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Abstract: For every natural number n ≥ 4 there are exactly 4 non-abelian
groups (up to isomorphism) of order 2n, with a subgroup of index 2. In this
article, we are going to illustrate all of these groups properties and axioms using
Groups, Algorithms and Programming GAP.
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1. Introduction

This article aims to: classify the family of all non-abelian 2-generator groups
of order 2n. By: describing the group structure, finding the order and the
conjugacy classes, determining the derived subgroup and the nilpotency class
of each group in this family. The Groups, Algorithms and Programming GAP

will be used to support our illustrations.
For every natural number n ≥ 4 there are exactly 4 non-abelian groups (up

to isomorphism) of order 2n, and they are:

• The dihedral group D2n is a non-abelian 2-generator group of order 2n.
This group presented by:

D2n = 〈r, s | r2
n−1

= s2 = (rks)2 = e , k = 1, 2, · · · , n〉. (1)
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Clearly, 〈r〉 ∼= C2n−1 is a subgroup of index 2. For more information about
dihedral group of order 2n one can see [2].

• The quasidihedral group QD2n is a non-abelian 2-generator group of order
2n, simply presented by:

QD2n = 〈r, s | r2
n−1

= s2 = e, rsr = r2
n−2

s〉. (2)

Certainly, 〈r〉 ∼= C2n−1 is a subgroup of index 2.

• The generalized quaternion groupGQ2n is a non-abelian 2-generator group
of order 2n. This group represented by:

GQ2n = 〈r, s | r2
n−1

= s4 = e, r2
n−2

= s2, rs = sr〉. (3)

Clearly, 〈r〉 ∼= C2n−1 is a subgroup of index 2.

• A 2-generator group G of order 2n , n ≥ 4, presented by:

〈r, s | r2
n−1

= s2 = e, sr = r2
n−2+1s〉. (4)

Which is isomorphic to the semidirect product of C2n−1 and C2. Also, it
has C2n−1 as a normal subgroup of index 2. We will call this group by
Nondihedral group and denote it by ND2n .

2. Groups, Algorithms and Programming (GAP)

Group, Algorithms, Programming (GAP) is a system for computational dis-
crete algebra, with particular emphasis on Computational Group Theory. GAP
provides a programming language, a library of thousands of functions imple-
menting algebraic algorithms written in the GAP language as well as large data
libraries of algebraic objects.

GAP have many build-in functions that help in group theory. The most
attention is on the build-in functions used to find some required estimations for
the groups studied in this research. The built-in GAP functions supposed to use
the group structure and all of its elements to proceed the needed argument. This
will need more time when groups have large size. The structure which contains
only the build-in GAP functions well be called an ordinary GAP algorithm,
which means a list of build-in functions sorting logically to obtain a certain
result.
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3. GAP’s Groups structures

In this section, we will use GAP to introduce the group structure of D2n , QD2n ,
GQ2n and ND2n for n ≥ 4. Then, using these structures to built GAP’s codes
that help to illustrate these groups properties, such as: Order classes, Conjugacy
classes, nilpotency class and the derived subgroup of each group.

Certainly, all of the indicated groups are 2-generator 2-group. That are
defined in GAP by a free group of two generators as:
gap>F:=FreeGroup("r","s");;

Then using F to define each group by the generators and relations using n
that gives a group of size 2n. The following are the GAP’s codes of each group:

Algorithm 3.1 Dihedral group

gap> n:= ;;# set n.

gap> F:=FreeGroup("r","s");;

gap> D:=F/[F.1^(2^ (n-1)),F.2^2,F.2*F.1*F.2*F.1];

Algorithm 3.2 Generalized Quaternion group

gap> n:= ;;# set n.

gap> F:=FreeGroup("r","s");;

gap> GQ:=F/[F.1^(2^ (n-1)),

F.2^ 4,

F.1^ (2^ (n-2))*F.2^(-2),

F.2^ (-1)*F.1*F.2*F.1];

Algorithm 3.3 Quasidihedral group

gap> n:= ;;# set n.

gap> F:=FreeGroup("r","s");;

gap> QD:=F/[F.1^(2^ (n-1)),

F.2^ 2,

F.2*F.1*F.2*F.1^(-(2^ (n-2)-1))];

4. The Order Classes

A familiar concept in group theory will be produced in this section, that is the
element order in a group. The order of x in G is the least positive integer k
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Algorithm 3.4 Nondihedral group

gap> n:= ;;# set n.

gap> F:=FreeGroup("r","s");;

gap> ND:=F/[F.1^(2^ (n-1)),

F.2^ 2,

F.2*F.1*F.2*F.1^(-(2^ (n-2)+1))];

such that xk = e. As a result of Lagrange’s Theorem; any element x in a finite
group G has a finite order o(x) such that o(x) divides |G|.

Let G be a finite group, and x ∈ G with o(x) = k. Then, we need to count
all y ∈ G which has the same order as x. Precisely, we will determined a class
of each order. The set of all of these classes is called the order classes of G, and
denoted by OCG. This can be obtained by: The set of all ordered pairs [k, |Ok |]
where k is the order of some elements in G and Ok is the set of all elements in
G which have the order k. That is Ok = {x ∈ G | o(x) = k}. Then, the order
classes of a group G can be written as:

OCG = {[k, |Ok |] | k = o(x) , for x ∈ G}.

In this section we attend to find the order classes of all finite non-abelian
2-generator 2-group. This will done in two ways: Firstly, using the ordinary
GAP’s algorithm. Next, using a modified GAP’s algorithm aims to improve
the results and get them out easier.

Now we will use Algorithm 3.1, 3.2, 3.3 and 3.4 to find the order classes of
all non-abelian 2-group of order 2n , n ≥ 4.

Algorithm 4.1 Order classes of dihedral group

gap> n:= ;;# set n.

gap> F:=FreeGroup("r","s");;

gap> D:=F/[F.1^(2^ (n-1)),F.2^2,F.2*F.1*F.2*F.1];;

gap> x:=Elements(D);;

gap> Collected(List(x,i->Order(i)));

Runtime();

Using n = 6 (the first line of Algorithm 4.1), then this algorithm gives the
order classes of the dihedral group of order 26 = 64. The following is the result:
[ [1, 1], [2, 33], [4, 2], [8, 4], [16, 8], [32, 16] ]

655

The used time is 655 milliseconds, this time will grow fast for large n, which
gives large group order. For n = 10, the order classes of D1024 were estimated
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in 13837 milliseconds. For n = 13 the time required is 1886551 milliseconds.
But, for extra large n, there is no estimation and the result is “exceed the

memory size”.
To solve this issue, we will replace the ordinary GAP (Algorithm 4.1) by the

next algorithm:

Algorithm 4.2 New GAP’s code for the order classes of dihedral group of order
2n

gap> n:= ;;# set n.

gap>Print("OC(D (",2^ n,"))=[1,1],[",2,",",2^(n-1)+1,"]");

> for i in [3..n] do;

> Print(",[",2^(i-1),",",2^(i-2),"]");

> od;

> Print("\n");
> Runtime();

Using n = 6 (the first line of Algorithm 4.2), this algorithm gives the order
classes of the dihedral group of order 26 = 64. The following are the results:
OC(D (64))=[1,1],[2,33],[4,2],[8,4],[16,8],[32,16]

250

Clearly, Algorithm 4.2 not illustrate the set of the group elements to eval-
uate its order classes. It is only use n. This makes it save a lot of time and
also gives the results even for large group size. The following table includes
the time required for the order classes estimations of dihedral groups in both
algorithms:

n Group size Time of Algorithm 4.1 Time of Algorithm 4.2

7 128 811 218

8 256 1294 222

11 2048 68266 260

12 4096 366040 265

20 1048576 exceed the memory size 272

30 1073741824 exceed the memory size 287

Table 1: The time (milliseconds) required to find the order classes
of dihedral group by using Algorithm 4.1 and 4.2

It is clear that the new GAP’s code depends only on n. which is not consider
the group type and description or the elements structure, that is the reason
which makes is very fast and does not produce any execution errors such as
“exceed the memory size” when large n is used.
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Similarly, we will replace the ordinary GAP’s algorithms of the order classes
of generalized quaternion, quasidihedral and nondihedral groups respectively
by the following GAP’s algorithms:

Algorithm 4.3 New GAP’s code for the order classes of generalized quaternion
group

gap> n:= ;;# set n.

gap> Print("[1,1],[2,1],[4,",2^(n-1)+2,"],");

> for i in [3..n-1] do;

> Print("[",2^(i),",",2^(i-1),"],");

> od;

> Print("\n");
> Runtime();

Algorithm 4.4 New GAP’s code for the order classes of quasidihedral group

gap> n:= ;;# set n.

gap> Print("[1,1],[2,",2^(n-2)+1,"]",

"[",4,",",2^(n-2)+2,"]");

> for i in [3..n-1] do;

> Print(",[",2^(i),",",2^(i-1),"]");

> od;

> Print("\n");
> Runtime();

Algorithm 4.5 New GAP’s code for the order classes of nondihedral group

gap> n:= ;;# set n.

gap> Print("[1,1],[2,3],");

> for i in [3..n] do;

> Print("[",2^(i-1),",",2^(i-1),"],");

> od;

> Print("\n");
> Runtime();

It is worth to be mentioned, all of the new GAP’s algorithms listed above are
not consider the groups structure or the list of the groups elements. That makes
their estimations done numerically rather than the algebraic calculations. This
will save a lot of time even for large group size, which can not be estimated
using the ordinary algorithms, for it needs a large size of computer memory.
We are recommend to use these codes instead of the ordinary GAP’s codes to
find the order classes of this family of groups.
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The first remark which can be obtained from the previous estimations, is:
all of the groups illustrated in this study have distinct order classes for each
n. This can show that, these groups are not isomorphic. See the following
example:

Example 1. Let n = 7 and use Algorithm 4.5, 4.4, 4.3 and 4.2. Then we
have:

• The order classes of D128 are:
[1,1],[2,65],[4,2],[8,4],[16,8],[32,16],[64,32]

• The order classes of QD128 are:
[1,1],[2,33][4,34],[8,4],[16,8],[32,16],[64,32]

• The order classes of GQ128 are:
[1,1],[2,1],[4,66],[8,4],[16,8],[32,16],[64,32]

• The order classes of ND128 are:
[1,1],[2,3],[4,4],[8,8],[16,16],[32,32],[64,64]

One can see that, the classes [2, |O2|] are distinct for this family. That is to
say, the groups illustrated in this research have distinct numbers of elements of
order 2.

5. Nilpotency Classes

The groups considered in this research are represent the family of all non-abelian
group of order 2n , n ≥ 4. This section will introduce the nilpotency classes of
this family corresponding to n.

Definition 1. ([4]) The lower central series of a group G is:

G = γ0(G) ≥ γ1(G) ≥ · · · ≥ γc(G) ≥ · · · ,

where γi(G) = [γi−1(G), G].

Definition 2. ([3]) A group G is called nilpotent, if γc(G) = {e} for some
positive integer c. The smallest such c is called the class of nilpotency of G.
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Definition 3. ([3]) Fix a prime number p. A finite group whose order is
a power of p is called a p-group.

Let G be a finite group. Then by Lagrange’s Theorem, every element in G
has an order that divides |G|. So if G is a p-group, then |G| is a power of p;
and so the order of any element in G is a power of p. In addition, a p-group is
nilpotent [5].

Obviously, all of the groups studied in this article are 2-group. Therefore,
they are nilpotent groups. The following theorems determine the nilpotency
class of this family.

Lemma 1. The derived subgroup of the groups D2n , QD2n and Q2n is

of index 4 for n ≥ 4.

Proof. Let G be any of the groups listed above. Then, G is a 2-generator
group, generated by r and s such that 〈r〉 is a normal subgroup of G. Thus,
the commutator of any x, y ∈ G is [x, y] = r2k for k = 1, 2, · · · , 2n−2. That is to
say, the derived subgroup G′ = {x ∈ G | x = r2k , k = 1, 2, · · · , 2n−2} = 〈r2〉.

Therefore, [G : G′] =
2n

2n−2
= 4.

Theorem 1. The groups D2n , QD2n and Q2n are nilpotent of class n− 1
for all n ≥ 4.

Proof. Let G be any of the groups listed above. Using Lemma 1 we found
that [G : G′] = 4. By Definition 2, γk+1(G) = [γk(G), G] = {e} if k = n − 2.
Therefore, γn−1(G) is the trivial group. Hence, c = n− 1.

Lemma 2. The derived subgroup of G = ND2n is G′ = 〈rn−2〉 for all

n ≥ 4.

Proof. Let G = ND2n , which is generated by r and s. Let x ∈ H =
〈rn−2〉 = {e, rn−2}. Then, e ∈ G′ and rn−2 = [s, r]. Thus, H ⊆ G′. Conversely,
let x ∈ G′, then x = [a, b] for a, b ∈ G. But, a = ris and b = rjs for i, j ∈
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{1, 2, 3, · · · , 2n−1}. Thus,

x = a−1b−1ab
= (ris)−1(rjs)−1(ris)(rjs)
= srn−isrn−jrisrjs

= rn−2(j−i) ∈ H.

Implies that G′ ⊆ H. Hence, G′ = H = 〈rn−2〉.

Theorem 2. The group ND2n is nilpotent of class 2 for all n ≥ 4.

Proof. Let G = ND2n for 2n, n ≥ 4 which is:

G = 〈r, s | r2
n−2

= s2 = srsr2
n−2−1〉

Using Lemma 2, we have G′ = {e, rn−2}, it is clear that x2 = 2 for all x ∈ G′.
Then, γ2(G) = [γ1(G), G] = [{e, rn−2}, G] = {e}. Hence, G is nilpotent of class
2.

6. Conjugacy Classes

Recall the definition of conjugacy; two elements x and y in a group G are
conjugate if there exists z ∈ G such that y = zxz−1. The conjugacy class
of x ∈ G is the set of all elements in G that conjugate to x, and denoted by
ClG(x). The conjugation performs a partition for the group G, see [1]. So, if
ClG(x)∩ClG(y) 6= φ, then ClG(x) = ClG(y). The conjugacy classes of a group
G is denoted by ClG and the number of such classes is |ClG|. Certainly, if G is
an abelian group then |ClG| = |G|. Otherwise, |ClG| < |G|. In this section we
will find the number of conjugacy classes of D2n , QD2n , Q2n and ND2n .

Lemma 3. The centre of the groupG forG is one of the groupsD2n , QD2n

or Q2n , n ≥ 4 is Z(G) = {e, rn−2} for all n ≥ 4.

Theorem 3. The number of the conjugacy classes of the groupsD2n , QD2n

and Q2n , n ≥ 4 is 3 + 2n−2 for all n ≥ 4.

Proof. Let G be a group of the groups listed above of order 2n. Then, G is
a two generators group, generated by r and s such that o(r) = 2n−1. Moreover,
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ClG(e) = {e} and ClG(r
2n−2

) = {r2
n−2

}, since e, r2
n−2

∈ Z(G). On the other
hand, ClG(s) = {r2ks | k = 1, 2, · · · , 2n−2} and ClG(rs) = {r2k+1s | k =
1, 2, · · · , 2n−2}. So there are two conjugacy classes for the set {rms | m =
1, 2, · · · , 2n−1}. Now, the other elements are all x ∈ H = 〈r〉 \ {e, r2

n−2

}. This
set contains 2n−1−2 elements. Each element is conjugate to its inverse. That is
ClG(x) = {x, x−1} for each x ∈ H. Therefore, there are 1

2

(

2n−1 − 2
)

= 2n−2−1
conjugacy classes for H. Thus, the group G has 2 + 2 + 2n−2 − 1 = 3 + 2n−2

conjugacy classes.

Lemma 4. The centre of the group G = ND2n , n ≥ 4 is Z(G) = 〈r2〉 for
all n ≥ 4.

This lemma concludes that, if G = ND2n for n ≥ 4, then |Z(G)| = 2n−2.
Clearly, ClG(x) = {x} for all x ∈ Z(G). This can help in the proof of the
following theorem.

Theorem 4. The number of the conjugacy classes of the groupND2n , n ≥
4 is 5(2n−3) for all n ≥ 4.

Proof. Let G = ND2n , n ≥ 4. Then, G has 2n−2 conjugacy classes of
the form ClG(x) = {x} for all x ∈ Z(G). Now we need to count the number
of conjugacy classes of x ∈ H = G \ Z(G). Clearly, |H| = |G| − |Z(G)| =
2n − 2n−2 = 3 · 2n−2. For any x ∈ H, we have |ClG(x)| = 2. Thus, the number
of the conjugacy classes which can be obtained from H is |H|/2 = 3 · 2n−3.
Hence,

ClG = |Z(G)|+
1

2
|H| = 2n−2 + 3 · 2n−3 = 2n−3(2 + 3) = 5(2n−3).

7. Conclusions

Using arithmetic calculations instead of the algebraic calculations is more fast
and easy. This research is interested in some essential estimations for the family
of all 2-generator non-abelian groups of order 2n for n ≥ 4. We create new
codes using GAP, to evaluate the order classes of these groups. The codes
introduced in this research supposed to work numerically using only the group
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order. These estimations, save a lot of time and it is very easy to used rather
than the ordinary algebraic estimations.

Similarly, as introduced in Section 4, one can establish new GAP’s codes
from Theorem 4, 3, 2 and 1 to find the number of conjugacy classes and the
nilpotency classes for all 2-generator non-abelian groups of order 2n , n ≥ 4.
These new codes are recommended to used rather than the ordinary algebraic
estimations.
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