jones and Kiipper in [6] addressed this question using a dynamical sys-
tems approach and an application of the Conley index [6]. In [9] Mcleod, Troy
and Weissler established the existence of sign changing bound state solutions
by using the shooting techniques and a scaling argument when f satisfies ap-
propriate sign conditions and is of subcritical growth. Pudipeddi [11] extended
the previous result for the p-Laplacian where 1 < p < N and = R" using the
same approach when f is locally Lipschitz and odd and behaves like |u|¢~ v for

Np
N —p

Recently on exterior domain, there has been an interest in studying this
question if p = 2 we mention as instances [5, 7]. Here we use the shooting
argument and a “simple” ordinary differential equation proof to establish that
(1)-(3) has an infinite number of radial solutions with a prescribed number of
ZEros.

u sufficiently large with p < ¢+ 1 <

Our paper is organized as follows: in Section 2 we begin to establish some
preliminary results concerning the existence and proprieties of radial solutions.
In Section 3 we show that there are solutions with arbitrarily number large
of zeros by using a scaling argument and finally, we shall prove the following
“Main theorem”:

Theorem 2. Assuming (H1)-(H4) and N > 2. Then for each nonnegative
integer k, there exist two radially symmetric solutions uj and v of problem
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(1)-(3) which have exactly k zeros on (R, o0) such that vj,(R) < 0 < u(R).

2. Preliminaries

To deal with the problem (5)-(6), we will use a shooting method and consider
the initial value problem

(rN_l@p(u')>/ N ) =0 i r> R, (7)

w(R)=0 and u'(R)=a>0. (8)
To emphasize the dependence of the solution to (7) in the shooting parameter

a, we will denote it u,.

Lemma 3. Assume (H1) and (H2) hold. Then (7)-(8) has a unique
solution u, defined on interval [R,o0). Moreover, a — u, and a — u], are
continuous on (0,00).

Proof. Let u be a solution of (7)-(8) and integrating (7) on [R, ], we obtain
Vo, (u) = RN et — / tNLf (u) dt. 9)
R

We rewrite this as

T

u'(r) = (%)k% (ap,l _/R (}%)N_lf(u) dt), (10)

N —1
where k = T Integrating (10) on [R, 7] we obtain
p —

u(r) = /RT (?)kép/ (apfl - /R (}%)N_lf(u) ds) dt.

Let € > 0. Denote C°[R, R + €] the Banach space of real continuous functions
on [R, R + ¢] endowed with the sup norm || ||. Let a,dy > 0 are fixed such that
8o < aP~! and we define the complete metric space by

Bi={wo) e (CRR+d) | u®)=0, v(R)=a"),
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endowed with the distance d(x1,z2) = max(||lur — uzl|,||Jv1 — v2||) where x; =
(uj,v;) for i =1,2.

Denote BS(a) = {(u,v) € E | d((u,v), (o,ap—l)) < 6} the closed ball of
(E,d).

The existence and uniqueness for (7)-(8) result from the study of fixed point
of the application Iy, : (u, ) € E — (u,0) € E where @ and v are defined by

i, )
= [ (F) et
B(r) = a1 — /R (%)N_lf(u) dt.

We will show that I, is a contraction mapping of B§(a) into itself for €, § small
enough.
For all (u,v) € B§(a) and r € [R, R + €] we have

’ p'—
ja(r)] < eflol” " < € (8 + ")
Therefore for € small enough we have
[all < 6.

Furthermore, then

[o(r) —aP™t| < /RT (%)N71|f(u(t))| dt,

_J\fVR((HR)N—l)ga it €0,

where M = sup |f(s)| and for ¢ small enough. Then it follows that |[o —
|s|<do

aP~|| < 4, which implies that (@,9) € B§(a), for ¢ small enough. Now, let
x; = (u4,v;) € B§(a) for i = 1,2, then

d(Fa(xl),Fa(xg)) — max (Hu] A véH)-

For r € [R, R + €] fixed, thanks to the mean value theorem we obtain

Oy (01(r)) = Dy (v2(r) = Dy (w) (v1(r) = v2(r)), (11)
where w = avi(r) + (1 — a)va(r) for some 0 < a < 1 with @, (w) = (p' —
1) [w?’=2. As |Jv; — aP~|| < & < &, then for each i = 1,2 we have

aP™t =g <wi(t) <aPT' 48 VtE[R, R+,
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therefore there exists two constants ¢; = a?~' — 6§y > 0 and ¢y = a?~ ' + 6y > 0
and for all i = 1,2 we see that ¢; < v;(t) < ¢g for all t € [R, R+ ¢€]. Then it
follows that

0 -l <G,

where C), = (p’—l)cIQDL2 if1 <p<2andC, = (10’—1)«:11’,72 if p > 2 and
further from (11) we have

1@y (1) = P (v2) || < Cpl|vr — w2

Therefore
|[in — 2| < eCpllvr — va|. (12)

On the other hand, we see that

} R T\ N-1
5) - el < [ (F) 1) - fu)ld
R
By virtue of (H1), then there exists a constant K > 0 and for each |s| and
|t| < dp we have
[f(s) = F(O)] < Ks — 1.
Since |Ju;|| < § < g for i = 1,2 then it follows that

[v1 — G2l < Ae)||ur — uzl,

K
where A(e) = TR<(1 + %)N - 1). Thus, from (12) we have

d(Fa(acl),Fa(acg)) < max (e Cp, )\(e)) d(xy,x3).

Since A(€) — 0 as € — 0. Thus by the contraction mapping principle it follows
that for e small enough I, has a unique fixed point denoted z, = (ugq,v,) €
Bs$(a) and we have uq,v, € CY([R, R +¢],R). In addition,

ul, = <§>k¢>p/(va) and @, (u,) = <§>N lva.
r r
Then it follows that ®,(u,) € C([R, R +¢],R). Hence for some ¢ > 0, (7)-(8)
has a unique solution u, such that u, and ®,(u,) € CY([R, R+ <], R).
Next, we will show that the solution u, can be extended on [R,+00), we
define the energy of solution to (7)-(8) as

A

E,(r) o + F(ug) Vr>R. (13)
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Differentiating E, and using (7), gives

N -1

E(r) = - |ug|” < 0. (14)

Which implies that E, is non-increasing on [R, +00), so

% + F(Ua) < ?
From (4) we have
1
| < (ap71 —|—p/F0> = M, (15)

Then we have |u,| is uniformly bounded on wherever it is defined, as u,(R) = 0
thus it follows that |ug| is uniformly bounded on wherever it is defined. Hence
the existence on all of [R, +00) follows.

Now, we will show the continuous dependence of solutions on initial condi-
tions. For this let a > 0 and a; — a as j — oo and denote u;(r) = g, (r) for
all j. In the following we shall prove that u; — u, and u}; — ug, as j — oo on
compact subsets of [R, 00).

Indeed, as the sequence (a;) is bounded by some A > 0 and from (15) for
all j, we get

1
W) < (A P R)" = My Ve > R,

Therefore u(r) is uniformly bounded. Next, we will show that u;(r) is uni-
formly bounded.

Suppose by the way of contradiction that there exists a sequence 7; > R
such that |u;(rj)| — oo as j — oo. Since F(u) — oo as |u| — oo, then
F(uj(rj)) — oo as j — 0o. As

Eq,(rj) = Ej(r;) = F(u;i(r;)),

then Fj(r;) — oo as j — oo. Since Ej is non-increasing and (a;) is bounded
then we have

Ej(rj) < Ej(R) = - < = < oo,

This contradict to Ej(rj) — oo as j — oo. Thus there exists M; > 0 and
Ms > 0 for all j such that

luj(r)| < My and  [uf(r)| < My Vr>R.
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This implies that u; and u; are uniformly bounded and equicontinuous. Then
by Arzela-Ascoli’s theorem there exists subsequence still denoted u; such that
uj(r) — u(r) as j — oo uniformly on compact subsets of [R,00). Therefore it
follows from (HI) that f(u;) — f(u) as j — oo uniformly on compact subsets
of [R,00) and since a; — a, then we get

wj(r) :agfl — /RT (%)Nﬁlf(uj(t)) dt
a1 /R () ) at = i),

uniformly on compact subsets of [R, 00). This implies that ®,(w}) — @ (w)
as j — oo uniformly on compact subsets of [R, c0). By virtue of (10) we obtain

() = () @y () = (2) @y (wlr) = vr) a5 j - oo,

uniformly on compact subsets of [R, 00). Furthermore, from

uj(r) = / dt—>/ as j — oo,

pointwise on [R, 00) and u;(r) — u(r), therefore it follows that u is differentiable
and v’ = v. Hence u; — u and u; — v’ uniformly on compact subsets of [R, 00)
and finally, @ — u,, a — u), are continuous on (0, 00). This completes the proof
of Lemma 3. O

Remark 4. It is immediate that u, € C*([R,R+¢]) for 1 <p <2 and u
is C? only at the point r € [R, R + ¢] such that u/,(r) # 0 for p > 2.

Proposition 5. Assume (H1)-(H3) hold and u, be solution of (7)-(8).

(i) Thenr — E4(r) is non-increasing and lim,_,~, FE,(r) is finite. In addition,
if there exists 7o > R such that E,(ro) < 0 then ug > 0 on [rg,c0).

(i) If hﬂm uq(r) = £ exists, then ¢ is a zero of f and moreover
T—00

lim u,(r)=0 |, 1i>m E.(r)=F(?).

7—00

(#4i) Then ul, > 0 on a maximal nonempty open interval (R, M,) where either

(a) M, = oo, le ug(r) = and 0 < uy(r) < B for all r > R.

or
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(b) M, is finite and uq(M,) > 5.

Proof. By virtue of (14) we have E, is non-increasing and since E,(r) >
—Fy implying that E, — (¢, as a — co. Now, let g > R such that E,(r¢) < 0
by monotonicity of E, we have E,(r) < E4(rg) < 0 for r > rg, if we suppose

s
that there exists r1 > 7o zero of u,, then it follows that E,(r;) = @ > 0,
which contradicts to E4(r;) < 0. Hence u, > 0 on [rg, c0).

For (ii) we suppose that u,(r) — ¢ as r — oo, then by continuity of F
we have lim F(uy(r)) = F({), so from (13) we have lim |u,(r)] = (p’(fa -

1 r—00 r—00

F(é))) ? = m. Assume to the contrary that m > 0, then for 0 < ¢ < m there
exists 79 > R such that |u)| > m — e > 0 for each r > ry. Thus it follows that
|ua(r) — uq(ro)| > (m — €)(r — r¢) which implies that u,(r) — as r — oo. This
is a contradiction. Hence ul(r) — 0 as a — oo and (, = F(¢). By (9) and
applying L’Ho6pital’s rule we obtain

/ N—-1,p—1 r tN—l " dt
0 = lim Qp(ua(r)) = lim R a o fR f(u )
r—00 r r—00 rN rN
_ 10
N

Therefore f(¢) = 0.

Next for (iii), as u),(R) = a > 0 and by continuity, there exists € > 0 such
that u/, > 0 on (R, R+ €). Denote (R, M,) a maximal nonempty open interval
where ), > 0. If M, = oo then u, > 0 is increasing and bounded above on
[R, 00), therefore it follows that u,(r) — ¢ as r — oo. By virtue of (i) we have
f) =0 and u,(r) - 0asr — oco. Thus / = § and 0 < u, < 8 on [R, ).
Hence (a) is proven. For (b), if M, < oo we must have u/,(M,) =0 and u,, >0

n (r,M,) for R < r < M,. Assume to contrary that 0 < u,(M,) < § then by
(H3) it follows f(ug) < 0 on (r, M,). Integrating (7) on (r, M,) and using the
fact ul (M,) = 0 we get

Maq
rN—1¢>p(ug(r))_/ N f(ua(t)) dt < 0.

T

This implies that u/, < 0 on (r, M,), this is a contradiction. Thus u,(M,) > .
Which completes the proof of Proposition 5. O

Lemma 6. Assume (H1)-(H3) hold. Then
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1. ug has a maximum at M, > R for a sufficiently large. Moreover |u,| has
a global maximum at M,.

2. lim wug(M,) = oo and li_)m M, = R.

a— 00

Proof. For (1), we suppose by the way of contradiction that M, = co. Then
u/ > 0 on [R,00) and by (ii)-(iii) of Proposition 5 we have 0 < u,(r) < 8,

uq(r) = B and ul(r) — 0 as r — oo. Let y, = uaifr)' It is straightforward
using (7)-(8) to show
_ ! _1f(aya) :
(T‘N 1®p(y:1)> + TN 1? = 0 lf r> R, (16)
ya(R) =0 and v, (R)=1. (17)

Then it follows that

‘P F ! N -1
(‘ya‘ + (a’ya)> — . |ya|p S O

p/ ab—1
Therefore ,
P Flag) _ 1
pl ap—l — p/

By virtue of (4) and for a sufficiently large we obtain

'|p 1 F
|y1;1/| S 27 + 0

<

1
p—l—_l =1
p

_|_

S)

As 0 < yq < é then for a sufficiently large we get 0 < y, < 1. It follows

that |y,| and |ycé| are uniformly bounded if a is sufficiently large. Then by the
Arzela-Ascoli Theorem we deduce that y, — y uniformly as a — oo on the
compact sets of [R,c0), for some subsequence denoted the same by y, with y
is a continuous function on [R,c0) where y(R) = 0. Integrating (16) on [R,7]

o= (27 [ (4 Lt

f(aya)

ap—1

gives

Since ay, is bounded and f is continuous then — 0 uniformly on [R, c0)

R\N-1
as a — oo. Therefore it follows that ®,(y/,(r)) converges to (—) uniformly
T

on compact subsets of [R, 00). This implies that y/, converges uniformly as a —
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) ) R\k
oo on compact subsets of [R, 00) to a continuous function denoted z(r) = (—)
r

with k£ = %. Moreover 2’ exists and is continuous. Furthermore

alr) = /R "y dt.

Letting a — 0o, we obtain that

Then y, is continuously differentiable and y' = z, thus y/, — ¥’ uniformly as

a — oo on the compact subsets of [R,00). Since 0 < y, < — s0 y, — 0 as
a

a — 00, then y = 0 would imply that ¥’ = 0. Which contradicts to y'(R) = 1.
Thus u, has a local maximum at M, > R.

Next, we will show that |u,| has a global maximum at M,. Otherwise,
suppose that there exists r1 > M, such that |ug(r1)| > |uq(M,)|. From (i) of
Proposition 5 we have u,(M,) > (3 , since F' is even and increasing on (/3, c0)
therefore it follows

Eq(r1) = F(ua(r1)) = F(lua(r1)|) > F(ua(Ma)) = Eo(M,).

By the monotonicity of E, we have ry < M,, which contradicts to ry > M,.
For (2), we begin to claim that uy(M,) — oo as a — oo. To proof this,
assume to contrary that for a sufficiently large, there exists a constant C' > 0
independent of a such that |us(M,)| < C. As |ug| has a global maximum at
M, then |u,(r)| < C for all r > R.
Let y, = %. We proceed in the same way as (1), we show that y, — y with

y =0 and y/(R) = 1 this is a contradiction. Hence u,(M,) — 0o as a — co. In
the following we want to show that M, — R, as a — oo.

From (1) and by monotonicity of E,, for a sufficiently large we see that
E.(r) > E.(M,) = F(uq(M,)) on [R, M,]. Denote z, = uq(M,), so |u,| =

u(r) > (p’)% (F(xa) - F(ua(r)))g for all r € [R,M,]. Integrating this on

a

[R, M,] gives
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then

/Ox“( & E > () (M — R) > 0. (18)
F(x,) — F(s))”

First we estimate the integral on [%,xa] for a sufficiently large. From (H2)
1
we have for x large enough that f(z) > 5 x? and since ug(M,) = x4 — 00 as

a — oo we therefore have for a large enough that

. 1
Q. = mln]f > pys] (2q).

[%lvxa

As p < ¢+ 1 then it follows that

1-1
Ta ; < 2qu (:z:a)pigi1 —0, a8 a—
Qad
Thus
L (w)'
lim ~——~— =0. (19)
a—r 00 Qg

Since F'(u) is increasing for u large enough, it follows that for % <t <z, we

T
have by the mean value theorem for some ¢ such that 7‘1 <t<e<zg:

F(x,) = F(t) = f(¢) (Ta =) 2 Qa (Ta — 1) (20)

Thus

lim = 0. (21)
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Next we estimate the integral of left-hand side of (18) on [0, %] Then we have
Lq

F(t) < F( 5 ) for all ¢t € [0, %] and a sufficiently large. Thus by (20) we have

La

Then it follows that

za 1-1
[Fd gl
"

T T
F(za) — F(t)) ’ QX
Therefore by (19) we have

. / 5 dt
lim
a—roQ0 O
(F(xa) - F

Combining (21) and (22), we conclude that

T : (22)
1)’

Ta dt
lim

TN (P - P

Hence from (18) we see that M, — R as a — oo. This completes the proof of
Lemma 6.

= 0.

O
Lemma 7. Assume (H1)-(H4) hold. Then u, > 0 on (R,00) for a > 0
sufficiently small.

Proof. If M, = oo, then we have uq(r) > 0 for each » > R and so we are
done in this case.

If M, < oo, there are two cases:

1. If uy (M) < 7, since Eq(M,) = F(ug(M,)) < 0 then by virtue of (i) in
Proposition 5 we have u, > 0 on [M,, ), as u), > 0 on [R, M,) so us >0
on (R, o00) then it follows we are done in this case as well.

If ug(M,) > 7, so there exists two real r, and s, with R < r, < s, < M,
such that ue(re) = B and ug(sq) = 22

51. By the monotonicity of E, we
get
|ug|” a”
Ea(T):T—FF(Ua)S—/, V’I"ZR

3
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Therefore
|u

/

al <1 Vr>R (23)
/ p

(ap —p F(ua)>

As u!, > 0 on [R,7,] and by integrating (23) on [R,7,], we obtain

B dt Ta /
/ | we)
0 P R P

(@ = pF(ua(r)))

Using (H4) and Remark 1, then we see that

B dt —1\: [P At
/ l—)(p )p/ T =00 as a— 0T,
0 (ap—p’F(t))p P 0 [F(t)[

Thus it follows that 7, — oo, also s, — 0o as a — 0. Next, by virtue of (13)
and (14) we have

(= Bal0) = () Flualr), (24

where @ = p/(N — 1) > 1 because N > 2 and p’ > 1. Integrating the above
equation on [rg, s,| and using (H3), we obtain

$S Eq(sq) — 1 Eg(re) = /rsu (r“),F(ua(T)) dr

<r ) [ () o

As F(uq(r)) < 0 on [R,7,] and by (24) we have r — r® E,(r) is decreasing.
Integrating again (24) on [R, 1], we obtain

Ta / P
7Y Eq(re) = R* Eq(ra) —I—/ (7““) F(ug(r))dr < R a—,.
R p
Hence it follows that
p
0 Eulsa) < B0 4 P2 (s 0t). (25)



ON MULTIPLICITY OF RADIAL SOLUTIONS TO DIRICHLET...

Now, by means value theorem and since « > 1 we therefore have,

sq —re > ozr;“_l (Sqa — Ta)-

(0%
a
By integrating (23) on [rg, s,|, we see that

B+~
2

dt s /
/ 1 / Ya (T) T dr
B P Ta ( P

(a,p - p’F(t))

Using (4), taking 0 < a < 1 and for each ¢ € [f, ﬁ%] we get

a® —p'F(t) <1+ pF.

Therefore

=

Sq —Tq = #(1 +P/F0>_p-

From (26) we deduce that

As lim r, = oo it follows that
a—0Tt

lim s% —r% = 0.
a—0t @ @

Then by virtue of (25) and since F' (ﬁ%) < 0 we have

al_i)r(r)1+ sq Eq(sq) = —00.

135

Hence, for small enough positive a we get E,(s,) < 0. Thus by (i) in Proposition
5 it follows that u, > 0 on [s,, 00) if a is sufficiently small positive. As u, > 0
increasing on [R, s,) which implies that u, > 0 on (R, s,]. Hence u, > 0 on
(R, 00) for small enough positive a. This completes the proof of Lemma 7. [

Lemma 8. Assume (H1)—(H4) hold. Then u, has only simple zeros on

[R, 0).

Proof. The proof of this lemma is similar to [11, Lemma 2.6]. Assume to

the contrary that u, reaches a double zero at some point 9 > R. Let
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ri=inf {r | ua(r)=ug(r) =0}.

r>R
As ug(ro) = ul(ro) = 0 then R <7y < oo. First, we like to show that r = R.
R
By contradiction we assume that r; > R and let r € ( +T1,r1) fixed.
Integrating (14) on (r,r1) we see that
(N — 1), P
Bars) = Balr) = — [ = g
r t
From (13) and E,(r1) = 0 we see that
! |p 71 N _ 1 ! |p
Ea(r) = 2 p(u,) = / = Dl gy, (27)
T
Denote w = f:l w dt and differentiating gives
N -1
e —w,
Substituting in (27), we obtain
;o a
—w=—F(uy), 28
w + ’I”w , (ua) ( )

where @ = p/(N — 1) > 1. Multiplying both sides by r* we have
(r*w) = ar®* 1 F(uy,).
Integrating the above on [r,r1] we obtain
1
rifw(ry) —r*w(r) = « / t* 1P (ug) dt.
s
As u(ry) = 0, so for r sufficiently close to r; we have |u,| < 5 and by (H3)

implies that F(ug) < 0 on (r,r1). Since w(r;) = 0, then it follows for r
sufficiently close to ry

@ " a—1
w=3 tY7 F(ug)| dt.
T

Combining the equation above and (28), we therefore have, for r sufficiently
close to r;

e = p (IF(wa ()| + / 0 () ). (29)
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Notice that for r < 71 and r sufficiently close to r1 then u/(r) # 0. Otherwise
there exists 7o < 71 such that u/(r2) = 0 then by (29) we deduce that u, = 0 on
(ro,r1) and by continuity we have uq(r2) = ul,(r2) = 0. Which contradict the
definition of r1. Thus without loss of generality we assume that u/, < 0 for r < rq
with 7 is sufficiently close to r;. Thus we have 0 < u, < 8 on (r,71). Since F’
is decreasing on [0, 5], therefore it follows that |F'(uq(r))| > |F(us(t))| > 0 for
each r <t < r;. From (29) we therefore have

[ (ua(r))]

< p' (| (ua (1) +

(rf = ra)) = P[F(ua(r))| (T_1>a

r

R
< P2 |Flug(r))| (since =+ <2-—=<2)
T T

Thus

Sl

’u:z‘ < Cp,a‘F(ua("”))‘ )

1

where C), , = (p'2%)?. Dividing by |F(ua(r))|%, integrating the above on [r,r{]
and using (H4) we have

uq (T) 1 /
oo-/ ! 1ds-/ MdtSvaa(m—T)<oo.
0 [F(s)] r [F(ua(t)]

This is impossible, therefore 71 = R implying u,,(R) = 0. This is a contradiction
with ul,(R) = a > 0. Hence u, has only simple zeros on [R, 00). This completes
the proof of Lemma 8. O

3. Solutions with a prescribed number of zeros

In this section we are interested to study the behaviour of zeros of solution to

(7)-(8) assuming (H1)-(H4) hypotheses. By virtue of Lemma 7, if a is small

enough we saw that u, has no zeros on (R, 00) and by Lemma 8, we get u, has

only simple zeros. In the following as in [9, 11] we want to show that u, has an

arbitrary large number of zeros on (R, c0) for a large enough. Which leads to
p

the existence of sign changing solution. Let A\J **' = u,(M,) and we define

-p
ox, (1) = AP ug (M, + )\L) Vr > 0.

By (7), it is straightforward to show that

(Ouda + 0¥ 0y(05))
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—Pq

N-1 _p
AT (M + ¥ )T AT 0,) =0, (30)
v\, (0) =1 , o) (0)=0. (31)

By Lemma 6 and ¢ — p+ 1 > 0 we have that

lim A\, = oc. (32)

a—0o0

Lemma 9. Asa — oo, vy, — v, uniformly on compact subsets of [0, 00),
and v satisfies

(2,0")) + lel7 o =0, (33)

v(0) =1, '(0)=0. (34)

Proof. By virtue of (H2) we have

F(w) = — ™ + G(w),

where G(u) = [y g(s) ds. Then it follows that
F(u) 1 . G(u)

\u|1in<>o ’u‘Q+1 N q—+ 1 |u|—o00 ’u‘Q+1 '

By using the L’Hospital’s rule we have,
G(u)

u—oo i+l

Since G is even then
F(u) 1

- 35
ful—oe [ult™t g +1 (35)

Let

”US\ ’p —p(g+1) P
E>\a (’I”) = p(; + )\aq_p+l F()\g_p-H U)\a).

By differentiating we therefore have

(N = Doy, P

r

E\ (r)=— <0.

Then E), is decreasing on [0, 00) which implies that

—p(g+1)

p
Ey, (r) < By, (0) = N\ PP,
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By (32)—(35) we see that

—p_(qii) _p+1
AP F(NGTT) — p—— as a — 00.
Thus for a large enough we see that
E), (r) < 2 Vr > 0.
qg+1

By (4) and (32) for a large enough, it follows that

V. |P 9 —p(g+1) 3
‘ ;\;‘ < m +)\aq7p+1 Fy < q+—1 Vr > 0.

3 / 1
Hence we have |v) | is uniformly bounded on [0,00) by M, , = (%) " for
“ q
a sufficiently large. From Lemma 6 we obtain

—-p
loa, | < AP (M) = 1.

Thus |vy,| and [v} | are uniformly bounded. By Arzela-Ascoli’s theorem, for
some subsequence still denoted vy,, we have vy, — v uniformly on compact
subsets of [0,00) and v is continuous.

On the other hand, by integrating (30) on [0, 7] and using (31), we obtain

" A My +t\N-1 _ —=pd. P
P = —<I>p/(/0 ()\Tj:r) (‘UAG\Q Yox, F AT (M p“wa)) dt).
(36)

From (H2) and since g is continuous, then for all € > 0 there exists C' > 0 such
that
lg(u)] < C+€u|? VueR,

it follows that
P pa
lgA" oy )| S C+exd ™! (since lua, | < 1).

Thus

—pPq p —Pq

AP g o) S AP C + e

—Pq
By virtue of (32) we have \{ """ — 0 as a — oo. Then it follows that, for a

sufficiently large

—Ppg p

AT gAETT )] < 26,



140 B. Azeroual, A. Zertiti

—Pq P
which implies that ¢ "*' g(Ad """ vy,) — 0 as a — oo uniformly on [0, o).
oM, +t ) N-1
AaMy + 1
1, as @ — oo uniformly on compact subsets of [0, 00). Since vy, — v as a — 00
uniformly on compact subsets of [0, 00) and by (36) we deduce that

From (32) we have A\, M, — oo as a — oo, we therefore have (

T
vy, — —@p/(/ lv|9 1y dt) =w pointwise on [0, 00),
0
w 1s continuous. Furthermore from

T
vy, =1 —|—/ v, dt,
0

since vy, — v as a — oo uniformly on compact subsets of [0, 0), v&a — w
as a — oo (pointwise) and [v} | is uniformly bounded by M, 4, therefore by
applying the dominated convergence theorem we have

v-l—i—/ w(t) dt.
0

Thus v" = w. Then it follows from (36) that

v = -0, / lv|?™ 1vdt

Hence v € C1[0,00) and v satisfies (33)—(34). This ends the proof of Lemma
9. O

Lemma 10. Let v be as in Lemma 9. Then v has a zero on [0, 00).

Proof. Suppose by the way of contradiction that v > 0 on [0,00). By
integrating (33) on [0, 7] we obtain

—®,(v) = /0 vldt > 0.

So v' < 0 and v is decreasing on [0,00). It follows that

eIt = [tz o),
0

which implies that
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By integrating the above on [0, 7] we get

L (T ) 2 e,
g—p+1

as ¢ —p+ 1> 0 we see that

v_q;ﬂrl(r) > 1+ g-ptl reeT > ¢=ptl rﬁ,
b b
therefore i)
—p(gq
,Uqul < vaqr a—pHT |
where

(g—p+1)(g+1)
C _ ( p ) p—1
p,q qg—p 4 1

Therefore it follows that

&0 1 © —p(g+1)
/ vITH(t) dt < C’p,q/ ra—pHl dt < oo.
1 1

By continuity of v we get v is bounded on compact set [0, 1] so

/ VIt (t) dt < o0.
0

Let for each r > 0,

LG
/
p q+1

[o(r)[ .

From (33) we obtain E’(r) = 0 on [0,00), it implies that £ = E(0) =

Therefore it follows that

/

W ()P = qi - (1= o)),

Since v > 0 and from (33) we see that

(02,(")) = v/ @) — (2y(0)) = o/} — .

Integrating this on [0, 7] and using (34) we have

v(r) /|v|p vIt dt,

141

(37)
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since v > 0 and v’ < 0, thus it follows that

/ |v’|pdt§/ VIt dt < 0. (39)
0 0

By integrating (38) on [0, 7] we obtain
/

T p/ s p s
/ [ |Pdt = / (1 —vityat = ('r — / pitl dt).
0 q+1 Jo q+1 0

Letting » — oo and using (37) we have

o0
/ [v' P dt = .
0

Which contradicts (39). This completes the proof of Lemma 10. O

Lemma 11. If a is sufficiently large. Then u, has an arbitrarily large
number of zeros on (R, ).

Proof. We begin to establish the following claim.
Claim: v has an infinite number of zeros on [0, c0).

Indeed, by Lemma 10 v has a zero z; > 0 such that v > 0 and v' < 0
on (0,21). Next we want to show that v has a first local minimum on (21, c0)
denoted m;. So, suppose by contradiction that v is decreasing on [0, 00). Since
v is bounded and decreasing then 1520 v(r) = £ exists. As in the proof of (ii)
Proposition 5 we therefore have, rlim v'(r) = 0 and ¢ = 0. From (38) and
letting r — oo we obtain T

/

: / P _— p
rh_glo|v(r)| q+1>0.
This contradicts to lim v’'(r) = 0. Hence, v has a first minimum denoted
rT—00

mq > z; and v; = v(my) < 0. Thus v satisfies,

P,(v') = —/ |t vdt, Vr>my

mi

v(m1) =v; and o'(my) =0.

In a similar way of Lemma 10 we can show that v has a second zero at zo >
z1 > R and has a second extremum msy > z5. Continuing in this way we can
get an arbitrarily large number of zeros for v on [0, 00). Which is complete the
proof of claim. O
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Now, since vy, — v as a — oo uniformly on compact subsets of (R, c0). By
virtue of the previous claim and (32), it follows that vy, has an arbitrary large
p

number of zeros for a large enough. Finally, as uq(M, + )\L) = A"y, (1),

a
hence we can get as many zeros of u, as desired on (R, oc0) for a sufficiently
large. This ends the proof of Lemma 11.

4. Proof of Main Result

For k > 0 defined by set
Sp={a>0 | wue(r) hasexactly k zeros on (R,o0)}

If @ is sufficiently small it follows by Lemma 7 that u, > 0 for any r > R, so
So={a>0 | wue(r)>0 VYr> R} is nonempty and by virtue of Lemma 11
we conclude that Sy is bounded from above. Let

ag = sup Sp.
Lemma 12. u,, >0 for all r > R.

Proof. Assume to the contrary, that there exists a zero zg > R of ug, .
Then uq,(20) = 0 and u,, > 0 on (R, zp) and by Lemma 8 we have u], (z) < 0.
Thus ug, < 0 on (29, 20 +€) for some € > 0. If a close to ag with a < ap and by
continuous dependence of solutions on initial conditions, it follows that u, <0
on (29, zp + €). Which contradicts to the definition of ay. O

Lemma 13. E,, >0 on [R, o).

Proof. By the definition of ag, if a > ag then u, has a zero denoted z, > R.
We begin to show the following result

lim z, = oo. (40)

+
a—)ao

Indeed suppose by contradiction there exists a subsequence of z, still denoted
z, converges to some z € [R,00), as a — ag. As u, converges uniformly on a
compact set [R, z + 1], Therefore it follows that

0= lm wuy(2q) = Ugy(2).
(l‘)(lé’
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Which contradicts to Lemma 12. Hence (40) is proven.

Now, assume to the contrary that there exists ro > R such that E,,(r9) <
0, then E,(rg) < 0 for a close to aj. By the definition of ay and taking
a > ag, there exists a zero z, of u, such that E,(z,) > 0 > E4(ro). From the
monotonicity of E, we have z, < rg < co. Which contradicts (40). This ends
the proof of Lemma 13. O

Lemma 14. wu,, has a local maximum at M,, > R.

Proof. By the way of contradiction, suppose that ugo >0 on [R,c0). From
(77i) of the Proposition 5 we see that lim wug,(r) =  and by the definition of
T—00
ap if a > ag then u, has a zero denoted z, > R. Next, from (i) of Proposition
5 therefore it follows that lim E,,(r) = F(8) < 0. From Lemma 13 we see
r—00

that E4y(r) > 0. Thus 0 < lim E,,(r) = F(8) < 0, this is contradictory. End
r—00
of the proof of Lemma 14. O

Lemma 15. u;, <0 on (My,,00).

Proof. We argue by the contradiction. We distinguish two cases:

(1) If there exists ry > Mg, such that u, (r1) = 0 and u), <0 on (M, r1),
or

(2) If uj, = 0 on [My,, 00).

In the first case we have 0 < w4, (r1) < S. Indeed, assume to contrary that
Ugy(r1) > B, then by (H3) we see that f(ug,(r1)) > 0. Further from (10) and
the fact that wu, (M,,) = 0 we have

1

0=yt (1)) = [0 Fluag 1)) (41)

Mq,
As ugq, is non-increasing on [My,,r1] then ug,(t) > ug,(r1) for all t € [Mg,, 7]
and by using (H3) it follows that f(uq,(t)) > f(ue,(r1)) > 0. From (41) we have
f(ugy) =0 on [M,,, 1] implying that u = 8 on [M,,,r1], which contradicts to
gy < 0on (Mgy,7r1). Thus 0 < ug,(r1) < fimplying Eq,(r1) = F(ug,(r1)) < 0.
Which contradicts to Lemma 13, then it follows we are done in this case. In
the second case we must have that u = ¢ on [M,,,c0). Then by (i) and (iii) of
Proposition 5 it follows that f(c) = 0 and ¢ = 8. Thus 0 < u,, < 5 on (R, M,,)
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and by using (H3) we obtain f(u,,) < 0. From (10) and wu (Mg,) = 0 we see
that

Ma,
VL, (ul (1) = / "7 f(ua, (1)) dt < 0.

Therefore we have ug, < 0 on (R, My,), this a contradiction then it follows we
are done in this case as well. End of the proof of Lemma 15. U

By Lemmas 14 and 15 then it follows that lim wu,(r) = ¢ exists and by (ii)
of Proposition 5, we have that f(¢) = 0 and rli%:oan (r) = F(£). Then either
t=0or/l=p.

If ¢ = (8 again by (ii) of Proposition 5 we therefore have rlirglo E, (r) =
F(B) < 0. By Lemma 13 we have E,,(r) > 0 for each r > R, so it follows that
F(p) = rh—>Holo E,,(r) > 0. Which contradicts to F(5) < 0. Hence ¢ = 0 and

finally we have found a non-negative solution of (5)-(6).

Next by [11, Lemma 4.3], if a > ap and a — ag then u, has at most one
zero on (R, 00). From the definition of ag if a > ag we have u, has at least one
zero. Thus for a > ag close to ag the solution u, has exactly one zero. Then it
follows that S; nonempty and by lemma 11 we see that S is bounded above.
Let

a1 = sup Si.
As in above lemmas by using a similar argument, we can show that u,, has one
simple zero and rlgglo Uq, (r) = 0. Hence, it follows that there exists a solution

of (5)-(6) which has exactly one sign change in (R, c0).
Proceeding inductively we can show that, for each &k € N there exists a
solution u,, = uy of (5)-(6) which has exactly k zeros on (R, 0o) with uj,(R) > 0.
Now, in the case a < 0 we consider the problem

(" a,00) 45w =0 B
v(R) =0, V'(R)=a<0.

(42)

We denote w(r) = —v(r) on [R,0), as f and ®, are odd, then it follows the
problem (42) is equivalent to

(rN*1¢p<w'))/+rN*1f<w)=0 it R<m
w(R) =0, w'(R)=—a>0.

Next, according to the case a > 0 we deduce that, for each k£ € IN,the problem
(5)-(6) has a solution wy which has exactly k zeros on (R, co) with w) (R) > 0.
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Hence, for each k € N integer, (5)-(6) has a solution vy = —wj which has k
zeros on (R,00) and v} (R) < 0. This ends the proof of Theorem 2.
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