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Abstract: An exponential hidden Markov model (EHMM) is a hidden Markov
model which consists of a pair of stochastic processes {Xt, Yt}t∈N .{Yt}t∈N is
influenced by {Xt}t∈N , which is assumed to form a Markov chain. {Xt}t∈N is
not observed. {Yt}t∈N is an observation process and Yt given Xt has exponential
distribution. In this paper, we estimate the parameter of EHMM and study the
convergence of the parameter estimator sequence. EHMM is characterized by
a parameter φ = (A,λ) where A is a transition matrix of Xt and λ is a vector
of parameters of probability density function of Yt given Xt. To determine
the parameter estimator, a maximum likelihood method is used. Numerical
approximation is used through an Expectation Maximization (EM) algorithm.
Under the continuous assumption, the sequence {φ(k)} obtained by the EM
algorithm, converges to φ∗ which is the stationary point of ln Lt(φ) and the
sequence {lnLt(φ

(k))} increasingly converges to ln Lt(φ
∗).
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1. Introduction

An exponential hidden Markov model (EHMM) is a continuous hidden Markov
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model which consists of a pair of stochastic processes {Xt, Yt}t∈N . {Yt}t∈N is
influenced by {Xt}t∈N , which is not observed. {Xt}t∈N is assumed to form a
Markov chain. {Yt}t∈N is an observation process which Yt given Xt has expo-
nential distribution. Let SX = {1, 2, 3, ...,m} be a state space of {Xt}t∈N , A =
[aij ]m×m be a transition probability matrix with aij = P (Xt = j|Xt−1 =
i) = P (X2 = j|X1 = i), where aij ≥ 0, 1 ≤ i, j ≤ m and

∑m
j=1 aij = 1 for

i ∈ SX . ϕ = [ϕi]m×1 is an initial state probability vector with ϕi = P (Xi = 1)
for i = 1, 2, 3, ...,m,

∑m
i=1 ϕi = 1 and Aϕ = ϕ. λ = (λi)m×1 is a vector

that characterizes the probability density function of Yt given Xt = i, that

is γyi = f(y) = 1
λi
e
− 1

λi
y
for y > 0. So the EHMM can be characterized by a

parameter φ = (A,λ).

The aims of this paper are:

1. To estimate the parameter φ for an observation {yt} which is assumed to
be generated by the EHMM.

2. To determine the convergence of parameter estimator sequence.

2. Parameter Estimation (see [1])

Let T be an observation number, y = (y1, y2, ..., yT ) be an observation sequence,
and x = (i1, i2, ..., iT ) be a sequence which is not observed. Let ǫ > 0 be a
number close to 0, and Φ = {φ = (A,λ) : A ∈ [0, 1]m

2
, λ ∈ [ǫ, 1

ǫ
]m} be the

EHMM parameter space.
Assume that:

1. aij : Φ → IR with aij = aij(φ) is a continuous function in Φ,∀i, j ∈ SX .

2. λi : Φ → IR with λi = λi(φ) is a continuous function in Φ,∀i ∈ SX .

3. ϕi : Φ → IR with ϕi = ϕi(φ) is a continuous function in Φ,∀i ∈ SX .

Define the likelihood function for the observation process Y as follows:

LT (φ) = f(y1, y2, ..., yT |φ)

=

m
∑

i1=1

...

m
∑

iT=1

f(YT = yT ,XT = iT , YT−1 = yT−1,XT−1 = iT−1, ...,

Y1 = y1,X1 = i1|φ) (1)



PARAMETER ESTIMATION OF EXPONENTIAL HIDDEN... 55

=

m
∑

i1=1

...

m
∑

iT=1

ϕi1γy1i1

T
∏

t=2

ait−1itγytit .

Define also:

Lc
T (φ) = f(yT , iT , yT−1, iT−1, ..., y1, i1|φ)

= f(yT |iT , yT−1, iT−1, ..., y1, i1, φ)f(iT , yT−1, iT−1, ..., y1, i1|φ)

= ϕi1γy1i1

T
∏

t=2

ait−1itγytit .

(2)

From (1) and (2), we have

LT (φ) =

m
∑

i1=1

...

m
∑

iT=1

ϕi1γy1i1

T
∏

t=2

ait−1itγytit

=
∑

x

f(y, x|φ) =
∑

x

Lc
T (φ).

Calculating the likelihood function directly is very complicated. So, a
Forward-Backward algorithm is used to solve the problem.

2.1. Forward-Backward Algorithm

A Forward-backward algorithm is an iterative algorithm which is used to cal-
culate the joint probability of observation process sequence (y1, y2, ..., yT ). The
Forward-Backward algorithm is used to speed up the computing process.

Define the forward probability for t = 1, 2, ..., T and i = 1, 2, ...,m as

αt(i|φ) = P (Y1 = y1, Y2 = y2, ..., Yt = yt,Xt = i|φ)

and the backward probability for t = T − 1, T − 2, ..., 1 and i = 1, 2, ...,m as

βt(i|φ) = P (Yt+1 = yt+1, ..., YT = yT |Xt = i, φ).

Then, we have

α1(i|φ) = γy1iϕi,

αt+1(j|φ) =





∑

i∈SX

α(i|φ)aij



 γyt+1j ,

for t = 1, 2, ..., T − 1 and

βT (j|φ) = 1,
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βt(j|φ) =
∑

i∈SX

βt+1(i|φ)γyt+1iaij ,

for t = T − 1, T − 2, ..., 1 and i, j ∈ SX .

Proposition. (see [3]) For each t = 1, 2, ..., T :

LT (φ) =
∑

i∈SX

αt(i|φ)βt(i|φ).

The problem is to find φ∗ ∈ Φ which maximizes LT (φ). We modify the
problem becomes to find φ∗ ∈ Φ which maximizes lnLT (φ). The EM algo-
rithm is then used to find them. As a result of EM algorithm, we obtain a
sequence {φ(k)} in Φ such that a sequence {lnLT (φ

(k))} increases and converges
to lnLT (φ).

It is known that

f(x|y, φ) =
f(y, x|φ)

f(y|φ)
=

Lc
T (φ)

LT (φ)
,

then

ln f(x|y, φ) = ln
Lc
T (φ)

LT (φ)
= lnLc

T (φ)− lnLT (φ),

lnLT (φ) = lnLc
T (φ)− ln f(x|y, φ).

From above, for each φ̂ ∈ Φ,

E
φ̂
(lnLT (φ)|y) = E

φ̂
(lnLc

T (φ)|y) − E
φ̂
(ln f(x|y, φ)|y) (3)

and

E
φ̂
(lnLT (φ)|y) =

∑

x

lnLT (φ)f(x|y, φ) =
∑

x

ln f(y|φ)
f(x, y|φ̂)

f(y|φ̂)

=
f(y|φ)

f(y|φ̂)

∑

x

f(x, y|φ̂) =
ln f(y|φ)

f(y|φ̂)
f(y|φ̂)

= ln f(y|φ) = lnLT (φ).

(4)

Define
Q(φ|φ̂) = E

φ̂
(lnLc

T (φ)|y)

and
H(φ|φ̂) = E

φ̂
(ln f(x|y, φ)|y).

From (3) and (4),
lnLT (φ) = Q(φ|φ̂)−H(φ|φ̂). (5)
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Theorem 2.1. (see [2]) Let ǫ > 0 be a number close to 0, and Φ = {φ =
(A,λ) : A ∈ [0, 1]m

2
, λ ∈ [ǫ, 1

ǫ
]m} be the EHMM parameter space. Then:

1. Φ is a bounded subset in IRm3
.

2. lnLT (φ) is a continuous function in Φ and differentiable in the interior of

Φ.

3. Φφ(0) = {φ ∈ Φ : lnLT (φ) ≥ lnLT (φ
(0))} is compact for each lnLT (φ

(0)) >
−∞.

4. Q(φ|φ̂) is continuous in φ.

Proof. 1. aij ∈ [0, 1] for each i, j since aij = P (Xt = j|Xt−1 = i) and

λi ∈ [ǫ, 1
ǫ
]. Therefore Φ ⊆ [0, 1]m

2
× [ǫ, 1

ǫ
]m which is a bounded subset in

IRm3
.

2. Since LT (φ) is obtained from an addition and multiplication of continuous
and differentiable function in interior Φ, then LT (φ) is continuous.

3. Set φ(0) ∈ Φ. It will be proven that Φφ(0) is compact. It is enough
to prove that Φφ(0) is closed and bounded in Φ. Since Φφ(0) ⊂ Φ and

Φ is bounded then Φφ(0) is bounded. Φφ(0) is closed ↔ Φφ(0) = Φφ(0) .

Since Φφ(0) ⊂ Φφ(0) , it is enough to prove Φφ(0) ⊂ Φφ(0) . Let φ∗ ∈ Φφ(0)

then φ∗ is a limit point of Φφ(0) . Thus, there is a sequence {φ(k)} in

Φφ(0) with lnLT (φ
(k)) > lnLT (φ

(0)) and lim
k→∞

φ(k) = φ∗. If φ∗ /∈ Φφ(0)

then lnLT (φ
(k)) < lnLT (φ

(0)). Let ǫ = LT (φ
(0)) − LT (φ

∗) > 0, since
lim
k→∞

φ(k) = φ∗ and lnLT (φ) is continuous in Φ, then lim
k→∞

LT (φ
(k)) =

LT (φ
∗). For each ǫ > 0, there is k∗ such that for each k ≥ k∗ then

LT (φ
(k)) − lnLT (φ

∗) < ǫ = LT (φ
(0)) − LT (φ

∗). So LT (φ
(k)) < LT (φ

(0)).
It is contradicted to the assumption, this implies that Φφ(0) is closed.

4. Since Q(φ|φ(k)) is an addition and multiplication of

αt(i|φ
(k)), βt(i|φ

(k)), aij(φ), λ(φ), ln ϕ(φ), ln λi(φ), ln γij(φ),

which are continuous in Φ, then Q(φ|φ(k)) is continuous in Φ.

Corollary 2.1. The sequence {φ(k)} is well defined in Φ.
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2.2. EM Algorithm

1. Set a value φ(k) for k = 0.

2. E step : compute Q(φ|φ(k)) = Eφ(k)(lnLc
T (φ)|Y = y).

3. M step : find the value φ(k+1) which maximizes Q(φ|φ(k)) so that

Q(φ(k+1)|φ(k)) ≥ Q(φ|φ(k)),∀φ ∈ Φ.

4. Replace k by k+1 and repeat steps 2 to 4 until | lnLT (φ
(k+1))−lnLT (φ

(k))|
less than desirable error. In other words the sequence {lnLT (φ

(k))} is
convergent.

Lemma 2.1. ∂φ(lnLT (φ)) = E
φ̂
(∂φ lnLT (φ)|y), ∂φQ(φ|φ̂) =

E
φ̂
(∂φ lnL

c
T (φ)|y) and ∂φH(φ|φ̂) = E

φ̂
(∂φ ln f(x|y, φ)|y).

From (5) and Lemma 2.1,

∂φ(lnLT (φ)) = E
φ̂
(∂φ lnLT (φ)|y)

= E
φ̂
(∂φ lnL

c
T (φ)|y)− E

φ̂
(∂φ ln f(x|y, φ)|y).

(6)

Define
D10Q(φ|φ̂) = E

φ̂
(∂φ lnL

c
T (φ)|y), (7)

and
D10H(φ|φ̂) = E

φ̂
(∂φ ln f(x|y, φ)|y). (8)

From (6), (7) and (8)

∂φ(lnLT (φ)) = D10Q(φ|φ̂)−D10H(φ|φ̂). (9)

Lemma 2.2. For each φ, φ̂ ∈ Φ then H(φ|φ̂) ≤ H(φ̂|φ̂).

Lemma 2.3. For each φ̂ ∈ Φ then D10H(φ̂|φ̂) = 0.

Based on Lemma 2.2, Lemma 2.3 and the properties of a maximum and
minimum value in a compact metric space (see [4]), it implies the following
corollary.

Corollary 2.2. H(φ|φ̂) attains global maximum at φ̂.
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Theorem 2.2. (see [2]) For each φ(k) ∈ Ψ we have lnLT (φ
(k+1)) ≥

lnLT (φ
(k)).

Proof. It is given an initial value φ(0) ∈ Φ. From the EM algorithm, there is
φ(1) ∈ Φ so that lnLT (φ

(1)) ≥ lnLT (φ
(0)). By obtaining φ(1) ∈ Φ, it is obtained

φ(2) so that lnLT (φ
(2)) ≥ lnLT (φ

(1)) etc. There is the sequence {φ(k)} which
lnLT (φ

(k+1)) ≥ lnLT (φ
(k)) and {lnLT (φ

(k))} which is increasing. It implies
for each φ(k) ∈ Ψ,

lnLT (φ
(k+1))− lnLT (φ

(k))

=
(

Q(φ(k+1)|φ(k))−H(φ(k+1)|φ(k))
)

−
(

Q(φ(k)|φ(k))−H(φ(k)|φ(k))
)

=
(

Q(φ(k+1)|φ(k))−Q(φ(k)|φ(k))
)

−
(

H(φ(k+1)|φ(k))−H(φ(k)|φ(k))
)

. (10)

According to the M step, it is defined Q(φ(k+1)|φ(k)) ≥ Q(φ|φ(k)) and from
Lemma 2.2, H(φ(k)|φ(k)) ≥ H(φ|φ(k)) for each φ ∈ Φ and H(φ(k+1)|φ(k)) −
H(φ(k)|φ(k)) ≤ 0. So it can be said that

lnLT (φ
(k+1))− lnLT (φ

(k)) ≥ 0

lnLT (φ
(k+1)) ≥ lnLT (φ

(k)). (11)

Theorem 2.3. (see [2]) For each φ(k) /∈ Ψ,

lnLT (φ
(k+1))− lnLT (φ

(k)).

Proof. From (8), it is known

∂φ(k)(lnLT (φ
(k))) = D10Q(φ(k)|φ(k))−D10H(φ(k)|φ(k)).

Since D10H(φ(k)|φ(k)) = 0, then ∂φ(k)(lnLT (φ
(k))) = D10Q(φ(k)|φ(k)). For

φ(k) ∈ Ψ, ∂φ(k)(lnLT (φ
(k))) 6= 0 and D10Q(φ(k)|φ(k)) 6= 0 so that φ(k) is

not a local maximum of Q(φ|φ(k))). According to the M step, it is defined
Q(φ(k+1)|φ(k)) ≥ Q(φ|φ(k)) for each φ ∈ Φ. Thus, it is obtainedQ(φ(k+1)|φ(k)) ≥
Q(φ|φ(k)) and it implies

lnLT (φ
(k+1)) ≥ lnLT (φ

(k)). (12)
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Corollary 2.3. The sequence {lnLT (φ
(k))} is an increasing sequence.

Theorem 2.4. Let Eφ(k)(lnLc
T (φ)|Y = y) = Q(φ|φ(k)), then

Q(φ|φ(k)) =
∑

i∈SX

α1(i|φ
(k))β1(i|φ

(k)))
∑

l∈SX
αt(l|φ(k))β(l|φ(k))

lnϕi(φ)

+
∑

i∈SX

∑T
t=1 αt(i|φ

(k))βt(i|φ
(k))

∑

l∈SX
αt(l|φ(k))βt(l|φ(k))

ln f(Yt = yt|Xt = i, φ)

+
∑

i∈SX

∑

j∈SX

∑T−1
t=1 aij(φ

(k))αt(i|φ
(k))βt+1(j|φ

(k))J(y)
∑

l∈SX
αt(l|φ(k))βt(l|φ(k))

ln aij(φ),

where J(y) = f(Yt+1 = yt+1|Xt+1 = j, φ(k)).

Theorem 2.5. Let φ = (A,λ) be the parameter ofQ(φ|φ(k)) with A = [aij ]
and λ = λi, then

aij(φ
(k+1)) =

∑T−1
t=1 aij(φ

(k))αt(i|φ
(k))βt+1(j|φ

(k))J(y)
∑T−1

t=1 αt(i|φ(k))β(i|φ(k))
,

where J(y) = f(Yt+1 = yt+1|Xt+1 = j, φ(k)) and

λ(φ(k+1)) =

∑T
t=1 αt(i|φ

(k))βt(i|φ
(k))(yt)

∑T
t=1 αt(i|φ(k))βt(i|φ(k))

.

3. Convergence of Parameter Estimator EHMM

Let {φ(k)} be the sequence which is obtained from the EM algorithm. It will
be proven that the sequence {lnLT (φ

(k))} converges to lnLT (φ
∗) which φ∗ is a

stationary point of lnLT (φ).
Based on the properties of a continuous function in a compact metric space

(see [4]), we have the following corollaries.

Corollary 3.1. Let h : Φ → IR1 be a function with h(φ) = lnLT (φ).
Then the range of h(φ) is a compact metric space in IR1.

Corollary 3.2. The range of h(φ) is bounded.
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Corollary 3.3. The sequence {lnLT (φ
(k))} is an increasing and conver-

gent sequence in h(φ) which is convergent. Since h(φ) is compact, there is

φ∗ ∈ Φ such that lim
k→∞

lnLT (φ
(k)) = lnLT (φ

∗).

Theorem 3.1. (see [2]) Let g(φ̂) = {δ′ ∈ Φ : Q(δ′|φ̂) ≥ Q(δ|φ̂) for each

δ ∈ Φ} then g is a closed set in Φ\Ψ.

Proof. Since g is a set value function (see [5]), from Q(δ′|φ′) it is known
that δ′ ∈ g(φ′) for δ′, φ′ ∈ Φ. For each φ̄ ∈ Φ\Ψ and from Theorem 2.1 (4),
Q(δ|φ) is a continuous function for δ and φ in Φ× Φ, if φ(k) → φ̄ and δ(k) → δ̄
then Q(δ(k)|φ(k)) → Q(δ̄|φ̄) for k → ∞. So that, it is obtained δ(k) ∈ g(φ(k))
for k = 1, 2, ... and it satisfies if φ(k) → φ̄ and δ(k) → δ̄, then δ̄ ∈ g(φ̄), for
k → ∞. So that g is a closed function, it is satisfied by the EM algorithm i.e
δ(k) corresponding to φ(k+1).

Theorem 3.2. (see [2]) Let Q(φ|φ(k)) be a continuous function of φ, φ(k) ∈
Φ × Φ. Let {φ(k)} be the EHMM estimator sequence which is obtained from

the EM algorithm,

1. lim
k→∞

lnLT (φ
(k)) = lnLT (φ

∗), which the convergence is increasing.

2. If lim
k→∞

φ(k) = φ∗, then φ∗ is a stationary point of lnLT (φ).

Proof. 1. From Corollary 3.1, Theorem 2.2 and Theorem 2.3,

lim
k→∞

lnLT (φ
(k)) = lnLT (φ

∗).

The sequence {lnLT (φ
(k))} is an increasing sequence.

2. Let lim
k→∞

φ(k) = φ∗, if φ∗ is not a stationary point (φ∗ /∈ Ψ). We consider

a sequence {φ(k+1)} so that φ(k+1) ∈ g(φ(k)) for each k and the sequence
{φ(k+1)} in a compact set according to Theorem 2.1 (3). It implies that
there is the sequence {φ(k+1)} so that for m → ∞ then φ(k+1)m → φ̂ and
for k → ∞ then φ(k+1) → φ̂. From Theorem 3.1, g is a closed function in
Φ\Ψ and the assumption φ∗ /∈ Ψ thus φ̂ ∈ g(φ∗). From (12), it implies

lnLT (φ̂) > lnLT (φ
∗). (13)

Since lnLT (φ) in a continuous function, from Theorem 3.2 (1) and φ(k+1) →
φ̂ for k → ∞, then lim

k→∞
lnLT (φ

(k)) = lim
k→∞

lnLT (φ
(k+1)). It implies
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lnLT (φ
∗) = lnLT (φ̂) and it is contradicted by (13). So φ∗ is not a sta-

tionary point.
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