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Abstract: In this paper we prove the existence of radial solutions having
a prescribed number of sign change to the p-Laplacian ∆pu + f(u) = 0 on
exterior domain of the ball of radius R > 0 centered at the origin in RN. The
nonlinearity f is odd and behaves like |u|q−1u when u is large with 1 < p < q+1
and f < 0 on (0, β) , f > 0 on (β,∞) where β > 0. The method is based on a
shooting approach, together with a scaling argument.
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1. Introduction and Statement Result

In this paper we deal with the existence and multiplicity of classical radial sign-
changing solutions to the Dirichlet boundary problem involving the p-Laplacian

∆pu+ f(u) = 0 in Ω, (1)

u = 0 in ∂Ω, (2)

lim
|x|→∞

u(x) = 0. (3)

Here Ω = {x ∈ RN | |x| > R} is the complement of the ball of radius R > 0 cen-
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tred at the origin with |x| =
√

x21 + x22 + ...+ x2N is the standard norm of RN .

Also, ∆pu is the p-Laplacian of the function u with ∆pu = div
(

|∇u|p−2 ∇u
)

.

We will assume henceforth that the function f satisfies the following hy-
potheses:

(H1) f : R → R is odd and locally Lipschitzian,

(H2) f(u) = |u|q−1u+ g(u) with 1 < p < q + 1 and

lim
|u|→∞

|g(u)|

|u|q
= 0,

(H3) There exists β > 0 such that

f(0) = f(β) = 0 where f < 0 on (0, β) , f > 0 on (β,∞),

(H4) If p > 2 we also assume for some η > 0

∫ η

0

1

|F (u)|
1
p

du = ∞,

where F (u) =
∫ u

0 f(s) ds.

As a consequence of the previous assumptions we have:

(i) F (u) → ∞ as |u| → ∞. F is even and bounded below by some −F0 < 0
on R, i.e.

F (u) ≥ −F0 ∀u ∈ R. (4)

(ii) F is strictly increasing in (β,∞) and decreasing in (0, β).

(iii) F has a unique positive zero,γ > β and F < 0 on (0, γ), F > 0 on (γ,∞).

Remark 1. If 1 < p ≤ 2 it follows from the fact that f is locally Lips-
chitzian the assumption (H4) also holds.

The radial symmetric solutions to (1)-(3) satisfy the problem

(

rN−1Φp(u
′)
)′

+ rN−1f(u) = 0 if R < r, (5)

u(R) = 0 and u(r) → 0 as r → ∞, (6)
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where Φp(s) = |s|p−2s. Also ′ denotes the derivative with respect to r = |x| ≥
0 , x ∈ RN and for radial functions as it is usual we shall write u(x) = u(r)
with r = |x|. We note that Φp is odd and differentiable on R\{0} with Φ′

p(s) =
(p− 1)|s|p−2 and Φ−1

p = Φp′ , where p′ the Hölder conjugate exponent of p. We
will be interested only in classical solutions of (5)-(6) i.e., u ∈ C1([R,∞),R)
and Φp(u

′) ∈ C1([R,∞),R).

The research of radial solution of elliptic equations with zero Dirichlet
boundary conditions (1)-(3) with the usual Laplace operator (p = 2) has widely
studied by many authors via variational methods when Ω is bounded domain
or the whole space RN , under different regularity and growth assumptions of
nonlinearity of f , see for instance [1, 2], exploring the symmetry of the problem
(1)-(3) to prove the existence of infinity radial solution by means the Moun-
tain pass theorem. In particular when Ω is a ball and is f non increasing by an
other argument well-know plane method to prove the existence and multiplicity
of radial solution to this problem, see [4]. However, these arguments are quite
difficult and provide no specific information of qualitative properties. Then it
was an open question as to whether solutions exist with prescribed number of
zeros. Jones and Küpper in [6] addressed this question using a dynamical sys-
tems approach and an application of the Conley index [6]. In [9] Mcleod, Troy
and Weissler established the existence of sign changing bound state solutions
by using the shooting techniques and a scaling argument when f satisfies ap-
propriate sign conditions and is of subcritical growth. Pudipeddi [11] extended
the previous result for the p-Laplacian where 1 < p < N and Ω = RN using the
same approach when f is locally Lipschitz and odd and behaves like |u|q−1u for

u sufficiently large with p < q + 1 <
Np

N − p
.

Recently on exterior domain, there has been an interest in studying this
question if p = 2 we mention as instances [5, 7]. Here we use the shooting
argument and a “simple” ordinary differential equation proof to establish that
(1)-(3) has an infinite number of radial solutions with a prescribed number of
zeros.

Our paper is organized as follows: in Section 2 we begin to establish some
preliminary results concerning the existence and proprieties of radial solutions.
In Section 3 we show that there are solutions with arbitrarily number large
of zeros by using a scaling argument and finally, we shall prove the following
“Main theorem”:

Theorem 2. Assuming (H1)–(H4) and N ≥ 2. Then for each nonnegative
integer k, there exist two radially symmetric solutions uk and vk of problem
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(1)-(3) which have exactly k zeros on (R,∞) such that v′k(R) < 0 < u′k(R).

2. Preliminaries

To deal with the problem (5)-(6), we will use a shooting method and consider
the initial value problem

(

rN−1Φp(u
′)
)′

+ rN−1f(u) = 0 if r > R, (7)

u(R) = 0 and u′(R) = a > 0. (8)

To emphasize the dependence of the solution to (7) in the shooting parameter
a, we will denote it ua.

Lemma 3. Assume (H1) and (H2) hold. Then (7)-(8) has a unique
solution ua defined on interval [R,∞). Moreover, a → ua and a → u′a are
continuous on (0,∞).

Proof. Let u be a solution of (7)-(8) and integrating (7) on [R, r], we obtain

rN−1Φp(u
′) = RN−1ap−1 −

∫ r

R

tN−1f(u) dt. (9)

We rewrite this as

u′(r) =
(R

r

)k

Φp′

(

ap−1 −

∫ r

R

( t

R

)N−1
f(u) dt

)

, (10)

where k =
N − 1

p− 1
. Integrating (10) on [R, r] we obtain

u(r) =

∫ r

R

(R

t

)k

Φp′

(

ap−1 −

∫ t

R

( s

R

)N−1
f(u) ds

)

dt.

Let ǫ > 0. Denote C0[R,R + ǫ] the Banach space of real continuous functions
on [R,R+ ε] endowed with the sup norm ‖ ‖. Let a, δ0 > 0 are fixed such that
δ0 < ap−1 and we define the complete metric space by

E := {(u, v) ∈
(

C0[R,R + ǫ]
)2

| u(R) = 0 , v(R) = ap−1},
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endowed with the distance d(x1, x2) = max(‖u1 − u2‖, ‖v1 − v2‖) where xi =
(ui, vi) for i = 1, 2.

Denote Bǫ
δ(a) := {(u, v) ∈ E | d

(

(u, v), (0, ap−1)
)

≤ δ} the closed ball of

(E, d).
The existence and uniqueness for (7)-(8) result from the study of fixed point

of the application Γa : (u, v) ∈ E → (ũ, ṽ) ∈ E where ũ and ṽ are defined by

ũ(r) =

∫ r

R

(R

t

)k

Φp′(v) dt,

ṽ(r) = ap−1 −

∫ r

R

( t

R

)N−1
f(u) dt.

We will show that Γa is a contraction mapping of Bǫ
δ(a) into itself for ǫ, δ small

enough.
For all (u, v) ∈ Bǫ

δ(a) and r ∈ [R,R+ ǫ] we have

|ũ(r)| ≤ ǫ ‖v‖p
′−1 ≤ ǫ

(

δ0 + ap−1
)p′−1

.

Therefore for ǫ small enough we have

‖ũ‖ ≤ δ.

Furthermore, then

|ṽ(r)− ap−1| ≤

∫ r

R

( t

R

)N−1
|f(u(t))|dt,

≤
MR

N

(

(1 +
ǫ

R
)N − 1

)

≤ δ if ǫ → 0,

where M = sup
|s|≤δ0

|f(s)| and for ǫ small enough. Then it follows that ||ṽ −

ap−1|| ≤ δ, which implies that (ũ, ṽ) ∈ Bǫ
δ(a), for ǫ small enough. Now, let

xi = (ui, vi) ∈ Bǫ
δ(a) for i = 1, 2, then

d
(

Γa(x1), Γa(x2)
)

= max
(

‖ũ1 − ũ2‖; ‖ṽ1 − ṽ2‖
)

.

For r ∈ [R,R+ ǫ] fixed, thanks to the mean value theorem we obtain

Φp′(v1(r))− Φp′(v2(r)) = Φ′
p′(w)(v1(r)− v2(r)), (11)

where w = α v1(r) + (1 − α) v2(r) for some 0 < α < 1 with Φ′
p′(w) = (p′ −

1) |w|p
′−2. As ‖vi − ap−1‖ ≤ δ ≤ δ0, then for each i = 1, 2 we have

ap−1 − δ0 ≤ vi(t) ≤ ap−1 + δ0 ∀t ∈ [R,R+ ǫ],
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therefore there exists two constants c1 = ap−1 − δ0 > 0 and c2 = ap−1 + δ0 > 0
and for all i = 1, 2 we see that c1 ≤ vi(t) ≤ c2 for all t ∈ [R,R + ǫ]. Then it
follows that

(p′ − 1) |w|p
′−2 ≤ Cp,

where Cp = (p′ − 1) cp
′−2

2 if 1 < p ≤ 2 and Cp = (p′ − 1) cp
′−2

1 if p > 2 and
further from (11) we have

‖Φp′(v1)− Φp′(v2)‖ ≤ Cp‖v1 − v2‖.

Therefore
‖ũ1 − ũ2‖ ≤ ǫCp‖v1 − v2‖. (12)

On the other hand, we see that

|ṽ1(r)− ṽ2(r)| ≤

∫ r

R

( t

R

)N−1
|f(u1)− f(u2)| dt.

By virtue of (H1), then there exists a constant K > 0 and for each |s| and
|t| ≤ δ0 we have

|f(s)− f(t)| ≤ K|s− t|.

Since ‖ui‖ ≤ δ ≤ δ0 for i = 1, 2 then it follows that

‖ṽ1 − ṽ2‖ ≤ λ(ǫ)‖u1 − u2‖,

where λ(ǫ) =
KR

N

(

(1 +
ǫ

R
)N − 1

)

. Thus, from (12) we have

d
(

Γa(x1), Γa(x2)
)

≤ max
(

ǫCp, λ(ǫ)
)

d(x1, x2).

Since λ(ǫ) → 0 as ǫ → 0. Thus by the contraction mapping principle it follows
that for ǫ small enough Γa has a unique fixed point denoted xa = (ua, va) ∈
Bǫ

δ(a) and we have ua, va ∈ C1([R,R + ε],R). In addition,

u′a =
(R

r

)k

Φp′(va) and Φp(u
′
a) =

(R

r

)N−1
va.

Then it follows that Φp(u
′
a) ∈ C1([R,R+ ε],R). Hence for some ǫ > 0, (7)-(8)

has a unique solution ua such that ua and Φp(u
′
a) ∈ C1([R,R+ ε],R).

Next, we will show that the solution ua can be extended on [R,+∞), we
define the energy of solution to (7)-(8) as

Ea(r) =
|u′a|

p

p′
+ F (ua) ∀r ≥ R. (13)
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Differentiating Ea and using (7), gives

E′
a(r) = −

N − 1

r
|u′a|

p ≤ 0. (14)

Which implies that Ea is non-increasing on [R,+∞), so

|u′a|
p

p′
+ F (ua) ≤

ap

p′
.

From (4) we have

|u′a| ≤
(

ap−1 + p′F0

)
1
p
= Ma. (15)

Then we have |u′a| is uniformly bounded on wherever it is defined, as ua(R) = 0
thus it follows that |ua| is uniformly bounded on wherever it is defined. Hence
the existence on all of [R,+∞) follows.

Now, we will show the continuous dependence of solutions on initial condi-
tions. For this let a > 0 and aj → a as j → ∞ and denote uj(r) = uaj (r) for
all j. In the following we shall prove that uj → ua and u′j → u′a as j → ∞ on
compact subsets of [R,∞).

Indeed, as the sequence (aj) is bounded by some A > 0 and from (15) for
all j, we get

|u′j(r)| ≤
(

Ap−1 + p′F0

)
1
p
= M2 ∀r ≥ R.

Therefore u′j(r) is uniformly bounded. Next, we will show that uj(r) is uni-
formly bounded.

Suppose by the way of contradiction that there exists a sequence rj ≥ R

such that |uj(rj)| → ∞ as j → ∞. Since F (u) → ∞ as |u| → ∞, then
F (uj(rj)) → ∞ as j → ∞. As

Eaj (rj) = Ej(rj) ≥ F (uj(rj)),

then Ej(rj) → ∞ as j → ∞. Since Ej is non-increasing and (aj) is bounded
then we have

Ej(rj) ≤ Ej(R) =
a
p
j

p′
≤

Ap

p′
< ∞.

This contradict to Ej(rj) → ∞ as j → ∞. Thus there exists M1 > 0 and
M2 > 0 for all j such that

|uj(r)| ≤ M1 and |u′j(r)| ≤ M2 ∀r ≥ R.
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This implies that uj and u′j are uniformly bounded and equicontinuous. Then
by Arzela-Ascoli’s theorem there exists subsequence still denoted uj such that
uj(r) → u(r) as j → ∞ uniformly on compact subsets of [R,∞). Therefore it
follows from (H1) that f(uj) → f(u) as j → ∞ uniformly on compact subsets
of [R,∞) and since aj → a, then we get

wj(r) =a
p−1
j −

∫ r

R

( t

R

)N−1
f(uj(t)) dt

→ ap−1 −

∫ r

R

( t

R

)N−1
f(u(t)) dt = w(r),

uniformly on compact subsets of [R,∞). This implies that Φp′(w
′
j) → Φp′(w)

as j → ∞ uniformly on compact subsets of [R,∞). By virtue of (10) we obtain

u′j(r) =
(R

r

)k

Φp′(w
′
j(r)) →

(R

r

)k

Φp′(w(r)) = v(r) as j → ∞,

uniformly on compact subsets of [R,∞). Furthermore, from

uj(r) =

∫ r

R

u′j(t) dt →

∫ r

R

v(t) dt as j → ∞,

pointwise on [R,∞) and uj(r) → u(r), therefore it follows that u is differentiable
and u′ = v. Hence uj → u and u′j → u′ uniformly on compact subsets of [R,∞)
and finally, a → ua, a → u′a are continuous on (0,∞). This completes the proof
of Lemma 3.

Remark 4. It is immediate that ua ∈ C2([R,R + ε]) for 1 < p ≤ 2 and u

is C2 only at the point r ∈ [R,R+ ε] such that u′a(r) 6= 0 for p > 2.

Proposition 5. Assume (H1)–(H3) hold and ua be solution of (7)-(8).

(i) Then r → Ea(r) is non-increasing and limr→∞Ea(r) is finite. In addition,
if there exists r0 > R such that Ea(r0) < 0 then ua > 0 on [r0,∞).

(ii) If lim
r→∞

ua(r) = ℓ exists, then ℓ is a zero of f and moreover

lim
r→∞

u′a(r) = 0 , lim
r→∞

Ea(r) = F (ℓ).

(iii) Then u′a > 0 on a maximal nonempty open interval (R,Ma) where either

(a) Ma = ∞, lim
r→∞

ua(r) = β and 0 ≤ ua(r) < β for all r ≥ R.
or
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(b) Ma is finite and ua(Ma) ≥ β.

Proof. By virtue of (14) we have Ea is non-increasing and since Ea(r) ≥
−F0 implying that Ea → ζa as a → ∞. Now, let r0 > R such that Ea(r0) < 0
by monotonicity of Ea we have Ea(r) ≤ Ea(r0) < 0 for r ≥ r0, if we suppose

that there exists r1 > r0 zero of ua, then it follows that Ea(r1) =
|u′a|

p

p′
≥ 0,

which contradicts to Ea(r1) < 0. Hence ua > 0 on [r0,∞).

For (ii) we suppose that ua(r) → ℓ as r → ∞, then by continuity of F

we have lim
r→∞

F (ua(r)) = F (ℓ), so from (13) we have lim
r→∞

|u′a(r)| =
(

p′(ξa −

F (ℓ))
)

1
p
= m. Assume to the contrary that m > 0, then for 0 < ǫ < m there

exists r0 > R such that |u′a| ≥ m− ǫ > 0 for each r ≥ r0. Thus it follows that
|ua(r)− ua(r0)| ≥ (m− ǫ)(r − r0) which implies that ua(r) → as r → ∞. This
is a contradiction. Hence u′a(r) → 0 as a → ∞ and ζa = F (ℓ). By (9) and
applying L’Hôpital’s rule we obtain

0 = lim
r→∞

Φp(u
′
a(r))

r
= lim

r→∞

RN−1ap−1

rN
−

∫ r

R
tN−1f(ua) dt

rN

= −
f(ℓ)

N
.

Therefore f(ℓ) = 0.

Next for (iii), as u′a(R) = a > 0 and by continuity, there exists ǫ > 0 such
that u′a > 0 on (R,R + ǫ). Denote (R,Ma) a maximal nonempty open interval
where u′a > 0. If Ma = ∞ then ua > 0 is increasing and bounded above on
[R,∞), therefore it follows that ua(r) → ℓ as r → ∞. By virtue of (ii) we have
f(ℓ) = 0 and u′a(r) → 0 as r → ∞. Thus ℓ = β and 0 ≤ ua < β on [R,∞).
Hence (a) is proven. For (b), if Ma < ∞ we must have u′a(Ma) = 0 and u′a > 0
on (r,Ma) for R < r < Ma. Assume to contrary that 0 < ua(Ma) < β then by
(H3) it follows f(ua) < 0 on (r,Ma). Integrating (7) on (r,Ma) and using the
fact u′a(Ma) = 0 we get

rN−1Φp(u
′
a(r)) =

∫ Ma

r

tN−1f(ua(t)) dt < 0.

This implies that u′a < 0 on (r,Ma), this is a contradiction. Thus ua(Ma) ≥ β.
Which completes the proof of Proposition 5.

Lemma 6. Assume (H1)–(H3) hold. Then
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1. ua has a maximum at Ma > R for a sufficiently large. Moreover |ua| has
a global maximum at Ma.

2. lim
a→∞

ua(Ma) = ∞ and lim
a→∞

Ma = R.

Proof. For (1), we suppose by the way of contradiction that Ma = ∞. Then
u′

a
> 0 on [R,∞) and by (ii)-(iii) of Proposition 5 we have 0 ≤ ua(r) < β ,

ua(r) → β and u′a(r) → 0 as r → ∞. Let ya =
ua(r)

a
. It is straightforward

using (7)-(8) to show

(

rN−1Φp(y
′
a)
)′

+ rN−1 f(aya)

ap−1
= 0 if r > R, (16)

ya(R) = 0 and y′a(R) = 1. (17)

Then it follows that

( |y′a|
p

p′
+

F (aya)

ap−1

)′
= −

N − 1

r
|ya|

p ≤ 0.

Therefore
|y′a|

p

p′
+

F (aya)

ap−1
≤

1

p′
.

By virtue of (4) and for a sufficiently large we obtain

|y′a|
p

p′
≤

1

p′
+

F0

ap−1
≤

1

p′
+

1

p
= 1.

As 0 < ya <
β

a
then for a sufficiently large we get 0 < ya < 1. It follows

that |ya| and |y′a| are uniformly bounded if a is sufficiently large. Then by the
Arzela-Ascoli Theorem we deduce that ya → y uniformly as a → ∞ on the
compact sets of [R,∞), for some subsequence denoted the same by ya with y

is a continuous function on [R,∞) where y(R) = 0. Integrating (16) on [R, r]
gives

Φp(y
′
a) =

(R

r

)N−1
−

∫ r

R

( t

r

)N−1 f(aya)

ap−1
dt.

Since aya is bounded and f is continuous then
f(aya)

ap−1
→ 0 uniformly on [R,∞)

as a → ∞. Therefore it follows that Φp(y
′
a(r)) converges to

(R

r

)N−1
uniformly

on compact subsets of [R,∞). This implies that y′a converges uniformly as a →
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∞ on compact subsets of [R,∞) to a continuous function denoted z(r) =
(R

r

)k

with k = N−1
p−1 . Moreover z′ exists and is continuous. Furthermore

ya(r) =

∫ r

R

y′a(t) dt.

Letting a → ∞, we obtain that

y(r) =

∫ r

R

z(t) dt.

Then ya is continuously differentiable and y′ = z, thus y′a → y′ uniformly as

a → ∞ on the compact subsets of [R,∞). Since 0 < ya <
β

a
so ya → 0 as

a → ∞, then y ≡ 0 would imply that y′ ≡ 0. Which contradicts to y′(R) = 1.
Thus ua has a local maximum at Ma > R.

Next, we will show that |ua| has a global maximum at Ma. Otherwise,
suppose that there exists r1 > Ma such that |ua(r1)| > |ua(Ma)|. From (iii) of
Proposition 5 we have ua(Ma) ≥ β , since F is even and increasing on (β,∞)
therefore it follows

Ea(r1) = F (ua(r1)) = F (|ua(r1)|) > F (ua(Ma)) = Ea(Ma).

By the monotonicity of Ea we have r1 ≤ Ma, which contradicts to r1 > Ma.

For (2), we begin to claim that ua(Ma) → ∞ as a → ∞. To proof this,
assume to contrary that for a sufficiently large, there exists a constant C > 0
independent of a such that |ua(Ma)| ≤ C. As |ua| has a global maximum at
Ma then |ua(r)| ≤ C for all r ≥ R.

Let ya =
ua

a
. We proceed in the same way as (1), we show that ya → y with

y ≡ 0 and y′(R) = 1 this is a contradiction. Hence ua(Ma) → ∞ as a → ∞. In
the following we want to show that Ma → R, as a → ∞.

From (1) and by monotonicity of Ea, for a sufficiently large we see that
Ea(r) ≥ Ea(Ma) = F (ua(Ma)) on [R,Ma]. Denote xa = ua(Ma), so |u′a| =

u′a(r) ≥ (p′)
1
p

(

F (xa) − F (ua(r))
)

1
p
for all r ∈ [R,Ma]. Integrating this on

[R,Ma] gives

∫ xa

0

ds
(

F (xa)− F (s)
)

1
p

=

∫ Ma

R

u′a(r)
(

F (xa)− F (ua(r))
)

1
p

dr,
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then
∫ xa

0

ds
(

F (xa)− F (s)
)

1
p

≥ (p′)
1
p (Ma −R) > 0. (18)

First we estimate the integral on [
xa

2
, xa] for a sufficiently large. From (H2)

we have for x large enough that f(x) ≥
1

2
xq and since ua(Ma) = xa → ∞ as

a → ∞ we therefore have for a large enough that

Qa = min
[xa

2
,xa]

f ≥
1

2q+1
(xa)

q.

As p < q + 1 then it follows that

x
1− 1

p
a

Q
1
p
a

≤ 2
q+1
p (xa)

p−q−1
p → 0, as a → ∞.

Thus

lim
a→∞

(xa)
1− 1

p

Q
1
p
a

= 0. (19)

Since F (u) is increasing for u large enough, it follows that for
xa

2
≤ t ≤ xa we

have by the mean value theorem for some c such that
xa

2
≤ t < c < xa :

F (xa)− F (t) = f(c) (xa − t) ≥ Qa (xa − t). (20)

Thus
∫ xa

xa
2

dt
(

F (xa)− F (t)
)

1
p

≤ (
1

Qa
)
1
p

∫ xa

xa
2

dt
(

xa − t
)

1
p

≤
( p

(p− 1) 2
1− 1

p

) (xa)
1− 1

p

Q
1
p
a

.

From (19) we therefore have

lim
a→∞

∫ xa

xa
2

dt
(

F (xa)− F (t)
)

1
p

= 0. (21)
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Next we estimate the integral of left-hand side of (18) on [0,
xa

2
]. Then we have

F (t) ≤ F (
xa

2
) for all t ∈ [0,

xa

2
] and a sufficiently large. Thus by (20) we have

F (xa)− F (t) ≥ F (xa)− F (
xa

2
) ≥ Qa

xa

2
.

Then it follows that

∫ xa
2

0

dt
(

F (xa)− F (t)
)

1
p

≤ 2
1
p
−1 (xa)

1− 1
p

Q
1
p
a

.

Therefore by (19) we have

lim
a→∞

∫ xa
2

0

dt
(

F (xa)− F (t)
)

1
p

= 0. (22)

Combining (21) and (22), we conclude that

lim
a→∞

∫ xa

0

dt
(

F (xa)− F (t)
)

1
p

= 0.

Hence from (18) we see that Ma → R as a → ∞. This completes the proof of
Lemma 6.

Lemma 7. Assume (H1)–(H4) hold. Then ua > 0 on (R,∞) for a > 0
sufficiently small.

Proof. If Ma = ∞, then we have ua(r) > 0 for each r > R and so we are
done in this case.

If Ma < ∞, there are two cases:

1. If ua(Ma) < γ, since Ea(Ma) = F (ua(Ma)) < 0 then by virtue of (i) in
Proposition 5 we have ua > 0 on [Ma,∞), as u′a > 0 on [R,Ma) so ua > 0
on (R,∞) then it follows we are done in this case as well.

2. If ua(Ma) ≥ γ, so there exists two real ra and sa with R < ra < sa < Ma

such that ua(ra) = β and ua(sa) =
β+γ
2 . By the monotonicity of Ea we

get

Ea(r) =
|u′a|

p

p′
+ F (ua) ≤

ap

p′
, ∀r ≥ R.
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Therefore
|u′a|

(

ap − p′F (ua)
)

1
p

≤ 1 ∀r ≥ R. (23)

As u′a > 0 on [R, ra] and by integrating (23) on [R, ra], we obtain

∫ β

0

dt
(

ap − p′F (t)
)

1
p

=

∫ ra

R

u′a(r)
(

ap − p′F (ua(r))
)

1
p

dr

≤ ra −R.

Using (H4) and Remark 1, then we see that

∫ β

0

dt
(

ap − p′F (t)
)

1
p

→
(p− 1

p

)
1
p

∫ β

0

dt

|F (t)|
1
p

= ∞ as a → 0+.

Thus it follows that ra → ∞, also sa → ∞ as a → 0+. Next, by virtue of (13)
and (14) we have

(

rαEa(r)
)′

=
(

rα
)′

F (ua(r)), (24)

where α = p′(N − 1) > 1 because N ≥ 2 and p′ > 1. Integrating the above
equation on [ra, sa] and using (H3), we obtain

sαa Ea(sa)− rαa Ea(ra) =

∫ sa

ra

(

rα
)′

F (ua(r)) dr

≤ F (
β + γ

2
)

∫ sa

ra

(

rα
)′

dr

≤ F (
β + γ

2
)
(

sαa − rαa

)

.

As F (ua(r)) ≤ 0 on [R, ra] and by (24) we have r → rαEa(r) is decreasing.
Integrating again (24) on [R, ra], we obtain

rαa Ea(ra) = RαEa(ra) +

∫ ra

R

(

rα
)′

F (ua(r)) dr ≤ Rα ap

p′
.

Hence it follows that

sαa Ea(sa) ≤ Rα ap

p′
+ F (

β + γ

2
)
(

sαa − rαa

)

. (25)
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Now, by means value theorem and since α > 1 we therefore have,

sαa − rαa ≥ α rα−1
a (sa − ra). (26)

By integrating (23) on [ra, sa], we see that

∫
β+γ
2

β

dt
(

ap − p′F (t)
)

1
p

=

∫ sa

ra

u′a(r)
(

ap − p′F (ua(r))
)

1
p

dr

≤ sa − ra.

Using (4), taking 0 < a < 1 and for each t ∈ [β, β+γ
2 ] we get

ap − p′F (t) ≤ 1 + p′F0.

Therefore

sa − ra ≥
γ − β

2

(

1 + p′F0

)− 1
p
.

From (26) we deduce that

sαa − rαa ≥
γ − β

2

(

1 + p′F0

)− 1
p
α rα−1

a .

As lim
a→0+

ra = ∞ it follows that

lim
a→0+

sαa − rαa = ∞.

Then by virtue of (25) and since F (β+γ
2 ) < 0 we have

lim
a→0+

sαa Ea(sa) = −∞.

Hence, for small enough positive a we get Ea(sa) < 0. Thus by (i) in Proposition
5 it follows that ua > 0 on [sa,∞) if a is sufficiently small positive. As ua > 0
increasing on [R, sa) which implies that ua > 0 on (R, sa]. Hence ua > 0 on
(R,∞) for small enough positive a. This completes the proof of Lemma 7.

Lemma 8. Assume (H1)–(H4) hold. Then ua has only simple zeros on
[R,∞).

Proof. The proof of this lemma is similar to [11, Lemma 2.6]. Assume to
the contrary that ua reaches a double zero at some point r0 > R. Let
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r1 = inf
r>R

{

r | ua(r) = u′a(r) = 0
}

.

As ua(r0) = u′a(r0) = 0 then R ≤ r1 < ∞. First, we like to show that r1 = R.

By contradiction we assume that r1 > R and let r ∈ (
R+ r1

2
, r1) fixed.

Integrating (14) on (r, r1) we see that

Ea(r1)− Ea(r) = −

∫ r1

r

(N − 1)|u′a|
p

t
dt.

From (13) and Ea(r1) = 0 we see that

Ea(r) =
|u′a|

p

p′
+ F (ua) =

∫ r1

r

(N − 1)|u′a|
p

t
dt. (27)

Denote w =
∫ r1
r

(N−1)|u′

a|
p

t
dt and differentiating gives

−
N − 1

r
|u′a|

p = w′.

Substituting in (27), we obtain

w′ +
α

r
w =

α

r
F (ua), (28)

where α = p′(N − 1) > 1. Multiplying both sides by rα we have

(rαw)′ = αrα−1F (ua).

Integrating the above on [r, r1] we obtain

rα1 w(r1)− rα w(r) = α

∫ r1

r

tα−1F (ua) dt.

As u(r1) = 0, so for r sufficiently close to r1 we have |ua| ≤ β and by (H3)
implies that F (ua) < 0 on (r, r1). Since w(r1) = 0, then it follows for r

sufficiently close to r1

w =
α

rα

∫ r1

r

tα−1|F (ua)|dt.

Combining the equation above and (28), we therefore have, for r sufficiently
close to r1

|u′a(r)|
p = p′

(

|F (ua(r))| +
α

rα

∫ r1

r

tα−1|F (ua)| dt
)

. (29)
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Notice that for r < r1 and r sufficiently close to r1 then u′a(r) 6= 0. Otherwise
there exists r2 < r1 such that u′a(r2) = 0 then by (29) we deduce that ua ≡ 0 on
(r2, r1) and by continuity we have ua(r2) = u′a(r2) = 0. Which contradict the
definition of r1. Thus without loss of generality we assume that u′a < 0 for r < r1
with r is sufficiently close to r1. Thus we have 0 < ua ≤ β on (r, r1). Since F

is decreasing on [0, β], therefore it follows that |F (ua(r))| > |F (ua(t))| > 0 for
each r < t < r1. From (29) we therefore have

|u′a|
p ≤ p′

(

|F (ua(r))|+
|F (ua(r))|

rα
(rα1 − rα)

)

= p′|F (ua(r))|
(r1

r

)α

≤ p′2α |F (ua(r))| (since
r1

r
< 2−

R

r
< 2).

Thus
|u′a| ≤ Cp,α|F (ua(r))|

1
p ,

where Cp,α = (p′2α)
1
p . Dividing by |F (ua(r))|

1
p , integrating the above on [r, r1]

and using (H4) we have

∞ =

∫ ua(r)

0

1

|F (s)|
1
p

ds =

∫ r1

r

|u′a(t)|

|F (ua(t))|
1
p

dt ≤ Cp,α (r1 − r) < ∞.

This is impossible, therefore r1 = R implying u′a(R) = 0. This is a contradiction
with u′a(R) = a > 0. Hence ua has only simple zeros on [R,∞). This completes
the proof of Lemma 8.

3. Solutions with a prescribed number of zeros

In this section we are interested to study the behaviour of zeros of solution to
(7)-(8) assuming (H1)–(H4) hypotheses. By virtue of Lemma 7, if a is small
enough we saw that ua has no zeros on (R,∞) and by Lemma 8, we get ua has
only simple zeros. In the following as in [9, 11] we want to show that ua has an
arbitrary large number of zeros on (R,∞) for a large enough. Which leads to

the existence of sign changing solution. Let λ
p

q−p+1
a = ua(Ma) and we define

vλa
(r) = λ

−p
q−p+1
a ua(Ma +

r

λa
) ∀r ≥ 0.

By (7), it is straightforward to show that

(

(λaMa + r)N−1Φp(v
′
λa
)
)′
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+λ
−pq

q−p+1
a

(

λaMa + rN−1
)N−1

f(λ
p

q−p+1
a vλa

) = 0, (30)

vλa
(0) = 1 , v′λa

(0) = 0. (31)

By Lemma 6 and q − p+ 1 > 0 we have that

lim
a→∞

λa = ∞. (32)

Lemma 9. As a → ∞, vλa
→ v, uniformly on compact subsets of [0,∞),

and v satisfies
(

Φp(v
′)
)′

+ |v|q−1v = 0, (33)

v(0) = 1, v′(0) = 0. (34)

Proof. By virtue of (H2) we have

F (u) =
1

q + 1
|u|q+1 +G(u),

where G(u) =
∫ u

0 g(s) ds. Then it follows that

lim
|u|→∞

F (u)

|u|q+1
=

1

q + 1
+ lim

|u|→∞

G(u)

|u|q+1
.

By using the L’Hospital’s rule we have,

lim
u→∞

G(u)

uq+1
= 0.

Since G is even then

lim
|u|→∞

F (u)

|u|q+1
=

1

q + 1
. (35)

Let

Eλa
(r) =

|v′λa
|p

p′
+ λ

−p(q+1)
q−p+1

a F (λ
p

q−p+1
a vλa

).

By differentiating we therefore have

E′
λa
(r) = −

(N − 1)|v′λa
|p

r
≤ 0.

Then Eλa
is decreasing on [0,∞) which implies that

Eλa
(r) ≤ Eλa

(0) = λ
−p(q+1)
q−p+1

a F (λ
p

q−p+1
a ).
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By (32)–(35) we see that

λ
−p(q+1)
q−p+1

a F (λ
p

q−p+1
a ) →

1

q + 1
as a → ∞.

Thus for a large enough we see that

Eλa
(r) ≤

2

q + 1
∀r ≥ 0.

By (4) and (32) for a large enough, it follows that

|v′λa
|p

p′
≤

2

q + 1
+ λ

−p(q+1)
q−p+1

a F0 ≤
3

q + 1
∀r ≥ 0.

Hence we have |v′λa
| is uniformly bounded on [0,∞) by Mp,q =

( 3p′

q + 1

)
1
p
, for

a sufficiently large. From Lemma 6 we obtain

|vλa
| ≤ λ

−p
q−p+1
a ua(Ma) = 1.

Thus |vλa
| and |v′λa

| are uniformly bounded. By Arzela-Ascoli’s theorem, for
some subsequence still denoted vλa

, we have vλa
→ v uniformly on compact

subsets of [0,∞) and v is continuous.
On the other hand, by integrating (30) on [0, r] and using (31), we obtain

v′λa
= −Φp′(

∫ r

0

(λaMa + t

λaMa + r

)N−1(

|vλa
|q−1vλa

+ λ
−pq

q−p+1
a g(λ

p
q−p+1
a vλa

)
)

dt).

(36)
From (H2) and since g is continuous, then for all ǫ > 0 there exists C > 0 such
that

|g(u)| ≤ C + ǫ|u|q ∀u ∈ R,

it follows that

|g(λ
p

q−p+1
a vλa

)| ≤ C + ǫ λ
pq

q−p+1
a

(

since |vλa
| ≤ 1

)

.

Thus

λ
−pq

q−p+1
a |g(λ

p
q−p+1
a vλa

)| ≤ λ
−pq

q−p+1
a C + ǫ.

By virtue of (32) we have λ
−pq

q−p+1
a → 0 as a → ∞. Then it follows that, for a

sufficiently large

λ
−pq

q−p+1
a |g(λ

p
q−p+1
a vλa

)| ≤ 2ǫ,
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which implies that λ
−pq

q−p+1
a g(λ

p
q−p+1
a vλa

) → 0 as a → ∞ uniformly on [0,∞).

From (32) we have λaMa → ∞ as a → ∞, we therefore have
(λaMa + t

λaMa + r

)N−1
→

1, as a → ∞ uniformly on compact subsets of [0,∞). Since vλa
→ v as a → ∞

uniformly on compact subsets of [0,∞) and by (36) we deduce that

v′λa
→ −Φp′

(

∫ r

0
|v|q−1v dt

)

≡ w pointwise on [0,∞),

w is continuous. Furthermore from

vλa
= 1 +

∫ r

0
v′λa

dt,

since vλa
→ v as a → ∞ uniformly on compact subsets of [0,∞), v′λa

→ w

as a → ∞ (pointwise) and |v′λa
| is uniformly bounded by Mp,q, therefore by

applying the dominated convergence theorem we have

v = 1 +

∫ r

0
w(t) dt.

Thus v′ = w. Then it follows from (36) that

v′ = −Φp′

(

∫ r

0
|v|q−1v dt

)

.

Hence v ∈ C1[0,∞) and v satisfies (33)–(34). This ends the proof of Lemma
9.

Lemma 10. Let v be as in Lemma 9. Then v has a zero on [0,∞).

Proof. Suppose by the way of contradiction that v > 0 on [0,∞). By
integrating (33) on [0, r] we obtain

−Φp(v
′) =

∫ r

0
vq dt > 0.

So v′ < 0 and v is decreasing on [0,∞). It follows that

|v′(r)|p−1 =

∫ r

0
vq dt ≥ r vq(r),

which implies that
−v′(r)

v
q

p−1 (r)
≥ r

1
p−1 .
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By integrating the above on [0, r] we get

p− 1

q − p+ 1

(

v
− q−p+1

p−1 (r)− 1
)

≥
p− 1

p
r

p
p−1 ,

as q − p+ 1 > 0 we see that

v
− q−p+1

p−1 (r) ≥ 1 +
q − p+ 1

p
r

p
p−1 ≥

q − p+ 1

p
r

p
p−1 ,

therefore

vq+1 ≤ Cp,q r
−p(q+1)
q−p+1 ,

where

Cp,q =
( p

q − p+ 1

)

(q−p+1)(q+1)
p−1

.

Therefore it follows that
∫ ∞

1
vq+1(t) dt ≤ Cp,q

∫ ∞

1
r

−p(q+1)
q−p+1 dt < ∞.

By continuity of v we get v is bounded on compact set [0, 1] so

∫ ∞

0
vq+1(t) dt < ∞. (37)

Let for each r ≥ 0,

E(r) =
|v′(r)|p

p′
+

1

q + 1
|v(r)|q+1.

From (33) we obtain E′(r) = 0 on [0,∞), it implies that E ≡ E(0) =
1

q + 1
.

Therefore it follows that

|v′(r)|p =
p′

q + 1

(

1− |v(r)|q+1
)

. (38)

Since v > 0 and from (33) we see that

(

vΦp(v
′)
)′

= v′ Φp(v
′)−

(

Φp(v
′)
)′

= |v′|p − vq+1.

Integrating this on [0, r] and using (34) we have

v(r)Φp(v
′(r)) =

∫ r

0
|v′|p − vq+1 dt,
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since v > 0 and v′ < 0, thus it follows that
∫ ∞

0
|v′|p dt ≤

∫ ∞

0
vq+1 dt < ∞. (39)

By integrating (38) on [0, r] we obtain
∫ r

0
|v′|pdt =

p′

q + 1

∫ r

0
(1− vq+1) dt =

p′

q + 1

(

r −

∫ r

0
vq+1 dt

)

.

Letting r → ∞ and using (37) we have
∫ ∞

0
|v′|p dt = ∞.

Which contradicts (39). This completes the proof of Lemma 10.

Lemma 11. If a is sufficiently large. Then ua has an arbitrarily large
number of zeros on (R,∞).

Proof. We begin to establish the following claim.

Claim: v has an infinite number of zeros on [0,∞).

Indeed, by Lemma 10 v has a zero z1 > 0 such that v > 0 and v′ < 0
on (0, z1). Next we want to show that v has a first local minimum on (z1,∞)
denoted m1. So, suppose by contradiction that v is decreasing on [0,∞). Since
v is bounded and decreasing then lim

r→∞
v(r) = ℓ exists. As in the proof of (ii)

Proposition 5 we therefore have, lim
r→∞

v′(r) = 0 and ℓ = 0. From (38) and

letting r → ∞ we obtain

lim
r→∞

|v′(r)|p =
p′

q + 1
> 0.

This contradicts to lim
r→∞

v′(r) = 0. Hence, v has a first minimum denoted

m1 > z1 and v1 = v(m1) < 0. Thus v satisfies,

Φp(v
′) = −

∫ r

m1

|v|q−1 v dt, ∀r > m1

v(m1) = v1 and v′(m1) = 0.

In a similar way of Lemma 10 we can show that v has a second zero at z2 >

z1 > R and has a second extremum m2 > z2. Continuing in this way we can
get an arbitrarily large number of zeros for v on [0,∞). Which is complete the
proof of claim.
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Now, since vλa
→ v as a → ∞ uniformly on compact subsets of (R,∞). By

virtue of the previous claim and (32), it follows that vλa
has an arbitrary large

number of zeros for a large enough. Finally, as ua(Ma +
r

λa
) = λ

p
q−p+1
a vλa

(r),

hence we can get as many zeros of ua as desired on (R,∞) for a sufficiently
large. This ends the proof of Lemma 11.

4. Proof of Main Result

For k ≥ 0 defined by set

Sk = {a > 0 | ua(r) has exactly k zeros on (R,∞) }

If a is sufficiently small it follows by Lemma 7 that ua > 0 for any r > R, so
S0 = {a > 0 | ua(r) > 0 ∀r > R } is nonempty and by virtue of Lemma 11
we conclude that S0 is bounded from above. Let

a0 = supS0.

Lemma 12. ua0 > 0 for all r > R.

Proof. Assume to the contrary, that there exists a zero z0 > R of ua0 .
Then ua0(z0) = 0 and ua0 > 0 on (R, z0) and by Lemma 8 we have u′a0(z0) < 0.
Thus ua0 < 0 on (z0, z0 + ǫ) for some ǫ > 0. If a close to a0 with a < a0 and by
continuous dependence of solutions on initial conditions, it follows that ua ≤ 0
on (z0, z0 + ǫ). Which contradicts to the definition of a0.

Lemma 13. Ea0 ≥ 0 on [R,∞).

Proof. By the definition of a0, if a > a0 then ua has a zero denoted za > R.
We begin to show the following result

lim
a→a+0

za = ∞. (40)

Indeed suppose by contradiction there exists a subsequence of za still denoted
za converges to some z ∈ [R,∞), as a → a+0 . As ua converges uniformly on a
compact set [R, z + 1], Therefore it follows that

0 = lim
a→a+0

ua(za) = ua0(z).
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Which contradicts to Lemma 12. Hence (40) is proven.

Now, assume to the contrary that there exists r0 > R such that Ea0(r0) <
0, then Ea(r0) < 0 for a close to a+0 . By the definition of a0 and taking
a > a0, there exists a zero za of ua such that Ea(za) ≥ 0 > Ea(r0). From the
monotonicity of Ea we have za < r0 < ∞. Which contradicts (40). This ends
the proof of Lemma 13.

Lemma 14. ua0 has a local maximum at Ma0 > R.

Proof. By the way of contradiction, suppose that u′a0 > 0 on [R,∞). From
(iii) of the Proposition 5 we see that lim

r→∞
ua0(r) = β and by the definition of

a0 if a > a0 then ua has a zero denoted za > R. Next, from (ii) of Proposition
5 therefore it follows that lim

r→∞
Ea0(r) = F (β) < 0. From Lemma 13 we see

that Ea0(r) ≥ 0. Thus 0 ≤ lim
r→∞

Ea0(r) = F (β) < 0, this is contradictory. End

of the proof of Lemma 14.

Lemma 15. u′a0 < 0 on (Ma0 ,∞).

Proof. We argue by the contradiction. We distinguish two cases:

(1) If there exists r1 > Ma0 such that u′a0(r1) = 0 and u′a0 < 0 on (Ma0 , r1),
or

(2) If u′a0 = 0 on [Ma0 ,∞).

In the first case we have 0 < ua0(r1) < β. Indeed, assume to contrary that
ua0(r1) ≥ β, then by (H3) we see that f(ua0(r1)) ≥ 0. Further from (10) and
the fact that u′a0(Ma0) = 0 we have

0 = −rN−1Φp(u
′
a0
(r1)) =

∫ r1

Ma0

tn−1 f(ua0(t)) dt. (41)

As ua0 is non-increasing on [Ma0 , r1] then ua0(t) ≥ ua0(r1) for all t ∈ [Ma0 , r1]
and by using (H3) it follows that f(ua0(t)) ≥ f(ua0(r1)) ≥ 0. From (41) we have
f(ua0) ≡ 0 on [Ma0 , r1] implying that u ≡ β on [Ma0 , r1], which contradicts to
u′a0 < 0 on (Ma0 , r1). Thus 0 < ua0(r1) < β implying Ea0(r1) = F (ua0(r1)) < 0.
Which contradicts to Lemma 13, then it follows we are done in this case. In
the second case we must have that u = c on [Ma0 ,∞). Then by (ii) and (iii) of
Proposition 5 it follows that f(c) = 0 and c = β. Thus 0 < ua0 < β on (R,Ma0)
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and by using (H3) we obtain f(ua0) < 0. From (10) and u′a0(Ma0) = 0 we see
that

rN−1Φp(u
′
a0
(r)) =

∫ Ma0

r

tn−1 f(ua0(t)) dt < 0.

Therefore we have u′a0 < 0 on (R,Ma0), this a contradiction then it follows we
are done in this case as well. End of the proof of Lemma 15.

By Lemmas 14 and 15 then it follows that lim
r→∞

ua(r) = ℓ exists and by (ii)

of Proposition 5, we have that f(ℓ) = 0 and lim
r→∞

Ea0(r) = F (ℓ). Then either

ℓ = 0 or ℓ = β.
If ℓ = β again by (ii) of Proposition 5 we therefore have lim

r→∞
Ea0(r) =

F (β) < 0. By Lemma 13 we have Ea0(r) ≥ 0 for each r ≥ R, so it follows that
F (β) = lim

r→∞
Ea0(r) ≥ 0. Which contradicts to F (β) < 0. Hence ℓ = 0 and

finally we have found a non-negative solution of (5)-(6).
Next by [11, Lemma 4.3], if a > a0 and a → a0 then ua has at most one

zero on (R,∞). From the definition of a0 if a > a0 we have ua has at least one
zero. Thus for a > a0 close to a0 the solution ua has exactly one zero. Then it
follows that S1 nonempty and by lemma 11 we see that S1 is bounded above.
Let

a1 = supS1.

As in above lemmas by using a similar argument, we can show that ua1 has one
simple zero and lim

r→∞
ua1(r) = 0. Hence, it follows that there exists a solution

of (5)-(6) which has exactly one sign change in (R,∞).
Proceeding inductively we can show that, for each k ∈ N there exists a

solution uak = uk of (5)-(6) which has exactly k zeros on (R,∞) with u′k(R) > 0.
Now, in the case a < 0 we consider the problem

(

rN−1Φp(v
′)
)′

+ rN−1f(v) = 0 if R < r,

v(R) = 0, v′(R) = a < 0.
(42)

We denote w(r) = −v(r) on [R,∞), as f and Φp are odd, then it follows the
problem (42) is equivalent to

(

rN−1Φp(w
′)
)′

+ rN−1f(w) = 0 if R < r,

w(R) = 0, w′(R) = −a > 0.

Next, according to the case a > 0 we deduce that, for each k ∈ N,the problem
(5)-(6) has a solution wk which has exactly k zeros on (R,∞) with w′

k(R) > 0.
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Hence, for each k ∈ N integer, (5)-(6) has a solution vk = −wk which has k

zeros on (R,∞) and v′k(R) < 0. This ends the proof of Theorem 2.
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[6] C.K.R.T. Jones, T. Küpper, On the infinitely many solutions of a semilin-
ear equation, SIAM J. Math. Anal., 17 (1986), 803-835.

[7] J. Joshi, J. Iaia, Existence of solutions for semilinear problems with pre-
scribed number of zeros on exterior domains, Electronic Journal of Differ-
ential Equations, 112 (2016), 1-11.

[8] Q. Jiu, J. Su, Existence and multiplicity results for Dirichlet problems
with p-Laplacian, Journal of Mathematical Analysis and Applications, 281
(2003), 587-601.

[9] K. Mcleod, W.C. Troy, F.B. Weissler, Radial solution of ∆u + f(u) = 0
with prescribed numbers of zeros, Journal of Differential Equations, 83
(1990), 368-378.

[10] E. Nabana, Uniqueness for positive solutions of p-Laplacian problem in an
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