International Journal of Applied Mathematics

Volume 31 No. 1 2018, 53-62

 $ISSN:\ 1311\text{-}1728\ (printed\ version);\ ISSN:\ 1314\text{-}8060\ (on\mbox{-line}\ version)$

doi: http://dx.doi.org/10.12732/ijam.v31i1.5

PARAMETER ESTIMATION OF EXPONENTIAL HIDDEN MARKOV MODEL AND CONVERGENCE OF ITS PARAMETER ESTIMATOR SEQUENCE

Muhammad Firmasyah¹§, Berlian Setiawaty², I. Gusti Putu Purnaba³

1,2,3 First Department of Mathematics
 Bogor Agricultural University
 Meranti Street, Bogor - 16680, INDONESIA

Abstract: An exponential hidden Markov model (EHMM) is a hidden Markov model which consists of a pair of stochastic processes $\{X_t, Y_t\}_{t \in N}$. $\{Y_t\}_{t \in N}$ is influenced by $\{X_t\}_{t \in N}$, which is assumed to form a Markov chain. $\{X_t\}_{t \in N}$ is not observed. $\{Y_t\}_{t \in N}$ is an observation process and Y_t given X_t has exponential distribution. In this paper, we estimate the parameter of EHMM and study the convergence of the parameter estimator sequence. EHMM is characterized by a parameter $\phi = (A, \lambda)$ where A is a transition matrix of X_t and λ is a vector of parameters of probability density function of Y_t given X_t . To determine the parameter estimator, a maximum likelihood method is used. Numerical approximation is used through an Expectation Maximization (EM) algorithm. Under the continuous assumption, the sequence $\{\phi^{(k)}\}$ obtained by the EM algorithm, converges to ϕ^* which is the stationary point of $\ln L_t(\phi)$ and the sequence $\{\ln L_t(\phi^{(k)})\}$ increasingly converges to $\ln L_t(\phi^*)$.

AMS Subject Classification: 30B30, 62L12

Key Words: convergence, EM algorithm, exponential hidden Markov, forward-backward algorithm

1. Introduction

An exponential hidden Markov model (EHMM) is a continuous hidden Markov

Received: December 7, 2017

© 2018 Academic Publications

[§]Correspondence author

model which consists of a pair of stochastic processes $\{X_t, Y_t\}_{t \in N}$. $\{Y_t\}_{t \in N}$ is influenced by $\{X_t\}_{t \in N}$, which is not observed. $\{X_t\}_{t \in N}$ is assumed to form a Markov chain. $\{Y_t\}_{t \in N}$ is an observation process which Y_t given X_t has exponential distribution. Let $S_X = \{1, 2, 3, ..., m\}$ be a state space of $\{X_t\}_{t \in N}, A = [a_{ij}]_{m \times m}$ be a transition probability matrix with $a_{ij} = P(X_t = j | X_{t-1} = i) = P(X_2 = j | X_1 = i)$, where $a_{ij} \geq 0, 1 \leq i, j \leq m$ and $\sum_{j=1}^m a_{ij} = 1$ for $i \in S_X$. $\varphi = [\varphi_i]_{m \times 1}$ is an initial state probability vector with $\varphi_i = P(X_i = 1)$ for $i = 1, 2, 3, ..., m, \sum_{i=1}^m \varphi_i = 1$ and $A\varphi = \varphi$. $\lambda = (\lambda_i)_{m \times 1}$ is a vector that characterizes the probability density function of Y_t given $X_t = i$, that is $\gamma_{yi} = f(y) = \frac{1}{\lambda_i} e^{-\frac{1}{\lambda_i} y}$ for y > 0. So the EHMM can be characterized by a parameter $\phi = (A, \lambda)$.

The aims of this paper are:

- 1. To estimate the parameter ϕ for an observation $\{y_t\}$ which is assumed to be generated by the EHMM.
- 2. To determine the convergence of parameter estimator sequence.

2. Parameter Estimation (see [1])

Let T be an observation number, $y = (y_1, y_2, ..., y_T)$ be an observation sequence, and $x = (i_1, i_2, ..., i_T)$ be a sequence which is not observed. Let $\epsilon > 0$ be a number close to 0, and $\Phi = \{\phi = (A, \lambda) : A \in [0, 1]^{m^2}, \lambda \in [\epsilon, \frac{1}{\epsilon}]^m\}$ be the EHMM parameter space.

Assume that:

- 1. $a_{ij}: \Phi \to \mathbb{R}$ with $a_{ij} = a_{ij}(\phi)$ is a continuous function in $\Phi, \forall i, j \in S_X$.
- 2. $\lambda_i : \Phi \to \mathbb{R}$ with $\lambda_i = \lambda_i(\phi)$ is a continuous function in $\Phi, \forall i \in S_X$.
- 3. $\varphi_i: \Phi \to \mathbb{R}$ with $\varphi_i = \varphi_i(\phi)$ is a continuous function in $\Phi, \forall i \in S_X$.

Define the likelihood function for the observation process Y as follows:

$$L_{T}(\phi) = f(y_{1}, y_{2}, ..., y_{T} | \phi)$$

$$= \sum_{i_{1}=1}^{m} ... \sum_{i_{T}=1}^{m} f(Y_{T} = y_{T}, X_{T} = i_{T}, Y_{T-1} = y_{T-1}, X_{T-1} = i_{T-1}, ...,$$

$$Y_{1} = y_{1}, X_{1} = i_{1} | \phi)$$
(1)

$$= \sum_{i_1=1}^{m} \dots \sum_{i_T=1}^{m} \varphi_{i_1} \gamma_{y_1 i_1} \prod_{t=2}^{T} a_{i_{t-1} i_t} \gamma_{y_t i_t}.$$

Define also:

$$L_T^c(\phi) = f(y_T, i_T, y_{T-1}, i_{T-1}, ..., y_1, i_1 | \phi)$$

$$= f(y_T | i_T, y_{T-1}, i_{T-1}, ..., y_1, i_1, \phi) f(i_T, y_{T-1}, i_{T-1}, ..., y_1, i_1 | \phi)$$

$$= \varphi_{i_1} \gamma_{y_1 i_1} \prod_{t=2}^{T} a_{i_{t-1} i_t} \gamma_{y_t i_t}.$$
(2)

From (1) and (2), we have

$$L_{T}(\phi) = \sum_{i_{1}=1}^{m} \dots \sum_{i_{T}=1}^{m} \varphi_{i_{1}} \gamma_{y_{1} i_{1}} \prod_{t=2}^{T} a_{i_{t-1} i_{t}} \gamma_{y_{t} i_{t}}$$
$$= \sum_{x} f(y, x | \phi) = \sum_{x} L_{T}^{c}(\phi).$$

Calculating the likelihood function directly is very complicated. So, a Forward-Backward algorithm is used to solve the problem.

2.1. Forward-Backward Algorithm

A Forward-backward algorithm is an iterative algorithm which is used to calculate the joint probability of observation process sequence $(y_1, y_2, ..., y_T)$. The Forward-Backward algorithm is used to speed up the computing process.

Define the forward probability for t = 1, 2, ..., T and i = 1, 2, ..., m as

$$\alpha_t(i|\phi) = P(Y_1 = y_1, Y_2 = y_2, ..., Y_t = y_t, X_t = i|\phi)$$

and the backward probability for t = T - 1, T - 2, ..., 1 and i = 1, 2, ..., m as

$$\beta_t(i|\phi) = P(Y_{t+1} = y_{t+1}, ..., Y_T = y_T | X_t = i, \phi).$$

Then, we have

$$\alpha_1(i|\phi) = \gamma_{y_1i}\varphi_i,$$

$$\alpha_{t+1}(j|\phi) = \left(\sum_{i \in S_X} \alpha(i|\phi)a_{ij}\right) \gamma_{y_{t+1}j},$$

for t = 1, 2, ..., T - 1 and

$$\beta_T(i|\phi) = 1,$$

$$\beta_t(j|\phi) = \sum_{i \in S_X} \beta_{t+1}(i|\phi) \gamma_{y_{t+1}i} a_{ij},$$

for t = T - 1, T - 2, ..., 1 and $i, j \in S_X$.

Proposition. (see [3]) For each t = 1, 2, ..., T:

$$L_T(\phi) = \sum_{i \in S_X} \alpha_t(i|\phi) \beta_t(i|\phi).$$

The problem is to find $\phi^* \in \Phi$ which maximizes $L_T(\phi)$. We modify the problem becomes to find $\phi^* \in \Phi$ which maximizes $\ln L_T(\phi)$. The EM algorithm is then used to find them. As a result of EM algorithm, we obtain a sequence $\{\phi^{(k)}\}$ in Φ such that a sequence $\{\ln L_T(\phi^{(k)})\}$ increases and converges to $\ln L_T(\phi)$.

It is known that

$$f(x|y,\phi) = \frac{f(y,x|\phi)}{f(y|\phi)} = \frac{L_T^c(\phi)}{L_T(\phi)},$$

then

$$\ln f(x|y,\phi) = \ln \frac{L_T^c(\phi)}{L_T(\phi)} = \ln L_T^c(\phi) - \ln L_T(\phi),$$
$$\ln L_T(\phi) = \ln L_T^c(\phi) - \ln f(x|y,\phi).$$

From above, for each $\hat{\phi} \in \Phi$,

$$E_{\hat{\sigma}}(\ln L_T(\phi)|y) = E_{\hat{\sigma}}(\ln L_T^c(\phi)|y) - E_{\hat{\sigma}}(\ln f(x|y,\phi)|y)$$
(3)

and

$$E_{\hat{\phi}}(\ln L_T(\phi)|y) = \sum_{x} \ln L_T(\phi) f(x|y,\phi) = \sum_{x} \ln f(y|\phi) \frac{f(x,y|\hat{\phi})}{f(y|\hat{\phi})}$$

$$= \frac{f(y|\phi)}{f(y|\hat{\phi})} \sum_{x} f(x,y|\hat{\phi}) = \frac{\ln f(y|\phi)}{f(y|\hat{\phi})} f(y|\hat{\phi})$$

$$= \ln f(y|\phi) = \ln L_T(\phi).$$
(4)

Define

$$Q(\phi|\hat{\phi}) = E_{\hat{\phi}}(\ln L_T^c(\phi)|y)$$

and

$$H(\phi|\hat{\phi}) = E_{\hat{\phi}}(\ln f(x|y,\phi)|y).$$

From (3) and (4),

$$\ln L_T(\phi) = Q(\phi|\hat{\phi}) - H(\phi|\hat{\phi}). \tag{5}$$

Theorem 2.1. (see [2]) Let $\epsilon > 0$ be a number close to 0, and $\Phi = \{\phi = (A, \lambda) : A \in [0, 1]^{m^2}, \lambda \in [\epsilon, \frac{1}{\epsilon}]^m\}$ be the EHMM parameter space. Then:

- 1. Φ is a bounded subset in \mathbb{R}^{m^3} .
- 2. $\ln L_T(\phi)$ is a continuous function in Φ and differentiable in the interior of Φ .
- 3. $\Phi_{\phi^{(0)}} = \{ \phi \in \Phi : \ln L_T(\phi) \ge \ln L_T(\phi^{(0)}) \}$ is compact for each $\ln L_T(\phi^{(0)}) > -\infty$.
- 4. $Q(\phi|\hat{\phi})$ is continuous in ϕ .
- Proof. 1. $a_{ij} \in [0,1]$ for each i,j since $a_{ij} = P(X_t = j | X_{t-1} = i)$ and $\lambda_i \in [\epsilon, \frac{1}{\epsilon}]$. Therefore $\Phi \subseteq [0,1]^{m^2} \times [\epsilon, \frac{1}{\epsilon}]^m$ which is a bounded subset in \mathbb{R}^{m^3} .
- 2. Since $L_T(\phi)$ is obtained from an addition and multiplication of continuous and differentiable function in interior Φ , then $L_T(\phi)$ is continuous.
- 3. Set $\phi^{(0)} \in \Phi$. It will be proven that $\Phi_{\phi^{(0)}}$ is compact. It is enough to prove that $\Phi_{\phi^{(0)}}$ is closed and bounded in Φ . Since $\Phi_{\phi^{(0)}} \subset \Phi$ and Φ is bounded then $\Phi_{\phi^{(0)}}$ is bounded. $\Phi_{\phi^{(0)}}$ is closed $\leftrightarrow \Phi_{\phi^{(0)}} = \overline{\Phi_{\phi^{(0)}}}$. Since $\Phi_{\phi^{(0)}} \subset \overline{\Phi_{\phi^{(0)}}}$, it is enough to prove $\overline{\Phi_{\phi^{(0)}}} \subset \Phi_{\phi^{(0)}}$. Let $\phi^* \in \overline{\Phi_{\phi^{(0)}}}$ then ϕ^* is a limit point of $\Phi_{\phi^{(0)}}$. Thus, there is a sequence $\{\phi^{(k)}\}$ in $\Phi_{\phi^{(0)}}$ with $\ln L_T(\phi^{(k)}) > \ln L_T(\phi^{(0)})$ and $\lim_{k \to \infty} \phi^{(k)} = \phi^*$. If $\phi^* \notin \Phi_{\phi^{(0)}}$ then $\ln L_T(\phi^{(k)}) < \ln L_T(\phi^{(0)})$. Let $\epsilon = L_T(\phi^{(0)}) L_T(\phi^*) > 0$, since $\lim_{k \to \infty} \phi^{(k)} = \phi^*$ and $\ln L_T(\phi)$ is continuous in Φ , then $\lim_{k \to \infty} L_T(\phi^{(k)}) = L_T(\phi^*)$. For each $\epsilon > 0$, there is k^* such that for each $k \ge k^*$ then $L_T(\phi^{(k)}) \ln L_T(\phi^*) < \epsilon = L_T(\phi^{(0)}) L_T(\phi^*)$. So $L_T(\phi^{(k)}) < L_T(\phi^{(0)})$. It is contradicted to the assumption, this implies that $\Phi_{\phi^{(0)}}$ is closed.
- 4. Since $Q(\phi|\phi^{(k)})$ is an addition and multiplication of

$$\alpha_t(i|\phi^{(k)}), \beta_t(i|\phi^{(k)}), a_{ij}(\phi), \lambda(\phi), \ln \varphi(\phi), \ln \lambda_i(\phi), \ln \gamma_{ij}(\phi),$$

which are continuous in Φ , then $Q(\phi|\phi^{(k)})$ is continuous in Φ .

Corollary 2.1. The sequence $\{\phi^{(k)}\}\$ is well defined in Φ .

2.2. EM Algorithm

- 1. Set a value $\phi^{(k)}$ for k=0.
- 2. E step : compute $Q(\phi|\phi^{(k)}) = E_{\phi^{(k)}}(\ln L_T^c(\phi)|Y=y)$.
- 3. M step: find the value $\phi^{(k+1)}$ which maximizes $Q(\phi|\phi^{(k)})$ so that

$$Q(\phi^{(k+1)}|\phi^{(k)}) \ge Q(\phi|\phi^{(k)}), \forall \phi \in \Phi.$$

4. Replace k by k+1 and repeat steps 2 to 4 until $|\ln L_T(\phi^{(k+1)}) - \ln L_T(\phi^{(k)})|$ less than desirable error. In other words the sequence $\{\ln L_T(\phi^{(k)})\}$ is convergent.

Lemma 2.1. $\partial_{\phi}(\ln L_{T}(\phi)) = E_{\hat{\phi}}(\partial_{\phi} \ln L_{T}(\phi)|y), \quad \partial_{\phi}Q(\phi|\hat{\phi}) = E_{\hat{\phi}}(\partial_{\phi} \ln L_{T}^{c}(\phi)|y) \text{ and } \partial_{\phi}H(\phi|\hat{\phi}) = E_{\hat{\phi}}(\partial_{\phi} \ln f(x|y,\phi)|y).$

From (5) and Lemma 2.1,

$$\partial_{\phi}(\ln L_{T}(\phi)) = E_{\hat{\phi}}(\partial_{\phi} \ln L_{T}(\phi)|y)$$

$$= E_{\hat{\phi}}(\partial_{\phi} \ln L_{T}^{c}(\phi)|y) - E_{\hat{\phi}}(\partial_{\phi} \ln f(x|y,\phi)|y).$$
(6)

Define

$$D^{10}Q(\phi|\hat{\phi}) = E_{\hat{\phi}}(\partial_{\phi} \ln L_T^c(\phi)|y), \tag{7}$$

and

$$D^{10}H(\phi|\hat{\phi}) = E_{\hat{\phi}}(\partial_{\phi} \ln f(x|y,\phi)|y). \tag{8}$$

From (6), (7) and (8)

$$\partial_{\phi}(\ln L_T(\phi)) = D^{10}Q(\phi|\hat{\phi}) - D^{10}H(\phi|\hat{\phi}).$$
 (9)

Lemma 2.2. For each $\phi, \hat{\phi} \in \Phi$ then $H(\phi|\hat{\phi}) \leq H(\hat{\phi}|\hat{\phi})$.

Lemma 2.3. For each $\hat{\phi} \in \Phi$ then $D^{10}H(\hat{\phi}|\hat{\phi}) = 0$.

Based on Lemma 2.2, Lemma 2.3 and the properties of a maximum and minimum value in a compact metric space (see [4]), it implies the following corollary.

Corollary 2.2. $H(\phi|\hat{\phi})$ attains global maximum at $\hat{\phi}$.

Theorem 2.2. (see [2]) For each $\phi^{(k)} \in \Psi$ we have $\ln L_T(\phi^{(k+1)}) \ge \ln L_T(\phi^{(k)})$.

Proof. It is given an initial value $\phi^{(0)} \in \Phi$. From the EM algorithm, there is $\phi^{(1)} \in \Phi$ so that $\ln L_T(\phi^{(1)}) \ge \ln L_T(\phi^{(0)})$. By obtaining $\phi^{(1)} \in \Phi$, it is obtained $\phi^{(2)}$ so that $\ln L_T(\phi^{(2)}) \ge \ln L_T(\phi^{(1)})$ etc. There is the sequence $\{\phi^{(k)}\}$ which $\ln L_T(\phi^{(k+1)}) \ge \ln L_T(\phi^{(k)})$ and $\{\ln L_T(\phi^{(k)})\}$ which is increasing. It implies for each $\phi^{(k)} \in \Psi$,

$$\ln L_T(\phi^{(k+1)}) - \ln L_T(\phi^{(k)})$$

$$= \left(Q(\phi^{(k+1)}|\phi^{(k)}) - H(\phi^{(k+1)}|\phi^{(k)}) \right) - \left(Q(\phi^{(k)}|\phi^{(k)}) - H(\phi^{(k)}|\phi^{(k)}) \right)$$

$$= \left(Q(\phi^{(k+1)}|\phi^{(k)}) - Q(\phi^{(k)}|\phi^{(k)}) \right) - \left(H(\phi^{(k+1)}|\phi^{(k)}) - H(\phi^{(k)}|\phi^{(k)}) \right). \quad (10)$$

According to the M step, it is defined $Q(\phi^{(k+1)}|\phi^{(k)}) \geq Q(\phi|\phi^{(k)})$ and from Lemma 2.2, $H(\phi^{(k)}|\phi^{(k)}) \geq H(\phi|\phi^{(k)})$ for each $\phi \in \Phi$ and $H(\phi^{(k+1)}|\phi^{(k)}) - H(\phi^{(k)}|\phi^{(k)}) \leq 0$. So it can be said that

$$\ln L_T(\phi^{(k+1)}) - \ln L_T(\phi^{(k)}) \ge 0$$

$$\ln L_T(\phi^{(k+1)}) \ge \ln L_T(\phi^{(k)}). \tag{11}$$

Theorem 2.3. (see [2]) For each $\phi^{(k)} \notin \Psi$,

$$\ln L_T(\phi^{(k+1)}) - \ln L_T(\phi^{(k)}).$$

Proof. From (8), it is known

$$\partial_{\phi^{(k)}}(\ln L_T(\phi^{(k)})) = D^{10}Q(\phi^{(k)}|\phi^{(k)}) - D^{10}H(\phi^{(k)}|\phi^{(k)}).$$

Since $D^{10}H(\phi^{(k)}|\phi^{(k)})=0$, then $\partial_{\phi^{(k)}}(\ln L_T(\phi^{(k)}))=D^{10}Q(\phi^{(k)}|\phi^{(k)})$. For $\phi^{(k)}\in\Psi$, $\partial_{\phi^{(k)}}(\ln L_T(\phi^{(k)}))\neq 0$ and $D^{10}Q(\phi^{(k)}|\phi^{(k)})\neq 0$ so that $\phi^{(k)}$ is not a local maximum of $Q(\phi|\phi^{(k)})$. According to the M step, it is defined $Q(\phi^{(k+1)}|\phi^{(k)})\geq Q(\phi|\phi^{(k)})$ for each $\phi\in\Phi$. Thus, it is obtained $Q(\phi^{(k+1)}|\phi^{(k)})\geq Q(\phi|\phi^{(k)})$ and it implies

$$ln L_T(\phi^{(k+1)}) \ge ln L_T(\phi^{(k)}).$$
(12)

Corollary 2.3. The sequence $\{\ln L_T(\phi^{(k)})\}\$ is an increasing sequence.

Theorem 2.4. Let $E_{\phi^{(k)}}(\ln L_T^c(\phi)|Y=y) = Q(\phi|\phi^{(k)})$, then

$$Q(\phi|\phi^{(k)}) = \sum_{i \in S_X} \frac{\alpha_1(i|\phi^{(k)})\beta_1(i|\phi^{(k)}))}{\sum_{l \in S_X} \alpha_t(l|\phi^{(k)})\beta(l|\phi^{(k)})} \ln \varphi_i(\phi)$$

$$+ \sum_{i \in S_X} \frac{\sum_{t=1}^T \alpha_t(i|\phi^{(k)})\beta_t(i|\phi^{(k)})}{\sum_{l \in S_X} \alpha_t(l|\phi^{(k)})\beta_t(l|\phi^{(k)})} \ln f(Y_t = y_t|X_t = i, \phi)$$

$$+ \sum_{i \in S_X} \sum_{j \in S_X} \frac{\sum_{t=1}^{T-1} a_{ij}(\phi^{(k)})\alpha_t(i|\phi^{(k)})\beta_{t+1}(j|\phi^{(k)})J(y)}{\sum_{l \in S_X} \alpha_t(l|\phi^{(k)})\beta_t(l|\phi^{(k)})} \ln a_{ij}(\phi),$$

where $J(y) = f(Y_{t+1} = y_{t+1}|X_{t+1} = j, \phi^{(k)}).$

Theorem 2.5. Let $\phi = (A, \lambda)$ be the parameter of $Q(\phi|\phi^{(k)})$ with $A = [a_{ij}]$ and $\lambda = \lambda_i$, then

$$a_{ij}(\phi^{(k+1)}) = \frac{\sum_{t=1}^{T-1} a_{ij}(\phi^{(k)}) \alpha_t(i|\phi^{(k)}) \beta_{t+1}(j|\phi^{(k)}) J(y)}{\sum_{t=1}^{T-1} \alpha_t(i|\phi^{(k)}) \beta(i|\phi^{(k)})},$$

where $J(y) = f(Y_{t+1} = y_{t+1} | X_{t+1} = j, \phi^{(k)})$ and

$$\lambda(\phi^{(k+1)}) = \frac{\sum_{t=1}^{T} \alpha_t(i|\phi^{(k)})\beta_t(i|\phi^{(k)})(y_t)}{\sum_{t=1}^{T} \alpha_t(i|\phi^{(k)})\beta_t(i|\phi^{(k)})}.$$

3. Convergence of Parameter Estimator EHMM

Let $\{\phi^{(k)}\}\$ be the sequence which is obtained from the EM algorithm. It will be proven that the sequence $\{\ln L_T(\phi^{(k)})\}\$ converges to $\ln L_T(\phi^*)$ which ϕ^* is a stationary point of $\ln L_T(\phi)$.

Based on the properties of a continuous function in a compact metric space (see [4]), we have the following corollaries.

Corollary 3.1. Let $h: \Phi \to \mathbb{R}^1$ be a function with $h(\phi) = \ln L_T(\phi)$. Then the range of $h(\phi)$ is a compact metric space in \mathbb{R}^1 .

Corollary 3.2. The range of $h(\phi)$ is bounded.

Corollary 3.3. The sequence $\{\ln L_T(\phi^{(k)})\}$ is an increasing and convergent sequence in $h(\phi)$ which is convergent. Since $h(\phi)$ is compact, there is $\phi^* \in \Phi$ such that $\lim_{k \to \infty} \ln L_T(\phi^{(k)}) = \ln L_T(\phi^*)$.

Theorem 3.1. (see [2]) Let $g(\hat{\phi}) = \{\delta' \in \Phi : Q(\delta'|\hat{\phi}) \geq Q(\delta|\hat{\phi}) \text{ for each } \delta \in \Phi\}$ then g is a closed set in $\Phi \setminus \Psi$.

Proof. Since g is a set value function (see [5]), from $Q(\delta'|\phi')$ it is known that $\delta' \in g(\phi')$ for $\delta', \phi' \in \Phi$. For each $\bar{\phi} \in \Phi \backslash \Psi$ and from Theorem 2.1 (4), $Q(\delta|\phi)$ is a continuous function for δ and ϕ in $\Phi \times \Phi$, if $\phi^{(k)} \to \bar{\phi}$ and $\delta^{(k)} \to \bar{\delta}$ then $Q(\delta^{(k)}|\phi^{(k)}) \to Q(\bar{\delta}|\bar{\phi})$ for $k \to \infty$. So that, it is obtained $\delta^{(k)} \in g(\phi^{(k)})$ for k = 1, 2, ... and it satisfies if $\phi^{(k)} \to \bar{\phi}$ and $\delta^{(k)} \to \bar{\delta}$, then $\bar{\delta} \in g(\bar{\phi})$, for $k \to \infty$. So that g is a closed function, it is satisfied by the EM algorithm i.e $\delta^{(k)}$ corresponding to $\phi^{(k+1)}$.

Theorem 3.2. (see [2]) Let $Q(\phi|\phi^{(k)})$ be a continuous function of $\phi, \phi^{(k)} \in \Phi \times \Phi$. Let $\{\phi^{(k)}\}$ be the EHMM estimator sequence which is obtained from the EM algorithm,

- 1. $\lim_{k\to\infty} \ln L_T(\phi^{(k)}) = \ln L_T(\phi^*)$, which the convergence is increasing.
- 2. If $\lim_{k\to\infty} \phi^{(k)} = \phi^*$, then ϕ^* is a stationary point of $\ln L_T(\phi)$.

Proof. 1. From Corollary 3.1, Theorem 2.2 and Theorem 2.3,

$$\lim_{k \to \infty} \ln L_T(\phi^{(k)}) = \ln L_T(\phi^*).$$

The sequence $\{\ln L_T(\phi^{(k)})\}$ is an increasing sequence.

2. Let $\lim_{k\to\infty}\phi^{(k)}=\phi^*$, if ϕ^* is not a stationary point $(\phi^*\notin\Psi)$. We consider a sequence $\{\phi^{(k+1)}\}$ so that $\phi^{(k+1)}\in g(\phi^{(k)})$ for each k and the sequence $\{\phi^{(k+1)}\}$ in a compact set according to Theorem 2.1 (3). It implies that there is the sequence $\{\phi^{(k+1)}\}$ so that for $m\to\infty$ then $\phi^{(k+1)_m}\to\hat{\phi}$ and for $k\to\infty$ then $\phi^{(k+1)}\to\hat{\phi}$. From Theorem 3.1, g is a closed function in $\Phi\setminus\Psi$ and the assumption $\phi^*\notin\Psi$ thus $\hat{\phi}\in g(\phi^*)$. From (12), it implies

$$ln L_T(\hat{\phi}) > ln L_T(\phi^*).$$
(13)

Since $\ln L_T(\phi)$ in a continuous function, from Theorem 3.2 (1) and $\phi^{(k+1)} \to \hat{\phi}$ for $k \to \infty$, then $\lim_{k \to \infty} \ln L_T(\phi^{(k)}) = \lim_{k \to \infty} \ln L_T(\phi^{(k+1)})$. It implies

 $\ln L_T(\phi^*) = \ln L_T(\hat{\phi})$ and it is contradicted by (13). So ϕ^* is not a stationary point.

References

- [1] A.P Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, *Journal of the Royal Statistical Society*, **39** (1997), 1-38.
- [2] C.J.F. Wu, On the convergence properties of the EM algorithm, *The Annals of Statistics*, **11** (1983), 95-103.
- [3] L.R. Rabiner, B.H. Juang, An introduction of hidden Markov models, *IEEE Assp Magazine*, (1997).
- [4] R.R. Goldberg, *Methods of Real Analysis*. 2nd Ed., John Wiley and Sons, New York (1976).
- [5] W.I. Zangwill, *Nonlinear Programming*, Englewood Cliffs, New Jersey, Prentice Hall (1969).