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Abstract: An exponential hidden Markov model (EHMM) is a hidden Markov
model which consists of a pair of stochastic processes {X¢,Y;}ren {Y:}een is
influenced by {X;}ien, which is assumed to form a Markov chain. {X;}en is
not observed. {Y;}en is an observation process and Y; given X; has exponential
distribution. In this paper, we estimate the parameter of EHMM and study the
convergence of the parameter estimator sequence. EHMM is characterized by
a parameter ¢ = (A, \) where A is a transition matrix of X; and A is a vector
of parameters of probability density function of Y; given X;. To determine
the parameter estimator, a maximum likelihood method is used. Numerical
approximation is used through an Expectation Maximization (EM) algorithm.
Under the continuous assumption, the sequence {¢(k)} obtained by the EM
algorithm, converges to ¢* which is the stationary point of In L;(¢) and the
sequence {In L;(¢*))} increasingly converges to In Ly(¢*).
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1. Introduction

An exponential hidden Markov model (EHMM) is a continuous hidden Markov
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model which consists of a pair of stochastic processes { X, Y hen. {Yi}lien is
influenced by {X;}ien, which is not observed. {X;}ien is assumed to form a
Markov chain. {Y;}en is an observation process which Y; given X; has expo-
nential distribution. Let Sx = {1,2,3,...,m} be a state space of {X;}ien, A =
[@ijlmxm be a transition probability matrix with a;; = P(Xy = j|X¢y—1 =
i) = P(Xz = j|X; = i), where a;; > 0,1 < 4,5 < m and 3 7" a;; = 1 for
i € Sx. ¢ = [@ilmx1 is an initial state probability vector with ¢; = P(X; = 1)
for i = 1,2,3,..,m,>. " ¢; = 1 and Ap = ¢. X = (N\i)mx1 is a vector
that characterizes the1 probability density function of Y; given X; = i, that
is vy = fy) = %€*Ey for y > 0. So the EHMM can be characterized by a
parameter ¢ = (A, \).

The aims of this paper are:

1. To estimate the parameter ¢ for an observation {y;} which is assumed to
be generated by the EHMM.

2. To determine the convergence of parameter estimator sequence.

2. Parameter Estimation (see [1])

Let T be an observation number, y = (y1, y2, ..., yr) be an observation sequence,
and © = (41,12, ...,i7) be a sequence which is not observed. Let ¢ > 0 be a
number close to 0, and ® = {¢ = (4,A) : A € [0,1]™", ) € [e, 1™} be the
EHMM parameter space.

Assume that:

1. a; : ® = IR with a;; = a;j(¢) is a continuous function in ®, Vi, j € Sx.
2. A : ® — R with \; = \;(¢) is a continuous function in ®,Vi € Sx.
3. p; : ® — R with ¢; = p;(¢) is a continuous function in ®,Vi € Sx.

Define the likelihood function for the observation process Y as follows:

LT(¢) = f(y17y27 7yT‘¢)

m m
= Z Z fYr =yr, X =ip,Yr_1 = yr—1, Xr—1 = ir—1, ...,
=1 ip—1

Y1 =u1, X1 = i1]9) (1)
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T

m m
= E E Pi1 Yyri Hait—lit’yytit’

=1 =1 t=2
Define also:

L5 (¢) = f(yr, i, yr—1,i7-1, -, Y1, 11|P)

= f(yrlir,yr—1,i7-1, .-, Y1, 01, ) FIT, Y7—1,97—15 -0, Y1, 51| 0) 2
T

= Pir Vyria H Wiy vt Vyeie -
t=2

From (1) and (2), we have

m m T
LT(¢) = Z Z Pi1Vyria Hait—lit’Yytit
t=2

i1=1 ip=1

=Y fy,zle) =D L5(0).

Calculating the likelihood function directly is very complicated. So, a
Forward-Backward algorithm is used to solve the problem.

2.1. Forward-Backward Algorithm

A Forward-backward algorithm is an iterative algorithm which is used to cal-

culate the joint probability of observation process sequence (y1,y2, ...,yr). The

Forward-Backward algorithm is used to speed up the computing process.
Define the forward probability for t = 1,2,....,7T and i = 1,2, ..., m as

ar(i|p) = P(Y1 = y1, Yo = 42, ..., Yo = yp, Xt = i|9)
and the backward probability for t =T — 1,7 —2,...,1and ¢ =1,2,...,m as
Bi(ilg) = P(Yis1 = yis1, -, YT = y7r| Xy = 1, 9).
Then, we have

061(2‘¢) = Yy1iPi>»

a41(J]@) = Za(ileb)aij RETERYE

1€Sx
fort=1,2,...,7T — 1 and
Br(jle) =1,
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Bi(jle) = Z Brr1(il@) Yyt 411%ig)

1E€Sx
fort=T-1,T—2,....,1 and i,j € Sx.
Proposition. (see [3]) For each t =1,2,...,T :

Lr(¢) = > aulil$)Bi(il ).

1€Sx

The problem is to find ¢* € ® which maximizes Ly(¢). We modify the
problem becomes to find ¢* € ® which maximizes In Ly(¢). The EM algo-
rithm is then used to find them. As a result of EM algorithm, we obtain a
sequence {¢*)} in @ such that a sequence {In L7(¢*))} increases and converges
to In Ly ().

It is known that

i) I4)
Hel-9)= 5010y = Trio)

i g, ) = 715} =0 L5(6) ~ In L),

In Ly (¢) = In L7(¢) — In f(zy, ¢).
From above, for each gZ; € o,

then

E;(In Lr(9)|y) = Ez(In L7 (0)|y) — Ez(In f(x]y, ¢)[y) (3)
and
5(In Ly (¢ ZlnLT Zlnf yl) TT’S)
y!¢ &) _In f(y!¢) (4)
Zf lo) f(ylo)
= lnf(y\qb) =InL7(¢).
Define )
Q(¢l¢) = E;(In L7(9)|y)
and

H(¢|9) = Ey(In f (zly, §)|y)-
From (3) and (4), ) )
In Lr(¢) = Q(¢l¢) — H(9]). ()
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Theorem 2.1. (see [2]) Let € > 0 be a number close to 0, and ® = {¢ =
(A, N) : Ae[0,1]™ X € [e,1]™} be the EHMM parameter space. Then:

€

1. ® is a bounded subset in IR™.

2. In Lp(¢) is a continuous function in ® and differentiable in the interior of
P.

3. @y ={p€P:InLr(p) >1In L(¢)} is compact for each In Ly (¢(¥) >

—0Q.

4. Q(¢|¢3) is continuous in ¢.

Proof. 1. a;; € [0,1] for each 4,5 since a;; = P(X; = j|Xy—1 = i) and
Ai € [€,2]. Therefore ® C [0, 1™ x [e, 1™ which is a bounded subset in
R™.

2. Since L7 (¢) is obtained from an addition and multiplication of continuous
and differentiable function in interior ®, then Lz (¢) is continuous.

3. Set q5(0) € &. It will be proven that <I>¢(o) is compact. It is enough
to prove that @ o) is closed and bounded in ®. Since ®,0 C ¢ and
® is bounded then ® ) is bounded. @) is closed <> P y0) = Py0)-

Since @40 C Py, it is enough to prove @,0) C Py0). Let ¢ € q)¢>(0)
then ¢* is a limit point of ®40). Thus, there is a sequence {¢")} in
® 40 with In Lp(¢™) > In Lp(¢?)) and Jlim o) = ¢ If ¢* ¢ D0

then In Ly (¢®)) < InLy(¢®). Let € = Ly(¢©) — Ly(¢*) > 0, since
klim #*) = ¢* and In Ly(¢) is continuous in @, then klim Lp(p®) =
— 00 — 00

L7 (¢*). For each ¢ > 0, there is k* such that for each £ > k* then

Ly(¢®) —InLp(¢*) < € = Lr(¢V) — Lr(¢*). So Lr(¢™) < Ly ().
It is contradicted to the assumption, this implies that ® ) is closed.

4. Since Q(¢|¢™®) is an addition and multiplication of

at(2‘¢(k))v /Bt (2‘¢(k))7 aij(¢)v )‘(¢)7 In 90(¢)7 In )‘Z(¢)7 In 7ij(¢)a

which are continuous in @, then Q(¢|¢™*)) is continuous in ®.

Corollary 2.1. The sequence {¢*)} is well defined in ®.
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2.2. EM Algorithm

1. Set a value ¢ for k = 0.

2. E step : compute Q(¢|¢¥)) = E u (In L (9)[Y = y).

3. M step : find the value ¢*+1) which maximizes Q(¢|¢®)) so that
Qe 16™*)) > Q(p|6™)), ¥ € ®.

4. Replace k by k+1 and repeat steps 2 to 4 until | In Ly (¢®* 1)) —In Lp(o*)]
less than desirable error. In other words the sequence {In Ly(¢®*)} is
convergent.

Lemma 2.1 Oy(nLr(9)) = Eg@snlr(@)ly), Q) =
E4(9pn L (6)ly) and 9,H(916) = E4(DpIn [ (xly, @)ly).

From (5) and Lemma 2.1,

9(In L1 (¢)) = E4(9g In L1 (0)ly)

= B0 ISO) - By fely O)
Define
DYQ(SI) = (05 10 L5 (6)ly), ™
" DOH(8I3) = (0 In f(zly, O)y). ®
From (6), (7) and (8)
0y(In L1(¢)) = D°Q(¢|9) — D' H(¢|). (9)

Lemma 2.2. For each ¢, ¢ € ® then H(¢|p) < H(|).
Lemma 2.3. For each ¢ € ® then DY H(¢|¢) = 0.

Based on Lemma 2.2, Lemma 2.3 and the properties of a maximum and
minimum value in a compact metric space (see [4]), it implies the following
corollary.

Corollary 2.2. H(¢|¢) attains global maximum at ¢.
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Theorem 2.2. (see [2]) For each ¢*) € ¥ we have In Lp(¢*+1D) >
In Ly (p®).

Proof. Tt is given an initial value ¢(®) € ®. From the EM algorithm, there is
¢ € @ so that In Lp(¢™M) > In Ly(¢(?). By obtaining ¢(!) € ®, it is obtained
#@ so that In L7 (¢?) > In Ly(¢(M) ete. There is the sequence {¢*)} which
In Ly (¢®* D) > In Ly(¢®)) and {In Ly(¢*))} which is increasing. It implies
for each ¢¥) € U,

In Lp(¢**+D) — In Lp(¢™)

= (QU"V1e®) — H(s*D]6M)) — (QUe®]6®) ~ H(6™M|6™))
= (@ V16®) = (e M161) ) — (H(6* (") - H(s® ™)) . (10)
According to the M step, it is defined Q(¢*+t1|¢*)) > Q(¢|¢*)) and from
Lemma 2.2, H(¢®|p*)) > H(p|¢p®) for each ¢ € & and H(p*+D|pk)) —
H(¢®|¢®)) < 0. So it can be said that
In L7 (¢*+Y) —In Ly (¢®) > 0

In Lp(¢**D) > In Lp(¢®). (11)

Theorem 2.3. (sce [2]) For each ¢(*) ¢ W,

In Ly (%)) — In Lp(¢™).

Proof. From (8), it is known
Oyt (In Ly (™)) = DOQ(6M|¢™) — DO H (W[ ™).

Since DYH(¢®)|¢*)) = 0, then O, (In Lr(6™))) = DOQ(¢™[gk)).  For
o™ € W, dy00(InLp(¢™)) # 0 and DOQ(sH) ™)) # 0 so that ¢ is
not a local maximum of Q(¢|¢*))). According to the M step, it is defined
Qo1 o)) > Q(¢|¢®) for each ¢ € . Thus, it is obtained Q(¢*+1)|pKk)) >
Q(¢]¢™) and it implies

In Lp(¢**D) > In Lp(¢®). (12)

O
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Corollary 2.3. The sequence {In L7(¢®))} is an increasing sequence.

Theorem 2.4. Let Eyu (In LT (9)|Y =y) = Q(4|o™), then

(ASBAD)
¢‘¢ Z; ZlESX o l‘¢ k)) (”¢ )) H‘Pz(¢)
(k) ik
+ Zt:l Oét('é’¢ )Bt(Z’¢ ) lnf(}/t _ yt‘Xt _ Z’¢)

i€Sy Zlesx o (1| o)) By (1| p(R))

i aig (6 an (il ™) B (16" I () |
t2 2 S o aullo™)Bemy i@

i€Sx jESX
where J(y) = f(Yis1 = yir1|Xis1 = 4, 0).

Theorem 2.5. Let ¢ = (A, \) be the parameter of Q(¢|¢p*)) with A = [a;]
and \ = \;, then

aij (¢ = Sy ai () (il6™) B (16 ™M) T (y)
’ 3 (i) B (il ®))

where J(y) = f(Yis1 = yep1 | Xep1 = j, 6®)) and

izt 0a(il0™M)Buil6 ™)) ()
i1 an(il6) By (il6H)

9

A1) =

3. Convergence of Parameter Estimator EHMM

Let {¢*)} be the sequence which is obtained from the EM algorithm. It will
be proven that the sequence {In Ly (¢*))} converges to In Ly (¢*) which ¢* is a
stationary point of In Ly (¢).

Based on the properties of a continuous function in a compact metric space
(see [4]), we have the following corollaries.

Corollary 3.1. Let h : ® — IR be a function with h(¢) = In Lp(¢).
Then the range of h(¢) is a compact metric space in IR*.

Corollary 3.2. The range of h(¢) is bounded.
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Corollary 3.3. The sequence {In Ly(¢®))} is an increasing and conver-
gent sequence in h(¢) which is convergent. Since h(¢) is compact, there is
¢" € @ such that lim In Lr(¢®) =1n Ly (¢*).

—00

Theorem 3.1. (see [2]) Let g(¢) = {6 € & : Q(&'|¢) > Q(6]¢) for each
d € ®} then g is a closed set in ®\U.

Proof. Since g is a set value function (see [5]), from Q(¢'|¢’) it is known
that & € g(¢') for ¢',¢' € ®. For each ¢ € ®\¥ and from Theorem 2.1 (4),
Q(3]¢) is a continuous function for § and ¢ in ® x ®, if p*) — $ and 6 — §
then Q(6®|p*)) — Q(8]¢) for k — oco. So that, it is obtained §*) € g(¢*¥)
for k = 1,2,... and it satisfies if ¢*) — ¢ and 6*) — §, then § € g(¢), for
k — oo. So that g is a closed function, it is satisfied by the EM algorithm i.e
6%) corresponding to ¢+, O

Theorem 3.2. (see [2]) Let Q(¢|¢¥)) be a continuous function of ¢, o) €
® x ®. Let {¢®} be the EHMM estimator sequence which is obtained from
the EM algorithm,

L. lim In L1(¢™)) = In Ly (¢*), which the convergence is increasing.
—00

2. If klim ¢F) = ¢*, then ¢* is a stationary point of In Ly (¢).
—00

Proof. 1. From Corollary 3.1, Theorem 2.2 and Theorem 2.3,

lim In Ly(¢®) = In Lp(¢*).
k—o0

The sequence {In L7(¢*))} is an increasing sequence.
2. Let klim o) = ¢*, if ¢* is not a stationary point (¢* ¢ ¥). We consider
—00

a sequence {¢*+t11 so that ¢+ € g(¢(*)) for each k and the sequence
{¢*+D} in a compact set according to Theorem 2.1 (3). It implies that
there is the sequence {¢* 11} so that for m — oo then ¢*TDm — ¢ and
for k — oo then ¢p*F*1) — ¢. From Theorem 3.1, g is a closed function in
P\ and the assumption ¢* ¢ ¥ thus ¢ € g(¢*). From (12), it implies

~

In Ly (¢) > In Ly (7). (13)

Since In L7 (¢) in a continuous function, from Theorem 3.2 (1) and o+ —
¢ for k — oo, then klim In Lp(p®) = klim In Ly (p®+D). Tt implies
— 00 — 00
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In L7(¢*) = In Lp(¢) and it is contradicted by (13). So ¢* is not a sta-
tionary point.
]
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