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Abstract: A nonzero nonunit a of a ring R is called an irreducible element
if, for some b, c ∈ R, a = bc implies that either b or c (not both) is a unit. We
construct a bipartite graph in which the union of the set of irreducible elements
and group of units is a vertex-set and an edge-set is the set of pairs between
irreducible elements and their unit factors in the ring of integers modulo n.
Many properties of this constructed bipartite graph are studied. We show that
this bipartite graph contains components which are isomorphic. We also note
that each component of this bipartite graph can be presented in some form
which we call star form presentation. Some examples of graphs in star form
presentation are provided for illustration purposes. Furthermore, we prove that
the girth of this bipartite graph is 8. Most of the results in this paper are arrived
at via group action.
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1. Introduction

In this paper we study a bipartite graph associated with irreducible elements
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and group of units in a ring of integers modulo n. We construct a bipartite graph
in which we define a vertex-set as the union of the set of irreducible elements and
group of units and an edge-set as the set of pairs between irreducible elements
and their unit factors. Our interest is to study and establish relationships
between the set of irreducible elements and the group of units by using the
properties of the graph we are going to construct. Since we are going to work
with elements in the ring of integers modulo n, in Section 2, we give an overview
of this ring and we also give some results, available in [7], on how to determine
the set of irreducible elements and its cardinality. We also present some results,
which are crucial to our work, on group action and graph theory.

First part of Section 3 we are going to define some maps which are defined on
group of units and show that the set of these maps is a group which acts on group
of units. Our interest is to find orbits induced in group of units which are useful
in proving some results in this paper. Lastly, we define and study a bipartite
graph to an extent of determining some properties such as the components,
degrees, connectivity, girth, circumference and others. More interestingly, we
show that all components in this bipartite graph are isomorphic.

2. Preliminaries

In this section we give a quick overview of the ring of integers modulo n, group
action and graph theory, respectively.

2.1. An overview of the ring of integers modulo n

In this section the reader is referred to [3, 4, 5, 6, 7, 9] if more details are sought.
We view the ring of integers modulo n, denoted Zn, as the set {0, 1, ..., n − 1}
which is called the complete set of residues modulo n. Zn is a commutative
ring with identity 1. For a nonzero Zn, we use the notation Z

∗
n. An element

u ∈ Zn is a unit if there exists v ∈ Zn such that uv = 1; in this case v is called
a multiplicative inverse of u. All elements which are not units are said to be
nonunits. The set of all units forms a group called the group of units. We
denote a group of units by Un. Any element a is in the group of units of Zn

if gcd(a, n) = 1, that is, the group of units is the set {a ∈ Zn| gcd(a, n) = 1}.
Euler’s phi function states that if n =

∏k
i=1 p

αi

i , a prime power factorization,

then φ(n) =
∏k

i=1(p
αi

i − pαi−1
i ) and φ(nm) = φ(n)φ(m) if n and m are positive

integers such that gcd(n,m) = 1. Note that φ(n) is the number of units in Zn.

A nonzero nonunit a of a ring R is called an irreducible element if, for some
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b, c ∈ R, a = bc implies that either b or c (not both) is a unit. In this paper we
denote the set of irreducible elements by In. Since in Zn elements do not have
unique factors then a nonzero nonunit a is irreducible if all its factors satisfy
the condition in the definition. For instance, 6 = 1 ·6 = 2 ·3 = 5 ·3 = 8 ·3 = 4 ·6
in Z9. So 6 is an irreducible element since all factors satisfy the condition in
the definition.

Definition 1. Let n =
∏k

i=1 p
αi

i with pi distinct primes. We define P as
the set of all pi with αi > 1, i.e., P = {pi|pi is factor of n with αi > 1}.

To determine and count all irreducible elements in Zn we are going to use
results in [7].

Theorem 2. Let n =
∏k

i=1 p
αi

i where pi are distinct primes. Then

(i) In = ∅, if P = ∅,
(ii) In = {a ∈ Zn| gcd(a, n) = p, p ∈ P},

(iii) |In| =
∑

p∈P

φ(n)
p

.

Remark 3. Suppose that |P| 6= 0. Then, by Theorem 2 (ii), it is not
hard to observe that the set of irreducible elements can as well be written as
In = {up|u ∈ Un, p ∈ P}.

2.2. Group Action

Here we give an overview of group action which is a powerful tool in solving
different problems in algebra and other branches of mathematics. Here we give
some definitions and results which are relevant to what we study in this paper.
If more details are sought, the reader is referred to [4, 6].

Let X be an arbitrary set, and let G be a group. A function f : G×X → X
is called group action by G on X if and only if ex = x for all x ∈ X and
(g1g2)x = g1(g2x) for all g1, g2 ∈ G and x ∈ X, where e is the identity of G. If
G is acting on X then X is called a G-set. If G acts on a set X and x, y ∈ X,
then x is said to be G-equivalent to y if there exists a g ∈ G such that gx = y.
We write x ∼ y if two elements are G-equivalent. Let X be a G-set. Then
G-equivalence is an equivalence relation on X.

If X is a G-set, then each partition of X associated with G-equivalence is
called an orbit of X under G. We denote the orbit that contains an element x
of X by Ox. Let O denote the set of all orbits in X under the action of G, i.e,
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O = {Ox|x ∈ X}. Let G be a group acting on a set X and let g be an element
of G. Then the fixed point set of g in X, denoted by Xg, is the set of all x ∈ X
such that gx = x. Note that Xg ⊆ X. The number of elements in the fixed
point set of an element g ∈ G is denoted by |Xg| and the number of orbits in
X is denoted by |O|. A group acts faithfully on a G-set X if the identity is the
only element of G that leaves every element of X fixed.

Theorem 4 (Cauchy Frobenius Theorem). Let G be a finite group acting
on a set X and let k denote the number of orbits in X under the action of G.
Then

k =
1

|G|

∑

g∈G

|X(g)|.

2.3. Some Concepts on Graph Theory

In this section we consider some definitions and results in graph theory and the
reader is referred to [1, 2, 8, 11] if more details are sought.

A simple graph G = (V,E) consists of a nonempty finite set V (G) of ele-
ments called vertices and a finite set E(G) of distinct unordered pairs of distinct
elements of V (G) called edges. We call V (G) the vertex-set and E(G) the edge-
set of G. Each edge has a set of one or two vertices associated to it, which are
called its endpoints and an edge is said to join its endpoints. Two edges of
a graph are called adjacent if they share a vertex. Similarly, two vertices are
called adjacent if they share an edge. An edge and a vertex on that edge are
called incident. For a given vertex x, the number of all vertices adjacent to it
is called degree of the vertex x, denoted by d(x). For a graph G, the minimum
degree over all vertices is called the minimum degree of G, denoted by δ(G)
and the maximum degree over all vertices is called the maximum degree of G,
denoted by ∆(G).

If in a simple graph every pair of vertices are adjacent then the graph is
called a complete graph and is denoted by Kn. A graph with no edges is called
an empty graph. If V ′(G′) ⊆ V (G) and E′(G′) ⊆ E(G), then G′ = (V ′, E′) is
a subgraph of G. A graph is called connected if any two vertices are connected
by some path; it is called disconnected otherwise. A connected subgraph H
is maximal provided H is not properly contained in a connected subgraph of
G. In other words, H is said to be a maximal connected subgraph of G if H
is a subgraph of H ′ and H ′ is a connected subgraph of G, then H = H ′. A
maximal connected subgraph of G is called a component of G. A connected
graph in which every vertex has degree 2 is called a cycle. A cycle is denoted
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by Cn where n is the number of vertices. If n is an even number then Cn is
called even cycle. If n is odd then Cn is odd cycle. The girth of a graph is the
length of a shortest cycle, denoted by g(G). The circumference of a graph G is
the maximum length of a cycle in G, denoted by c(G)

Two graphs G and G′ are isomorphic if there is a one-to-one correspondence
between the vertices of G, and those of G′ such that the number of edges joining
any two vertices of G is equal to the number of edges joining the corresponding
vertices of G′. A graph G = (V,E) is called bipartite if its vertex-set V (G) can
be partitioned into two disjoint sets V1 and V2 in such a way that every edge
connects vertices from different sets. We denoted it as G = (V1 ∪ V2, E). A
complete bipartite graph is a bipartite graph in which every vertex from part V1

is adjacent to every vertex from V2. If in a complete bipartite graph |V1| = r
and |V2| = s, then the graph itself is denoted by Kr,s and the number of edges
in Kr,s equals rs. The complete bipartite graph K1,n is called a star.

3. Main Results

3.1. Group Action on group of units of Zn

In this section we are interested in determining and enumerating all orbits
induced in Un under the action of a group which is shortly defined. Since in
this paper we are concerned with Zn which contains irreducible elements, from
now on, we assume that n =

∏k
i=1 p

αi

i with some αi > 1 and distinct primes pi,
i.e., we assume that |P| 6= 0. The results we obtain in this section are so useful
in proving most of the results in the next section.

Definition 5. Let P be as defined in Definition 1. Define A = Zp1 × · · ·×
Zp|P|

where pi ∈ P.

Remark 6. It is well known that A is a group called direct product of
groups under binary operation addition. It is not hard to observe that |A| =
∏

p∈P
p.

Definition 7. Let P be as defined in Definition 1. For u in Un and
s = (s1, ..., s|P|) in A, we define the maps πs by πs : u 7→

∑|P|
i=1 sin/pi+u where

pi ∈ P and 0 ≤ si ≤ pi − 1.
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Definition 8. We define the set of maps by ΘA = {πs|s ∈ A}.

Note that when |P| = 1 then we simply have A = Zp. In the next lemma
we show that the set of maps ΘA is defined on group of units Un.

Lemma 9. πs is a map defined on Un.

Proof. We require that n =
∏k

i=1 p
αi

i with some αi > 1 and pi distinct
primes. Let u ∈ Un and suppose that πs(u) = ū such that ū 6∈ Un. This
means that ū must be divisible by some pi. Without loss of generality, suppose
it is divisible by p1, a factor of n. We can write ū = mp1 and πs(u) − u =
∑|P|

i=1 sin/pi = tp1 where s = (s1, ..., s|P|) in A, pi ∈ P, for some integers m and

t. Since
∑|P|

i=1 sin/pi + u = ū implies u = ū −
∑|P|

i=1 sin/pi = p1(m − t) then
u /∈ Un contradicting our earlier assumption that u ∈ Un. This completes our
proof.

In the next lemma we show that the set of maps ΘA together with the
operation of composition of maps ◦ form a group.

Lemma 10. ΘA together with the operation of composition of maps ◦ is
a group.

Proof. Firstly, we show that ΘA is closed under the operation of
composition of maps ◦. Let πs and πs′ , with s = (s1, ..., s|P|) and
s′ = (s′1, ..., s

′
|P|) in A, be any two elements of ΘA. So, for u ∈ Un,

πs ◦ πs′(u) =

|P|
∑

i=1

sin/pi +





|P|
∑

i=1

s′in/pi + u



 =

|P|
∑

i=1

(si + s′i)n/pi + u

=

|P|
∑

i=1

s′′i n/pi + u = πs′′(u),

where s′′i = (si + si) (mod pi). Thus it is closed under the operation of com-
position of maps ◦.

Secondly, associativity follows from the associativity of mappings. Thirdly,
it is clear that π(0,...,0) is the identity. Finally, given πs then it is not hard to
see that its inverse π−1

s = πs−1 where s−1 is inverse of s in A.
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Theorem 11. ΘA acts on Un.

Proof. Let u ∈ Un. It is clear that π(0,...,0)(u) = u. Let πs and πs′ , with
s = (s1, ..., s|P|) and s′ = (s′1, ..., s

′
|P|) in A, be any two elements of ΘA. Since

(πs ◦ πs′)(u) = πs′′(u) =

|P|
∑

i=1

(si + s′i)n/pi + u

=

|P|
∑

i=1

sin/pi +





|P|
∑

i=1

(s′i)n/pi + u



 = πs(πs′(u)),

where s′′ = (s1 + s′1, ..., s|P| + s′|P|), we conclude that ΘA acts on Un.

It worth noting that since it is only the identity in ΘA that leaves every
element in Un fixed, so ΘA acts faithfully on Un.

Definition 12. Let u ∈ Un. Then the orbit in Un containing u under the
action of ΘA is Ou = {πs(u)|s ∈ A}.

Lemma 13. For any u ∈ Un, |Ou| =
∏

p∈P
p.

Proof. Observe that, for u ∈ Un, πs(u) = πs′(u) implies that s = s′. So it
should be easy to see that |Ou| must be equal to |A|. In Remark 6 we noted
that |A| =

∏

p∈P
p.

Let O denote the set of all orbits in Un under the action of ΘA, that is,
O = {Ou : u ∈ Un}.

Theorem 14. |O| = φ(n)∏
p∈P p

.

Proof. We know that O = {Ou : u ∈ U}. All orbits in Un are of the same
size. Since |Un| = φ(n) and by Lemma 13, |Ou| =

∏

p∈P
p so the result follows.

We consider two examples which illustrate the action of ΘA on Un.

Example 15. Consider Z25. So we have ΘA = {πs|s ∈ A} where A = Z5

and O1 = {1, 6, 11, 16, 21}, O2 = {2, 7, 12, 17, 22}, O3 = {3, 8, 13, 18, 23} and
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O4 = {4, 9, 14, 19, 24}. Observe that O = {O1,O2,O3,O4} and U25 = O1 ∪
O2 ∪ O3 ∪ O4.

Example 16. Consider Z36. Then we have ΘA = {πs|s ∈ A} where
A = Z2 × Z3. So O1 = {1, 7, 13, 19, 25, 31} and O5 = {5, 11, 17, 23, 29, 35}.
Observe that O = {O1,O5} and U36 = O1 ∪ O5.

3.2. A Bipartite Graph Associated with In and Un

In this section we construct a bipartite graph which is associated with the set
of irreducible elements and group of units in the ring Zn. We begin by defining
our new graph in line with the set of irreducible elements in Zn presented
in Remark 3. Recall that the set of irreducible elements can be written as
In = {up|u ∈ Un, p ∈ P}.

Definition 17. Let P be defined as in Definition 1. Define a graph
G = (V,E) as follows:

V (G) = In ∪ Un,

[v,w] ∈ E(G) ⇔ v ∈ Un and w = vp, p ∈ P.

It is clear in our definition that w ∈ In. Recall that if |P| = 0, then Zn does
not contain irreducible elements (see Theorem 2) and so in such case we simply
have an empty graph. We thus consider the ring which contains irreducible
elements, i.e., |P| ≥ 1. Since this graph is associated with elements in Zn, we
denote this graph by Gn instead of G, V (G) is denoted by Vn and E(G) is
denoted by En.

Remark 18. Observe that since |In| =
∑

p∈P
φ(n)
p

(by Theorem 2) and

|Un| = φ(n) then |Vn| = φ(n)(
∑

p∈P p−1 + 1).

Example 19. In Z8, we have U8 = {1, 3, 5, 7}, I8 = {2, 6} and E8 =
{[1, 2], [3, 6], [5, 2], [7, 6]}. See G8 in the figure that follows.

Example 20. If we consider Z36, we have U36 = {1, 5, 7, 11, 13, 17, 19, 23,
25, 29, 31, 35} and I36 = {2, 3, 10, 14, 15, 21, 22, 26, 33, 34}. See G36 in the figure
that follows.
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2 6

1 35 7

Figure 1: A graph of G8

2 3 10 14 15 21 22 26 33 34

1 5 7 11 13 17 19 23 25 29 31 35

Figure 2: A graph of G36

Example 21. In Z54, we have I54 = {3, 15, 21, 33, 39, 51} and
U54 = {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53}. We represent
G54 in the figure as follows.

3 15 21 33 39 51

1 5 7 11 13 1719 23 25 29 31 3537 41 43 47 49 53

Figure 3: A graph of G54

We next show how the set In is related to orbits induced in Un under the
action of ΘA and subsequently, use the established relationship in proving some
of the results which are of importance in this paper.

Lemma 22. For u ∈ Un, if v ∈ Ou is a unit factor of w ∈ In then all unit
factors of w are in the same Ou.

Proof. A typical element in Ou is of the form πs(u) =
∑|P|

i=1 sin/pi+u where
s = (s1, ..., s|P|) in A, 0 ≤ si ≤ pi − 1 and pi ∈ P (see Definition 7). Without
loss of generality, suppose w is generated by p1, that is w = vp1 for v ∈ Ou.
We need to show that all other unit factors of w are in Ou. Set v = v0 so that
v0 = π(0,s2,...,s|P|)(u) with fixed s2, ..., s|P|. We claim that vj = π(j,s2,...,s|P|)(u),
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for all j (1 ≤ j ≤ p1 − 1), are also unit factors of w. Observe that for, j, k ∈
{0, ..., p1 − 1}, vjp1 = π(j,s2,...,s|P|)(u)p1 = ( jn

p1
+ s2n

p2
+ · · · +

s|P|n

p|P|
+ u)p1 =

(jn + s2n
p2

p1 + · · · +
s|P|n

p|P|
p1 + up1) ≡ (kn + s2n

p2
p1 + · · · +

s|P|n

p|P|
p1 + up1) =

(kn
p1

+ s2n
p2

+ · · · +
s|P|n

p|P|
+ u)p1 = π(k,s2,...,s|P|)(u)p1 = vkp1 (mod n). That is

w = vjp1, for all j (1 ≤ j ≤ p1 − 1). It must be not hard to see that these are
the only factors in Ou which are factors of w.

We claim that w does not contain any unit factor in other orbits. For sake
of contradiction, suppose w has another unit factor v′l = π(l,z2,...,z|P|)(u

′) in Ou′

where u′ ∈ Un and u′ 6∈ Ou. That is v′l /∈ Ou. It means that, for any vj ∈ Ou,
a unit factor of w we have v′lp1 ≡ vjp1 (mod n). This implies that v′l ≡ vj
(mod n/p1) from which we get that v′l = mn/p1+vj = mn/p1+π(j,s2,...,s|P|)(u) =

π(m+j,s2,...,s|P|)(u) ∈ Ou contrary to our assumption that v′l 6∈ Ou.

In the next lemma we show that if we let s1 = · · · = si−1 = si+1 =
· · · = s|P| = 0 and 0 ≤ si ≤ pi − 1 so that we have ΘA′ = {πs′ |s

′ =
(0, ..., 0, si, 0, ..., 0), si ∈ A′}, where A′ = Zpi and pi ∈ P, then further acting
ΘA′ on Ou other orbits are induced. We will simply write ΘA′ = {πs′ |s

′ ∈ A′}
where A′ = Zp. For u

′ ∈ Ou, we denote the orbit containing u′ under the action
of ΘA′ on Ou by Ouu′ = {sin/pi + u′|0 ≤ si ≤ p1 − 1}. We also show that
elements in each Ouu′ are all unit factors of one irreducible element generated
by pi.

Lemma 23. Let ΘA′ = {πs′
i
|s′i ∈ A′} where A′ = Zpi and pi ∈ P. Then,

for u ∈ Un, ΘA′ acts on Ou and elements in each orbit are all unit factors of
one irreducible element generated by pi. Furthermore, these are the only unit
factors of this irreducible element.

Proof. It is not hard to see that ΘA′ is a subgroup of ΘA. Also note that
ΘA′ acts on Ou since, for all u′ ∈ Ou, π0(u

′) = u′ and πs(πs′(u
′)) = (πsπs′)(u),

for all πs, πs′ ∈ ΘA′ . Let the orbit containing u′ ∈ Ou be denoted by Ouu′ =
{sin/pi+u′|0 ≤ si ≤ pi− 1}. We show that if an irreducible element generated
by pi has a factor in Ouu′ then all elements in Ouu′ are also factors of it.

Suppose that v ∈ Ouu′ such that w = vpi. Write v = kn/pi+u′ for some k ∈
{0, ...pi−1}. For any v′ in Ouu′ , we have v′ = gn/pi+u′ where g ∈ {0, ..., pi−1}.
So v′pi = (gn/pi + u′)pi = gn + u′pi ≡ kn + u′pi = (kn/pi + u′)pi = vpi = w
(mod n) implies that all elements in Ouu′ are factors of w.

We claim that Ouu′ is the only orbit with factors of w. For sake of contradic-
tion, suppose that v′′ ∈ Ouu′′ , where u′′ is in Ou but not in Ouu′ , is also a factor
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of w. So let Ouu′′ = {sin/pi+u′′|0 ≤ si ≤ pi− 1} and write v′′ = tn/pi+u′′ for
some t ∈ {0, .., pi−1}. So v′′pi ≡ vpi = w (mod n) ⇒ (tn/pi+u′′)pi ≡ (kn/pi+
u′)pi (mod n) ⇒ (tn/pi + u′′)pi ≡ kn + u′pi (mod n) ⇒ (tn/pi + u′′)pi ≡ u′pi
(mod n) ⇒ tn/pi + u′′ ≡ u′ (mod n/pi) ⇒ tn/pi + u′′ = hn/pi + u′. But
tn/pi + u′′ = hn/pi + u′ implies an element in Ouu′ is equal to an element in
Ouu′′ which is a contradiction since Ouu′ and Ouu′′ two different orbits in Ou

under the action of ΘA′ .

Remark 24. Suppose the orbit containing u′ ∈ Ou is Ouu′ = {sin/pi +
u′|0 ≤ si ≤ pi − 1} under the action of ΘA′ , with A′ = Zpi. Then

(i) it is easily observed that |Ouu′ | = pi from which we conclude that there
are
|Ou|/|Ouu′ | = p1 · · · pi−1pi+1 · · · p|P| orbits in Ou.

(ii) by (i) and Lemma 23, it implies that there are p1 · · · pi−1pi+1 · · · p|P| irre-
ducible elements which are generated by pi and have their unit factors in
Ou.

(iii) it follows from (ii) that if |P| > 1 then there are
∑|P|

i=1 σi, where σi =
p1 · · · pi−1pi+1 · · · p|P|, irreducible elements which have factors in Ou and
1 if |P| = 1.

Lemma 25. Let A′ = Zpi and A′′ = Zpj , for i 6= j. Then all orbits induced
by ΘA′ and ΘA′′ in Ou where u ∈ Un contain at most 1 element in common.

Proof. Suppose some orbits induced in Ou by the actions of ΘA′ and ΘA′′

contain more than one element in common. Suppose u′ is one of the elements in
such orbits. So we have {sin/pi+u′|0 ≤ si ≤ pi−1} as an orbit induced by ΘA′

and {sjn/pj + u′|0 ≤ sj ≤ pj − 1} as an orbit induced by ΘA′′ . We show that
u′ must be the only element in common. Suppose sin/pi + u′ = sjn/pj + u′,
for some si ∈ {0, ..., pi − 1} and sj ∈ {0, ..., pj − 1}. If si = sj = 0 we obviously
have u′ which we already know that is present in both orbits. Suppose si and
sj are both nonzero. Since sin/pi + u′ = sjn/pj + u′ implies sipj = sjpi then
pj divides either sj or pi and pi divides either si or pj which is a contradiction
as pi 6= pj, si < pi and sj < pj.

Theorem 26. Gn contains φ(n)∏
p∈P p

isomorphic components.

Proof. By Lemma 22, Gn must contain components since if an irreducible
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element has a unit factor in Ou where u ∈ Un then all factors for that irre-
ducible element are also in the same orbit. We are assured that the component
associated with Ou is connected because all elements in an orbit induced under
the action of ΘA′ on Ou occur as elements in other orbits induced under the
actions of ΘA′′ (we know that A′ = Zpi and A′ = Zpi with i 6= j, see Lemma
25).

Since all orbits Ou in Un when acted upon by ΘA have the same structure
then all components obtained from these orbits must be isomorphic. Since,
by Lemma 13, |Ou| =

∏

p∈P p then we conclude that there are φ(n)/
∏

p∈P p
components.

From Theorem 26 we remark that the graph Gn is a disconnected graph
with isomorphic components. Since all the components in Gn are isomorphic
then the whole graph can be described by a single component. For this reason,
in the rest of this section we mostly use a component to study properties of Gn.

Lemma 27. No two irreducible elements in In generated by the same
prime are adjacent to a common unit in Un.

Proof. This is a direct consequence of Lemma 23. Also by Remark 3, any
irreducible element generated by p can be written in the form up where u ∈
Un and so with this presentation it must be impossible for any two elements
generated p to be adjacent to a common unit in Un.

Proposition 28. In Gn, d(v) = |P|, for all v ∈ Un and d(w) = p if w = v′p
for some v′ ∈ Un and p ∈ P.

Proof. By lemma 27, no two irreducible element generated by the same
prime are adjacent to a common unit factor. But irreducible elements generated
by different primes can have common unit factor. So each unit in Un must be
adjacent to |P| irreducible element.

By Remark 24, if the orbit containing u′ ∈ Ou is Ouu′ = {sin/pi + u′|0 ≤
si ≤ pi − 1} under the action of ΘA′ then we have |Ouu′ | = pi. By Lemma 23,
we conclude that only elements in Ouu′ are adjacent to one irreducible element
generated by pi. So if such irreducible element is w then the d(w) = pi.

Remark 29. Since, by Proposition 28, any vertex in In has degree p
where p ∈ P and any vertex in Un has degree |P| then δ(Gn) = min

p∈P
{p, |P|}
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and ∆(Gn) = max
p∈P

{p, |P|}.

Proposition 30. The total sum of degrees for all vertices in Gn is
2φ(n)|P|.

Proof. Since, by Proposition 28, the degree for each vertex in Un is |P|
and there are φ(n) elements in Un then the sum of degrees on unit vertices is
φ(n)|P|. Again all irreducible elements generated by prime p have degree p.

Since there are φ(n)
p

irreducible elements generated by p then they contribute
φ(n) degrees. Since there are |P| primes which generate In then the sum of
degrees on irreducible vertices is φ(n)|P|. Thus Gn has a total of 2φ(n)|P|
degrees.

Corollary 31. The total number of edges in Gn is φ(n)|P|.

Proof. There are φ(n) elements in Un. By Lemma 28, each unit vertex has
degree |P|. Hence Gn has φ(n)|P| edges.

Proposition 32. A component of Gn is a union of copies of the star
K1,|P|.

Proof. By Proposition 28, the degree of any unit in Un is |P| so the results
follows.

Remark 33. By Proposition 28, the degree of an irreducible element
generated by p is p so Proposition 32 is also equivalent to saying that each
component is a union of copies of the stars K1,p where p ∈ P.

Proposition 34. If P = {p} then each component of Gn is K1,p.

Proof. Suppose P = {p}. Then all irreducible elements in In are generated
by the same prime p. Hence by Lemma 27 and Proposition 28, each irreducible
element is adjacent to p units and these units are not adjacent to any other
irreducible element. Thus the result follows.

Proposition 35. Gn contains a cycle if and only if |P| > 1.
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Proof. Suppose that Gn contains a cycle. It implies that some vertices in
both In and Un have at least degree 2. |P| = 0 implies that Gn is an empty
graph. If |P| = 1, Gn does not contain a cycle since in this case all unit vertices
have degree 1. Since if |P| > 1 all vertices in both In and Un contain at least
degree 2 then Gn must contain a cycle. The converse is obvious.

Theorem 36. Let P = {p1, p2}. Then between any two irreducible
elements generated by prime p ∈ P there are p paths of length 4 in each
component of Gn. Furthermore, there are p(p−1)

2 cycles of length 8 that pass
through any such two irreducible elements.

Proof. Suppose P = {p1, p2}. By Theorem 2, In is generated by p1 and
p2. Since |P| = 2 > 1 then, by Theorem 35, Gn contains cycles. By Remark
3, recall that an irreducible element generated by p can be written as up, for
some u ∈ Un. Consider the maps π(s,t) with (s, t) ∈ A = Zp1 × Zp2 as defined
in Definition 7. Denote by ws all irreducible elements generated by p2 and
w′
t those generated by p1 where 0 ≤ s ≤ p1 − 1 and 0 ≤ t ≤ p2 − 1. For

i 6= j, π(i,t)(u)p1 = ( in
p1

+ tn
p2

+ u)p1 = in + p1tn
p2

+ up1 ≡ jn + p1tn
p2

+ up1 =

( jn
p1

+ tn
p2

+ u)p1 = π(j,t)(u)p1 (mod n) implies that if w′
t is adjacent to π(i,t)(u)

then it is also adjacent to π(j,t)(u). Similarly, for g 6= f , if ws is adjacent π(s,g)(u)
then it is also adjacent to π(s,f)(u). So it is immediate that between any two
irreducible elements generated by p2 (this is also true with those generated by
p1) we have the paths below:

wi, π(i,t)(u), w
′
t, π(j,t)(u), wj

for all 0 ≤ i < j ≤ p1 − 1 and 0 ≤ t ≤ p2 − 1. We represent these paths in
Figure 4 below.

It is not hard to observe, in Figure 4, that between any two irreducible
elements generated by p2 there are p2 paths of length 4, each passing through
some w′

t where 0 ≤ t ≤ p2 − 1 and similarly, between any two irreducible
elements generated by p1 there are p1 paths of length 4. Thus it is immediate
that any two of the pj paths of length 4 between any two irreducible elements
generated by pj form a cycle of length 8 which pass through such two irreducible

elements. So there are
(

pj
2

)

=
pj(pj−1)

2 such cycles.

Remark 37. Let n =
∏k

i=1 p
αi

i with some αi > 1 and pi distinct primes.

If you consider the maps π(s1,...,s|P|) : u 7→
∑|P|

j=1
sjn

pj
+ u, where pj ∈ P and

0 ≤ sj ≤ pj − 1, and (without loss) let si, sj 6= 0 and all others equal 0 so that
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wi wj

w′
0

w′
1

w′
2

...

w′
(p2−1)

π(i,0)(u)

π(i,1)(u)

π(i,2)(u)

...

π(i,p2−1)(u)

π(j,0)(u)

π(j,1)(u)

π(j,2)(u)

...

π(j,p2−1)(u)

Figure 4: Paths between wi and wj in a component of Gn

we have π(si,sj) then arguing by Theorem 36 one can easily find two irreducible
elements generated by same prime pj in a component of Gn with pj paths of

length 4 between them and
pj(pj−1)

2 cycles of length 8 that pass through them.

Theorem 36 and Remark 37 suggest that any component of Gn can be
presented in some form. From Figure 4 we observe that any component of Gn

can be presented in a form which we will call star form presentation by putting
all elements generated by any prime in the center and all others around them. If
the irreducible elements put in the center are those that are generated by p then
our graph in star form presentation takes the shape of K1,p since the degree of
each such irreducible elements is p by Proposition 28. To illustrate this idea,
we provide three examples and in each we present a component of Gn in a star
form presentation. Since if |P| = 1, by Proposition 34, each component is a star
then we already have a star form presentation. This can also be observed in
Examples 19 and 21. We therefore consider examples in which we have |P| > 1.
In the examples to be given, the blue vertices are for irreducible elements and
the red vertices are for units. Each irreducible element can be identified by its
degree since by Proposition 28 we know that any irreducible element generated
by p has a degree p.

Example 38. Let n = 3α5β or n = 3α5β
∏k

i=1 pi with α, β > 1, that is,

P = {3, 5}. Gn contains φ(n)
15 isomorphic components. Figure 5 and Figure 6

display two different star form presentations of a component of Gn. Note that
in Figure 5 all 3 units in each “branch” form some orbit in Ou under the action
of ΘA′ with A′ = Z3 and in Figure 6 all 5 units in each “branch” form some
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orbit under the action of ΘA′′ with A′′ = Z5.

Figure 5: A component of Gn

irreducible elements generated
by 5 in center

Figure 6: A component of Gn

with irreducible elements gener-
ated by 3 in center

Example 39. Let n = 5α7β or n = 5α7β
∏k

i=1 pi with α, β > 1, that

is, P = {5, 7}. Gn contains φ(n)
35 isomorphic components. Figure 7 shows a

component in a star form presentation with irreducible elements generated by
5 put in the center. Note that in Figure 7 all 7 units in each “branch” form
some orbit in Ou under the action of ΘA′ with A′ = Z7. We could also put
irreducible elements generated by 7 in the center; in this case 7 “branches” are
expected and in each “branch” we expect 5 units from some orbit in Ou under
the action of ΘA′′ with A′′ = Z5.

Figure 7: A component of Gn in star form presentation with irre-
ducible elements generated by 5 in center

Example 40. We consider a component of Gn when n = 3λ5α7β or n =
3λ5α7β

∏k
i=1 pi with λ, α, β > 1 and there are φ(n)

105 isomorphic such components.
We observe that P = {3, 5, 7} which implies that all irreducible elements are
generated by 3,5 and 7. In our star form presentation in Figure 8 all irreducible
elements generated by 3 are put in center. Note that we could also put all
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irreducible elements generated by 5 or 7 in the center.

Figure 8: A component of Gn with irreducible elements generated
by 3 put in the center

We point out few things in the construction of Figure 8. Red vertices are
units all from Ou. All unit vertices in each column form an orbit in Ou under
the action of ΘA′ where A′ = Z5 and in this case there 21 = 3× 7 orbits. Also
all unit vertices in each row form an orbit in Ou under the action of ΘA′′ where
A′′ = Z7 and there are 15 = 3× 5 orbits. Both cases satisfy Remark 24 (i).

As it was observed in Lemma 25, orbits induced by ΘA′ and ΘA′′ have at
most one element in common and this element is in the intersection of a row
and a column. And the star form presentation is always possible because of the
just said fact about orbits in each Ou . For |P| > 3, the star form presentation
is more funnier and complex. For instance, if |P| = 4 then unit vertices in each
“branch” have to be arranged in 3 dimensional.

Theorem 41. If |P| > 1 then g(Gn) = 8.

Proof. Suppose that |P| > 1. So by Proposition 35 we are assured that
there are cycles. In bipartite graphs cycles always have even length so we
expect an even girth. It is clear from Definition 17 that Gn is a simple graph so
we cannot have cycles of length 2. We claim that cycles of length 4 and 6 are
not possible. Suppose we have a cycle of length 4 as in Figure 9 where r1, r2
are two different irreducible elements and u1, u2 are two different unit vertices.

Observe that r1 and r2 are not generated by the same prime since that
would contradict Lemma 27. Without loss of generality, assume that r1 and
r2 are generated by p1 and p2, respectively. Since both r1 and r2 are adjacent
to u1 and u2 then we have r1 = u1p1 ≡ u2p1 (mod n) and r2 = u1p2 ≡ u2p2
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r1 r2

u1 u2

Figure 9: A cycle of length 4

w1 w2 w3

v1 v2 v3

Figure 10: A cycle of length 6

(mod n) which imply that u1 ≡ u2 (mod n/p1) and u1 ≡ u2 (mod n/p2) from
which obtain u1 = u2+ns1/p1 and u1 = u2+ns2/p2 for some s1 ∈ {0, ..., p1−1}
and s2 ∈ {0, ..., p2 − 1}. It follows that u1 = u2 + ns1/p1 = u2 + ns2/p2 from
which we obtain s1p2 = s2p1. So it implies that p1 divides s1 or p2 and p2
divides s2 or p1 which is only possible if s1 = s2 = 0, meaning that u1 = u2
contrary to our assumption that they are different.

Next we suppose that we have a cycle of length 6 as in Figure 10 where
w1, w2, w3 are three different irreducible elements and v1, v2, v3 are three dif-
ferent unit vertices. All the three irreducible elements must be generated by
different primes otherwise it would mean that some irreducible elements gen-
erated by the same prime have a common unit factor contrary to Lemma 27.
So we further suppose that |P| > 2 otherwise there is nothing to prove. With-
out loss of generality, assume that w1, w2 and w3 are generated by p1, p2 and
p3, respectively. That is w1 = v1p1 ≡ v2p1 (mod n), w2 = v1p2 ≡ v3p2
(mod n) and w3 = v2p1 ≡ v3p1 (mod n). We note that w1 = v1p1 ≡ v2p1
(mod n) ⇒ v1 ≡ v2 (mod n/p1) ⇒ v1 = v2 + ns1/p1 where 0 ≤ s1 ≤ p1 − 1.
Similarly, w2 = v1p2 ≡ v3p2 (mod n) implies that v1 = v3 + ns2/p2 where
0 ≤ s2 ≤ p2 − 1 and w3 = v2p1 ≡ v3p1 (mod n) implies that v2 = v3 + ns3/p2
where 0 ≤ s3 ≤ p3 − 1. So we have the equations:

v1 = v2 + ns1/p1 · · · (i)
v1 = v3 + ns2/p2 · · · (ii)
v2 = v3 + ns3/p3 · · · (iii)

By (i) and (ii) we obtain:

v2 + ns1/p1 = v3 + ns2/p2 · · · (iv)

Substituting (iii) in (iv) we obtain:

v3 + ns3/p3 +ns1/p1 = v3 + ns2/p2 · · · (v)

From (v) we have:
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s3p1p2 + s1p2p3 = s2p1p3 · · · (vi)

It follows that p1 must divide left side of Equation (vi). But p1|(s3p1p2 +
s1p2p3) ⇒ p1|s1p2p3. Since 0 ≤ s1 ≤ p1−1 so the only possibility is that s1 = 0
and from Equation (i) it implies that v1 = v2 contrary to our assumption v1, v2
and v3 are different. Thus a cycle of length 6 is also impossible.

By Theorem 36 and Remark 37, if |P| > 1 there always exist a cycle of
length 8 which passes through some two irreducible elements generated by the
same prime. Hence we conclude that g(Gn) = 8.

In Examples 38, 39 and 40 one can easily check that g(Gn) = 8.

In the next proposition we discuss about the circumference of Gn when
|P| = 2.

Proposition 42. Let P = {p1, p2}. If p1 < p2 then c(Gn) = 4p1.

Proof. By Remark 24 (ii), we conclude that in each component there are
p1 irreducible elements generated by p2 and p2 irreducible elements generated
by p1. Since p1 < p2 then a possible longest cycle must contain all the p1
irreducible elements generated by p2 and also p1 irreducible elements generated
by p1 otherwise if a cycle contains more than p1 irreducible elements generated
by p1 it would mean that some two irreducible elements generated by p1 have
a common unit factor contrary to Lemma 27. Denote by ws all irreducible
elements generated by p2 and by w′

t those generated by p1 where 0 ≤ s ≤ p1−1
and 0 ≤ t ≤ p2−1. As in Theorem 36 , for i 6= j, π(i,t)(u)p1 = ( in

p1
+ tn

p2
+u)p1 =

in+ p1tn
p2

+up1 ≡ jn+ p1tn
p2

+up1 = ( jn
p1
+ tn

p2
+u)p1 = π(j,t)(u)p1 (mod n) implies

that if w′
t is adjacent to π(i,t)(u) then it is also adjacent to π(j,t)(u). Similarly,

for l 6= k, if ws is adjacent π(s,l)(u) then it is also adjacent to π(s,k)(u). Hence
the cycle that follows is always possible:

w0, π(0,0)(u), w
′
0, π(1,0)(u), w1, π(1,1)(u), w

′
2, π(2,1)(u),

w2, π(2,2)(u), w
′
2, π(3,2)(u), w3, π(3,3)(u), w

′
3, π(4,3)(u), (∗)

w4, · · · , w(p1−1), π(p1−1,p1−1)(u), w
′
(p1−1), π(p−1,0)(u), w0.

We notice that all p1 irreducible elements generated by p2, highlighted by
red, have been used in the cycle and also p1 of p2 irreducible elements generated
by p1 have been used in the cycle. That is the cycle include the same number
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of irreducible elements generated by p1 and p2. If there exist a cycle which
is longer than the cycle in (∗) then it means that it includes more irreducible
elements generated by p1 and that would mean some two irreducible elements
generated by p1 are adjacent to one unit contrary to Lemma (27). So the cycle
in (∗) must be a longest cycle in Gn.

Observe that between any two consecutive irreducible elements generated
by the same prime in the cycle in (∗) there there is a path of length 4 so its clear
that the length of this cycle must be 4p1. So we conclude that the circumference
of Gn is 4p1.

It can easily be checked that c(Gn) of graphs in Examples 38 and 39 satisfy
Proposition 42.

Lastly, we provide a conjecture about the circumference of Gn which was
arrived at by using an idea of star form presentation and also by using some
insights from Theorem 36, Remarks 24 (ii) and 37 and Proposition 42.

Conjecture 43. Let |P| > 1. Then c(Gn) =
4
∏

p∈P p

max(P) .

4. Conclusion

In this paper we constructed a bipartite graph with the union of the set of
irreducible elements and group of units as a vertex-set and the set of pairs
between irreducible elements and their unit factors as an edge-set in the ring
of integers modulo n. Many properties of this graph were studied. We proved
that this bipartite graph is not connected but contains isomorphic components,
each of which is a union of copies of the star K1,|P| where P is a set which
contains all prime factors of n whose powers are greater than 1. For a given
value of n, we determined when this graph has cycles or not. Furthermore, we
proved that the girth of this bipartite graph is 8.
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