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Abstract: Lattices can be applied in different areas of research, particularly,
they can be applied in information theory and encryption schemes. Signal
constellations having lattice structure have been used as a support for signal
transmission over the Gaussian and Rayleigh fading channels.

The problem to find a good signal constellation for Gaussian channels is
associated to the search of lattices which present a good packing density, that
is, dense lattices. In this way, we propose an algebraic framework to construct
the dense lattice E8 from the principal ideal ℑ = ((1 + ξ3) + ξ3ξ24 + ξ3ξ

2
24) of

the cyclotomic field Q(ξ24), where ξ3 and ξ24 are the third and 24-th root of
unity, respectively.

The advantage of obtaining lattices from this method is the identification
of the lattice points with the elements of a number field. Consequently, it is
possible to utilize some properties of number fields in the study of such lattices.
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1. Introduction

Signal constellations having a lattice structure have been studied as meaningful
tools for transmitting data over both Gaussian and single-antenna Rayleigh
fading channels [1]. Usually the problem of finding good signal constellations
for a Gaussian channel is associated to the search for lattices with high packing
density [2]. On the other hand, for a Rayleigh fading channel, a design criterion
obtained by minimizing the error probability at the receiver is strongly related
to what has been named lattice diversity and minimum product distance [1],[3].

For general lattices the packing density and the minimum product distance
are usually hard to calculate [4]. Nevertheless, those parameters can be obtained
in some cases, when ideal lattices associated to number fields are used [5].

In the literature, there exist several ways to construct algebraically and
geometrically lattices. Algebraic constructions enable the computation of in-
variants such as packing density (density) and minimum product distance which
are important for applications related to error correcting codes and encryption
schemes based on lattices.

The E8-lattice is the densest lattice and the best quantizer in dimension 8
[6]. In [7], the author proposes the trace construction to obtain the E8-lattice
via the ring of integers of the cyclotomic fields Q(ξ24), Q(ξ20) and Q(ξ15),
where ξ24, ξ20 and ξ15 are the 24, 20 and 15-th roots of unity, respectively.
In [8], the E8-lattice is constructed as a full diversity ideal lattice via some
subfield of cyclotomic field. In [9], the E8-lattice is constructed as a space-time
code with full diversity and high coding gain. In [10], the authors propose
four new constructions of the E8-lattice from left ideals of maximal orders of
some quaternion algebras with centers Q(

√
−d), d = 1, 2, 3, 7, and, in [11], the

E8-lattice is constructed via an order in an octonion algebra over a totally real
number field.

In this work we present a new construction of the dense lattice E8. In this
construction, we obtain the E8-lattice via the principal ideal ℑ = ((1 + ξ3) +
ξ3ξ24 + ξ3ξ

2
24) of the cyclotomic field Q(ξ24), where ξ3 and ξ24 are the third and

24-th root of unity, respectively.
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2. Lattice Theory

Lattices have been very useful in applications in communication theory and, in
this work, we have the construction of the dense lattice E8 via the cyclotomic
field Q(ξ24). In this section we present basic concepts of the lattice theory.

Definition 1. Let v1, v2, . . . , vm be a set of linearly independent vectors
in Rn such that m ≤ n. The set of the points

Λ = {x =
∑m

i=1 λivi, where λi ∈ Z}

is called a lattice of rank m and {v1, v2, . . . , vm} is called a basis of the lattice.

So we have that a real lattice Λ is simply a discrete set of vectors (points
(n-tuples)) in real Euclidean n-space Rn that forms a group under ordinary
vector addition, i.e., the sum or difference of any two vectors in Λ is in Λ. Thus
Λ necessarily includes the all-zero n-tuple 0 and if λ is in Λ, then so is its
additive inverse −λ.

As an example, the set Z of all integers is the only one-dimensional real
lattice, up to scaling, and the prototype of all lattices. The set Zn of all integer
n-tuples is an n-dimensional real lattice, for any n, and its corresponding n

2 -

dimensional complex lattice is given by Z[i]
n

2 .

A sublattice Λ′ of Λ is a subset of the points of Λ which is itself an n-
dimensional lattice. The sublattice induces a partition Λ/Λ′ of Λ into |Λ/Λ′|
cosets of Λ′, where |Λ/Λ′| is the order of the partition.

The coset code C(Λ/Λ′;C) is the set of all sequences of signal points that lie
within a sequence of cosets of Λ′ that could be specified by a sequence of coded
bits from C. Some lattices, including the most useful ones, can be generated as
lattice codes C(Λ/Λ′;C), where C is a binary block code. If C is a convolutional
encoder, then C(Λ/Λ′;C) is a trellis code [12].

A lattice code C(Λ/Λ′;C), where C is a binary block code, is defined as the
set of all coset leaders in Λ/Λ′, i.e.,

C(Λ/Λ′;C) = Λ mod Λ′ = {λ mod Λ′ : λ ∈ Λ}.

Definition 2. The parallelotope formed by the points

θ1v1 + · · · + θmvm, where 0 ≤ θi < 1, i = 1, . . . ,m,

is called a fundamental parallelotope or fundamental region of the lattice.
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Definition 3. A sphere packing is a distribution of spheres in Rn that
have the same radius and the intersection of two of them is, at most, formed by
one point. A lattice packing is a sphere packing in which the set of the centers
of the spheres form a lattice Λ in Rn.

Definition 4. Let Λ be a lattice. The packing density of Λ is defined by

△(Λ) = volume of the region covered by an sphere
volume of the fundamental region .

One of the problems related to sphere packing of a lattice in Rn is to find a
sphere packing which has the greatest packing density. It is known and proved
that the packing density of the lattices A1, A2,D3,D4,D5, E6, E7, E8 and Λ24

in dimensions from 1 through 8 and 24, respectively, is great, that is, they are
dense lattices in their dimension.

Besides the lattice E8 be the densest lattice in dimension 8, it is the only
even and unimodular lattice in its dimension. The lattice E8 (E8-lattice) is an
8-dimensional lattice defined by

E8 = {(x1, . . . , x8) | either xi ∈ Z or xi ∈ Z+ 1
2 ,

∀ i = 1, . . . , 8, and
∑8

i=1 xi ≡ 0 (mod 2)}.

3. Construction of the Dense Lattice E8 from an Ideal of the

Cyclotomic Field Q(ξ24)

In this section we show that the dense lattice E8 can be obtained from an
ideal of the cyclotomic field Q(ξ24). Therefore we consider the following Galois
extensions:

Q(ξ24)

4

Q(ξ3)

2

Q

Let ξ3 = e
2πi

3 = −1+
√
3i

2 and ξ24 = e
2πi

24 be the third root of unity and
the 24-th root of unity, respectively. We can notice that ξ23 + ξ3 + 1 = 0
and ξ23 = −ξ424, then we have ξ424 + ξ23 = 0. Observe that x2 + x + 1 and
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x4 + ξ23 are monic and irreducible polynomials over Q and Q(ξ3), respectively.
As [Q(ξ24) : Q] = φ(24) = 8, where φ is the Euler function, and [Q(ξ3) : Q] = 2,
then we have [Q(ξ24) : Q(ξ3)] = 4 = n.

Since {1, ξ24, . . . , ξ724} is an integral basis of Z[ξ24], the ring of integers of
Q(ξ24), and ξ24 = −ξ23 , it follows that Z[ξ24] is a free Z[ξ3]-module of rank 4
and

{1, ξ24, ξ224, ξ324}

is a Z[ξ3]-basis of Z[ξ24].

Let 2 + ξ3 =
√
−3 = i

√
3 ∈ Z[ξ3], where Z[ξ3] is the ring of integers of

Q(ξ3). Observe that NQ(ξ3)/Q(2 + ξ3) = (2 + ξ3)(2 + ξ23) = 4 + 2ξ23 +2ξ3 + ξ33 =
2(ξ23+ξ3)+5 = −2+5 = 3, since ξ23+ξ3+1 = 0, and (2+ξ3)

2 = −3ξ23 = 3(−ξ23).
Then 3 is totally ramified in Q(ξ3).

Therefore we have that 3 is totally ramified in Q(ξ24) and 3Z[ξ24] = (3) =
ℑ8, where ℑ = ((1+ξ3)ξ24+ξ3ξ

2
24+ξ3ξ

3
24). Then we have that ℑ is the principal

ideal in Z[ξ24] generated by (1 + ξ3)ξ24 + ξ3ξ
2
24 + ξ3ξ

3
24.

Observe that ξ24 ∈ Z[ξ24] and (1+ξ3)ξ24+ξ3ξ
2
24+ξ3ξ

3
24 = ξ24((1+ξ3)+ξ3ξ24+

ξ3ξ
2
24). Since ξ24 is a unity in Z[ξ24], it follows that the principal ideal ℑ is also

generated by µ = (1+ξ3)+ξ3ξ24+ξ3ξ
2
24. Then ℑ = ((1+ξ3)+ξ3ξ24+ξ3ξ

2
24) = (µ).

The next theorem shows us that the dense lattice E8 can be obtained from
the principal ideal ℑ = ((1+ξ3)+ξ3ξ24+ξ24ξ

2
24) via the cyclotomic field Q(ξ24).

Theorem 5. The dense lattice E8 can be constructed from the principal

ideal ℑ = ((1+ ξ3)+ ξ3ξ24 + ξ3ξ
2
24) in Z[ξ24], where Z[ξ24] is the ring of integers

of the cyclotomic field Q(ξ24).

Proof. We have ξ424 = −ξ23 ,
Z[ξ3]

(2+ξ3)Z[ξ3]
≃ F3 = {0, 1,−1} and ξ23 ≡ 1 (modulo

(2 + ξ3)), since ξ23 = −(1 + ξ3) ≡ 1 (modulo (2 + ξ3)).

Let v ∈ Z[ξ24], then v = a0 + a1ξ24 + a2ξ
2
24 + a3ξ

3
24, where ak ∈ Z[ξ3],

k = 0, 1, 2, 3, and ξ424 = −ξ23 .

Since Z[ξ3]
(2+ξ3)Z[ξ3]

≃ F3 = {0, 1,−1} and ak ∈ Z[ξ3], we have ak = (2+ξ3)bk+

ck, where bk ∈ Z[ξ3] and ck = 0, 1 or −1. Thereby,

v = ((2+ξ3)b0+c0)+((2+ξ3)b1+c1)ξ24+((2+ξ3)b2+c2)ξ
2
24+((2+ξ3)b3+c3)ξ

3
24

= [(2+ξ3)b0+(2+ξ3)b1ξ24+(2+ξ3)b2ξ
2
24+(2+ξ3)b3ξ

3
24]+[c0+c1ξ24+c2ξ

2
24+c3ξ

3
24]

= (2 + ξ3)(b0 + b1ξ24 + b2ξ
2
24 + b3ξ

3
24) + (c0 + c1ξ24 + c2ξ

2
24 + c3ξ

3
24).
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Let w = (2+ ξ3)(b0+ b1ξ24+ b2ξ
2
24+ b3ξ

3
24), then w ∈ (2+ ξ3)Z[ξ24] ⊂ Z[ξ24]

and

v = w + (c0 + c1ξ24 + c2ξ
2
24 + c3ξ

3
24), where ck ∈ F3 = {0, 1,−1}.

Therefore v − w = c0 + c1ξ24 + c2ξ
2
24 + c3ξ

3
24, where ck ∈ F3 = {0, 1,−1}.

We have ξ424 = −ξ23 ≡ (−1) (modulo (2 + ξ3)), then ξ424 = −1 over the
field F3 = {0, 1,−1}. Let x = ξ24, then x4 = −1 over F3 and it follows that
v(x)− w(x) = c0 + c1x+ c2x

2 + c3x
3 (modulo x4 − 1).

Since 3 < 4, we can conclude that [v(x) − w(x)] = {c0 + c1x + c2x
2 +

c3x
3, where ck ∈ F3 = {0, 1,−1}} ≃ F4

3.

By using the fact that v ∈ Z[ξ24] is an arbitrary element, it follows that
Z[ξ24]

(2+ξ3)Z[ξ24]
≃ F4

3. Besides, since Z[ξ3]
(2+ξ3)Z[ξ3]

≃ F3, we have Z[ξ3]
4 = (2 +

ξ3)Z[ξ3]
4 + (4, 4, 1)F3

, where C0 = (4, 4, 1)F3
is the universal code. Therefore

Z[ξ24] ≃ Z[ξ3]
4.

Now observe that ℑ = (µ) = ((1+ ξ3)+ ξ3ξ24+ ξ3ξ
2
24) = {((1+ ξ3)+ ξ3ξ24+

ξ3ξ
2
24)(a0 + a1ξ24 + a2ξ

2
24 + a3ξ

3
24), where ak ∈ Z[ξ3], k = 0, 1, 2, 3, and ξ424 =

−ξ23 over Q(ξ3)}.
Let u ∈ ℑ, then u = µ(a0 + a1ξ24 + a2ξ

2
24 + a3ξ

3
24), where ak ∈ Z[ξ3],

k = 0, 1, 2, 3, and ξ424 = −ξ23 ≡ (−1) (modulo (2 + ξ3)).

Since Z[ξ3]
(2+ξ3)Z[ξ3]

≃ F3 = {0, 1,−1} and ak ∈ Z[ξ3], we have ak = (2+ξ3)bk+

ck, where bk ∈ Z[ξ3] and ck=0,1 or -1. Therefore,

u =
µ[((2+ξ3)b0+c0)+((2+ξ3)b1+c1)ξ24+((2+ξ3)b2+c2)ξ

2
24+((2+ξ3)b3+c3)ξ

3
24)]

=
µ[(2+ξ3)b0+(2+ξ3)b1ξ24+(2+ξ3)b2ξ

2
24+(2+ξ3)b3ξ

3
24]+µ[c0+c1ξ24+c2ξ

2
24+c3ξ

3
24]

= µ(2 + ξ3)(b0 + b1ξ24 + b2ξ
2
24 + b3ξ

3
24) + µ(c0 + c1ξ24 + c2ξ

2
24 + c3ξ

3
24)

= (2 + ξ3)µ(b0 + b1ξ24 + b2ξ
2
24 + b3ξ

3
24) + µ(c0 + c1ξ24 + c2ξ

2
24 + c3ξ

3
24).

Let w1 = (2+ξ3)µ(b0+b1ξ24+b2ξ
2
24+b3ξ

3
24). Since ξ

4
24 = −ξ23 and bk ∈ Z[ξ3],

we have w1 ∈ (2 + ξ3)Z[ξ24] ⊂ Z[ξ24], where (2 + ξ3)Z[ξ24] ≃ (2 + ξ3)Z[ξ3]
4, and

u = w1 + µ(c0 + c1ξ24 + c2ξ
2
24 + c3ξ

3
24), where ck ∈ F3 = {0, 1,−1}.

Observe that Z[ξ3]
(2+ξ3)Z[ξ3]

≃ F3 = {0, 1,−1} and let σ be an isomorphism

between Z[ξ24] and the Z[ξ3]
4-lattice. Thereby

u− w1 = µ(c0 + c1ξ24 + c2ξ
2
24 + c3ξ

3
24)

= ((1 + ξ3) + ξ3ξ24 + ξ3ξ
2
24)(c0 + c1ξ24 + c2ξ

2
24 + c3ξ

3
24),
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where ck ∈ F3 = {0, 1,−1}.
As µ = ((1 + ξ3) + ξ3ξ24 + ξ3ξ

2
24) ∈ Z[ξ24], then we have

((1 + ξ3) + ξ3ξ24 + ξ3ξ
2
24) ≡ (−1 + ξ24 + ξ224) (modulo (2 + ξ3)),

since (1 + ξ3) ≡ −1 (modulo (2 + ξ3)) and ξ3 ≡ 1 (modulo (2 + ξ3)).

We have ξ424 = −ξ23 ≡ (−1) (modulo (2 + ξ3)), then ξ424 = (−1) over the
field F3 = {0, 1,−1}. Let x = ξ24, then x4 = (−1) (x4 + 1 = 0) over F3 and it
follows that

u(x)− w1(x) = (x2 + x− 1)(c0 + c1x+ c2x
2 + c3x

3) (modulo x4 + 1).

So we can conclude that

[u(x)− w1(x)] = {(x2 + x− 1)(c0 + c1x+ c2x
2 + c3x

3)

(modulo x4 + 1) ; ck ∈ F3} = (x2 + x− 1),

which corresponds to the ideal in F3[x]
(x4+1)

generated by (x2 + x− 1).

Therefore, we have u ∈ ℑ = (µ) an arbitrary element and, after the quotient,

we have the identification with the ideal in F3[x]
(x4+1) generated by (x2 + x − 1).

Then it follows that σ(ℑ) = (2+ξ3)Z[ξ3]
4+C1, where C1 is the negacyclic code

called Tetracode which has dimension 2 and generator polynomial x2 + x − 1.
The Tetracode C1 is given by

C1 = {(0, 0, 0, 0); (0,−1, 1, 1); (0, 1,−1,−1); (1,−1,−1, 0);

(−1, 1, 1, 0); (1, 1, 0, 1); (1, 0, 1,−1); (−1,−1, 0,−1); (−1, 0,−1, 1)}

and its respective generator matrix is given by
(

1 −1 −1 0
0 −1 1 1

)

.

Consequently, by [2], page 200, we have

σ(ℑ) = (2 + ξ3)Z[ξ3]
4 + C1 = (2 + ξ3)Z[ξ3]

4 + (4, 2, 3)F3
= E8.

Thereby we can conclude that the lattice E8 can be obtained from an ideal
via the cyclotomic field Q(ξ24).

Then we can conclude that the dense lattice E8 can be constructed from an
ideal via the cyclotomic field Q(ξ24).
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4. Conclusion

In [7], the author proposes the trace construction to obtain the E8-lattice via
the ring of integers of the cyclotomic field Q(ξ24), where ξ24 is the 24-th root
of unity. In this work, we present a way to construct the dense E8-lattice from
a principal ideal of the cyclotomic field Q(ξ24).
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