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Abstract: We develop a theory of non-smooth decomposition in homogeneous
Triebel-Lizorkin spaces. As a byproduct, we can recover the decomposition
results for Hardy spaces as a special case. The result extends what Frazier
and Jawerth obtained in 1990. The result by Frazier and Jawerth covers only
the limited range of the parameters but the result in this paper is valid for
all admissible parameters for Triebel-Lizorkin spaces. As an application of the
main results, we prove that the Marcinkiewicz operator is bounded. What
is new in this paper is to reconstruct sequence spaces other than classical ℓp

spaces.
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1. Introduction

It is well known that the Triebel-Lizorkin spaces Ḟ s
p,q(R

n) for 0 < p ≤ 1,
0 < p ≤ q < ∞ and s ∈ R admit the non-smooth atomic decomposition (see
[2, Theorem 7.4], [6]). The aim in this paper is to remove this restriction and
to study the non-smooth decomposition of Ḟ s

p,q(R
n) for 0 < p <∞, 0 < q ≤ ∞

and s ∈ R.
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Definition 1. Let 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R. Let ϕ ∈ C∞
c (Rn)

satisfy χB(4)\B(2) ≤ ϕ ≤ χB(8)\B(1) . The homogeneous Triebel-Lizorkin space

Ḟ s
p,q(R

n) is defined to be the set of all f ∈ S ′(Rn)/P(Rn) for which the quantity

‖f‖Ḟ s
p,q

≡ ‖{2jsϕj(D)f}j∈Z‖Lp(lq)

is finite, where ϕj(x) ≡ ϕ(2−jx), P(Rn) denotes the set of all polynomials on
Rn,

ψ(D)f(x) ≡ F−1ψ ∗ f(x) (x ∈ Rn)

for ψ ∈ S(Rn) and f ∈ S ′(Rn) and ‖{fj}j∈Z‖Lp(lq) stands for the vector-norm
of a sequence {fj}∞j=−∞ of mesurable functions:

‖{fj}j∈Z‖Lp(lq) ≡







∫

Rn





∞
∑

j=−∞
|fj(x)|q





p
q

dx







1
p

, 0 < p, q ≤ ∞. (1.1)

The space Ḟ s
p,q(R

n) realizes many function spaces: Indeed,

{

Ḟ 0
p,2(R

n) = Lp(Rn) (1 < p <∞)

Ḟ 0
p,2(R

n) = Hp(Rn) (0 < p ≤ 1)

with equivalence of quasi-norms, whereHp(Rn) stands for the Hardy space. See
[3, Theorem 6.1.2] for the first equivalence and [4, Theorem 2.2.9] for the second
equivalence. See [10] for more details on the Triebel-Lizorkin type spaces. Thus,
our result will cover the ones for Hardy spaces as well as Lebesgue spaces.

To handle Ḟ s
p,q(R

n), it may be convenient to work on the corresponding

sequence space ḟ sp,q(R
n): it is simpler to handle sequences than to handle dis-

tributions.

Definition 2. For ν ∈ Z and m = (m1,m2, . . . ,mn) ∈ Zn, we define

Qν,m ≡
n
∏

j=1

[

mj

2ν
,
mj + 1

2ν

)

.

Denote by D = D(Rn) the set of such cubes. The elements in D(Rn) are called
dyadic cubes.

We adopt the definition by Grafakos, [4, Definition 2.3.5].
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Definition 3. Let 0 < q ≤ ∞ and s ∈ R. We consider the set of sequences
{rQ}Q∈D ⊂ C such that the function

gsq({rQ}Q∈D;x) ≡





∑

Q∈D
(|Q|− s

n |rQ|χQ(x))
q





1
q

(x ∈ Rn)

is in Lp(Rn). Let 0 < p <∞. For such sequences r = {rQ}Q∈D we set

‖r‖
ḟsp,q

≡ ‖gsq(r)‖Lp .

A sequence λ = {λQ}Q∈D is said to belong to ḟ sp,q(R
n) if ‖λ‖

ḟsp,q
< ∞. Some-

times, we identity λ = {λν,m}ν∈Z,m∈Zn with λ = {λQ}Q∈D via λν,m = λQ when
Q = Qν,m.

To obtain our result, we follow the book [4] by Grafakos.

Definition 4. Let 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R. A sequence
r = {rQ}Q∈D is called an ∞-atom for ḟ sp,q(R

n) with cube Q0 if there exists a
dyadic cube Q0 such that

gsq({rQ}Q∈D; ·) ≡





∑

Q∈D
(|Q|− s

n |rQ|χQ)
q





1
q

≤ χQ0 . (1.2)

Our first theorem is as follows:

Theorem 5. Suppose that we are given parameters p, q, s, u satisfying

0 < p <∞, 0 < q ≤ ∞, s ∈ R, 0 < u ≤ min(1, q).

1. For any t ∈ ḟ sp,q(R
n), there exists a decomposition

t =
∞
∑

j=1

λjrj , (1.3)

where each rj is an ∞-atom for ḟ sp,q with cube Qj and {λj}∞j=1 satisfies

∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj |uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

≤ C‖t‖
ḟsp,q
. (1.4)
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2. If a sequence {Qj}∞j=1 of cubes and a sequence {λj}∞j=1 of complex num-

bers satisfy
∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj|uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

<∞, (1.5)

then for any ∞-atoms rj for ḟ sp,q(R
n) with cube Qj , the series t given by

(1.3) belongs to ḟ sp,q(R
n).

In Theorem 5 the case of s ∈ R, 0 < p = u ≤ 1 and p ≤ q ≤ ∞ is proved in
[2, Theorem 7.2]. In this case there is no condition on the position of the cubes
since

∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj |uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

=





∞
∑

j=1

|λj |p|Qj |





1
p

. (1.6)

We can refine our Theorem 5.

Definition 6. Let 0 < p < ∞, 0 < q ≤ ∞, v ∈ (0,∞) and s ∈ R. One
says that a sequence r = {rQ}Q∈D is called a v-atom for ḟ sp,q(R

n) with cube Q0

if there exists a dyadic cube Q0 such that

supp(gsq({rQ}Q∈D; ·)) ⊂ Q0, ‖gsq({rQ}Q∈D; ·)‖Lv ≤ |Q0|
1
v .

We can refine the latter half of Theorem 5 as follows:

Theorem 7. In addition to the assumption in Theorem 5, let v ∈
(max(1, p),∞). If a sequence {Qj}∞j=1 of cubes and a sequence {λj}∞j=1 of

complex numbers satisfy (1.5), then for any v-atoms rj with cube Qj, the series

t given by (1.3) belongs to ḟ sp,q(R
n).

The above results cover the ones in [2, Section 7]. What is new about
this paper is the case where p > min(q, 1). The case when p > 1 and q = 2
is especially interesting because this yields the decomposition for Lp(Rn) =
Ḟ 0
p,2(R

n).
We now transform the results to the one of the sequences.

Definition 8 (Atoms for Triebel-Lizorkin spaces). Let 0 < p < ∞, 0 <
q ≤ ∞, s ∈ R, and let ν ∈ Z and m ∈ Zn. Suppose that the integers K,L ∈ Z
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satisfy K ≥ 0 and L ≥ −1. A function a ∈ CK(Rn) is said to be a smooth

(K,L)-atom centered at Q0,m for ḟ sp,q(R
n), if it is supported on 3Q0,m and if it

satisfies the differential inequality and the moment condition:

‖∂αa‖L∞ ≤ 2ν|α|, |α| ≤ K, (1.7)

∫

Rn

xβa(x) dx = 0, |β| ≤ L. (1.8)

The case L = −1 is excluded in (1.8).

To state our main result, we present the following definition:

Definition 9. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R. We say that A is a
non-smooth atom for Ḟ s

p,q(R
n) with cube Q̃ if there exists a cube Q̃ such that

A =
∑

Q⊂Q̃

rQaQ where r = {rQ}Q∈D is an ∞-atom for ḟ sp,q(R
n) and each aQ is a

smooth (K,L)−atom centered at Q.

The following theorem, which is a conclusion of this note, extends [4, Corol-

lary 2.3.9]. Define σp ≡ n
(

1
min(1,p) − 1

)

and σp,q ≡ max(σp, σq).

Theorem 10. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, 0 < u ≤ min(1, q), and
let

L ≥ max(−1, [σp,q − s]),

where [·] denotes the Gauss sign. Then we have the following:

1. Let f ∈ Ḟ s
p,q(R

n). Then we can write

f =

∞
∑

j=1

λjAj

in S ′(Rn)/P(Rn), where {Aj}∞j=1 is a sequence of non-smooth atoms and

{λj}∞j=1 and {Qj}∞j=1 satisfy suppAj ⊂ 3Qj and
∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj|uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

≤ C ‖f‖Ḟ s
p,q
. (1.9)
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2. Suppose that each Aj is a non-smooth atom with cubeQj and the complex

sequence {λj}∞j=1 satisfies
∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj|uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

<∞.

Then the sum

f ≡
∞
∑

j=1

λjAj ,

converges in the topology of S ′(Rn)/P(Rn) and satisfies

‖f‖Ḟ s
p,q

≤ C

∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj|uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

.

In Theorem 10 the case of s ∈ R, 0 < p = u ≤ 1 and p ≤ q ≤ ∞ is [2,
Theorem 7.4 (ii)]. To conclude this section, we recall the following definition to
compare our atoms with the ones in Hardy spaces.

Definition 11 (Atoms in Hardy spaces). Let 0 < p ≤ 1 < v ≤ ∞. Fix
L ≥ L0 ≡ [σp]. A (non-smooth) (p, v)-atom centered at a cube Q is an Lv(Rn)-
function A which is supported on Q and satisfies the moment condition of order
L, that is,

∫

Rn

xαA(x) dx = 0

for all multi-indexes α with |α| ≤ L and ‖A‖Lv ≤ |Q| 1v .

Let s = 0, 0 < p < ∞, q = 2 and 1 < v < ∞. In Theorem 10, the function
Aj is a (p, v)-atom modulo a multiplicative constant since

‖Aj‖Lv ∼ ‖Aj‖Ḟ 0
v,2

∼ ‖g02(rj)‖Lv ≤ |Qj |
1
v .

The second equivalence follows from the Littlewood–Paley theory, which indi-
cates Ḟ 0

v2(R
n) ∼ Lv(Rn).

We organize the remaining part of this paper as follows: Sections 2-4 are
devoted to the proof of the above theorems. As an application, we prove the
boundedness of the Marcinkiewicz operators. Basically, the key idea is to in-
vestigate closely the behavior of these operators for non-smooth atoms. In [5,
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Theorem 2.1], Liu and Yang proposed a criterion for the case of 0 < p ≤ 1 and
q ≥ p. Here, we will remove the restiction 0 < p ≤ 1. Our results will be valid
for 1 ≤ p < ∞ and 1 < q < ∞ as well as for some extra parameters. Unfortu-
nately, we can not present a general criterion for the operators to be bounded
from homogeneous Triebel–Lizokin spaces to Banach spaces. This disadvantage
comes from the fact that we need to take care of the position of the support of
the atoms.

2. Proof of Theorem 5

We recall the following facts in [4, p. 115–116]. Let t = {tQ}Q∈D be a sequence,
and let s ∈ R and 0 < q ≤ ∞.

Lemma 12. Let R ∈ D. Define

gsq,R({tQ}Q∈D;x) ≡





∑

Q∈D, R⊂Q

(|Q|− s
n |tQ|χQ(x))

q





1
q

(x ∈ Rn)

and

Dν ≡ {Q ∈ D; l(Q) = 2−ν}.

1. If R1 ⊂ R2 and x ∈ Rn, then gsq,R2
(t;x) ≤ gsq,R1

(t;x).

2. For any x ∈ Rn,

lim
ν→∞

∑

Q∈Dν

χQ(x)g
s
q,Q(t;x) = 0. (2.1)

3. For any x ∈ Rn,

lim
ν→−∞

∑

Q∈Dν

χQ(x)g
s
q,Q(t;x) = gsq(t;x). (2.2)

Lemma 13. For k ∈ Z, we set

Ak ≡ {R ∈ D : gsq,R(t;x) > 2k, for x ∈ R}.

1. [4, p. 116] If Q ∈ D does not belong to any Ak, k ∈ Z, then tQ = 0.

2. [4, p. 115] For each k ∈ Z, Ak+1 ⊂ Ak.
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3. [4, p. 115 (2.3.16)]

{x ∈ Rn : gsq(t;x) > 2k} =
⋃

R∈Ak

R. (2.3)

4. [4, p. 115 (2.3.17)] For all k ∈ Z,





∑

Q∈D\Ak

(|Q|− s
n |tQ|χQ)

q





1
q

≤ 2k. (2.4)

Lemma 14. Let Ak be as in Lemma 13.

Let t = {tQ}Q∈D be a sequence indexed by Q ∈ D. Assume

gsq(t;x) <∞

for a.e. x ∈ Rn. We set

Bk ≡ {J ∈ D : J is a maximal dyadic cube in Ak \ Ak+1}.

For J ∈ Bk, we define

v(k, J) ≡ {v(k, J)Q}Q∈D ≡ {tQχAk\Ak+1
(Q)χ{S∈D :S⊂J}(Q)}Q∈D,

r(k, J) ≡ 2−k−1v(k, J).

1. [4, p. 116 (2.3.18)] and [4, p. 116 (2.3.21)] We have

t =
∑

k∈Z

∑

J∈Bk

v(k, J) =
∑

k∈Z

∑

J∈Bk

2k+1r(k, J). (2.5)

2. [4, p. 116 (2.3.19)] For all k ∈ Z and J ∈ Bk, g
s
q(v(k, J)) ≤ 2k+1.

Remark that in the definition of t(k, J),

t(k, J)Q = vQχ{S∈D :S⊂J}(Q)

if Q ∈ Ak \ Ak+1 is a cube contained in J otherwise t(k, J)Q = 0.
Now we prove Theorem 5. Let t ∈ ḟ sp,q(R

n) be given. By (2.5), we can write

t =
∑

k∈Z

∑

J∈Bk

2k+1r(k, J).
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Let ι ≡ (ι1, ι2) : N → {(k, J) : k ∈ Z, J ∈ Bk} be a bijection. By letting
λj ≡ 2ι1(j)+1 and rj ≡ r(ι1(j), ι2(j)), we can write

t =
∞
∑

j=1

λjrj.

Therefore we get the desired decomposition (1.3). We will check that rj is an
∞-atom. Letting

k = ι1(j), J = Qj = ι2(j),

we have

gsq(rj) = gsq(r(k, J)) = gsq(2
−k−1t(k, J)) = 2−k−1gsq(t(k, J)).

Now, suppose that t(k, J) = {vQ}Q∈D. If vQ 6= 0, then

gsq(t(k, J)) ≤ 2k+1.

Furthermore if t(k, J) = 0, then gsq(t(k, J)) = 0. Therefore, since gsr(rj) ≤ χJ

holds, it follows that rj is an ∞-atom with cube J .
Recall that any J ∈ Bk is a cube in Ak and that Bk is disjoint family. So,

we have
∑

J∈Bk

χJ ≤ χ∪Q∈Ak
Q = χ{gsq(t)>2k}. (2.6)

Using (2.6), we calculate
∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj |uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

=

∥

∥

∥

∥

∥

∥

∥





∑

k∈Z

∑

J∈Bk

(2k+1χJ)
u





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

(

∑

k∈Z
2kuχ{gsq(t)>2k}

) 1
u

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∥





[1+log2 g
s
q(t)]

∑

k=−∞
2ku





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

.

If we calculate the geometric series, then we obtain
∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj |uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

(

2[1+log2 g
s
q(t)]u

1− 2−u

)
1
u

∥

∥

∥

∥

∥

∥

Lp
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≤ C

∥

∥

∥

∥

∥

∥

(

2(1+log2 g
s
q(t))u

1− 2−u

) 1
u

∥

∥

∥

∥

∥

∥

Lp

= C

∥

∥

∥

∥

∥

(

2u

1− 2−u
gsq(t)

u

)
1
u

∥

∥

∥

∥

∥

Lp

= C
∥

∥gsq(t)
∥

∥

Lp = C‖t‖
ḟsp,q
,

keeping in mind that u > 0.
Conversely suppose we are given a sequence rj = {rj,Q}Q∈D. Denote by Qj

the cube for rj in the definition of atoms. Then setting

t =
∞
∑

j=1

λjrj,

we have

‖t‖
ḟsp,q

=

∥

∥

∥

∥

∥

∥

gsq





∞
∑

j=1

λjrj; ·





∥

∥

∥

∥

∥

∥

Lp

=







∥

∥

∥

∥

∥

∥



gsq





∞
∑

j=1

λjrj ; ·









u∥
∥

∥

∥

∥

∥

Lp/u







1
u

≤







∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj |gsq(rj ; ·)





u∥
∥

∥

∥

∥

∥

Lp/u







1
u

≤







∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |ugsq(rj ; ·)u
∥

∥

∥

∥

∥

∥

Lp/u







1
u

.

Here we have used u ≤ q to obtain the penultimate inequality and u ≤ 1 to
obtain the last inequality. If we use gsr(rj ; ·) ≤ χQj , then we obtain

‖t‖
ḟsp,q

≤







∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |uχQj

∥

∥

∥

∥

∥

∥

Lp/u







1
u

=

∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj |uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

<∞. (2.7)

Thus, the proof is complete. �

We make a brief remark of the method of the proof. The proof of Theorem
5 is essentially made up of two tools. The first tool is a method to decompose
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sequences and the second tool serves to describe the condition of coefficients.

The first tool consists of the
1

8
median and the stopping time argument. In

[2, Section 6], Frazier and Jarwerth used them together with L0, the set of all
measurable functions f for which {f 6= 0} has finite measure. This method is
refined in §6.6.4 by Grafakos [4]. Since our proof heavily hinges on §6.6.4 in
[4], we essentially used the technique of the paper in [2] and the textbook [4].
What is different from these sources is the second tool. As is described in (7.4)
of [2] and (7.7) of [2], we have

‖λ1 + λ2‖p
ḟsp,q

≤ ‖λ1‖p
ḟsp,q

+ ‖λ2‖p
ḟsp,q

(λ1, λ2 ∈ ḟ sp,q(R
n)) (2.8)

and

‖f1 + f2‖pḞ s
p,q

≤ ‖f1‖pḞ s
p,q

+ ‖f2‖pḞ s
p,q

(f1, f2 ∈ Ḟ s
p,q(R

n)) (2.9)

for 0 < p ≤ 1, 0 < p ≤ q ≤ ∞ and s ∈ R. Frazier and Jawerth used (2.8) and
(2.9) to decompose the sum into small units. One of the important facts on
the decomposition of Frazier and Jawerth is that the condition on the position
of the cubes Qj does not appear as is hinted in the right-hand side of (1.6).
Since (2.8) and (2.9) are no longer available for general case, we need a trick.
To accomodate all admissible parameters, we took into account the position of
the cubes Qj.

3. Proof of Theorem 7

We use the following lemma:

Lemma 15. Let 0 < p < ∞,max(1, q) < p < ∞. Then for any sequence

{Aj}∞j=1 of non-negative measurable functions, each of which is supported on a

cube Qj, and any sequence {λj}∞j=1 of non-negative real numbers, we have

∥

∥

∥

∥

∥

∥

∞
∑

j=1

λjAj

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=1

λjχQj

(

1

|Qj|

∫

Qj

Aj(y)
q dy

)
1
q

∥

∥

∥

∥

∥

∥

Lp

.

Proof. Lemma 15 rephrases [7, Lemma 2.5] with 0 < p ≤ 1 and [8, Theorem
1.3.1] with 1 < p <∞.

The proof of Theorem 7 is now easy. Just reexamine the proof of Theorem
5. Then we notice that everything remains unchanged up to (2.7). Instead of
using gsr(rj ; ·) ≤ χQj we use Lemma 15 to have (2.7).
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4. Proof of Theorem 10

We use the following decomposition results for Ḟ s
p,q(R

n): We invoke the follow-
ing result in [11, Theorem 13.8].

Theorem 16. Let 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R, and let K be an

integer satisfying

K ≥ [1 + s]+ ≡ max(0, [1 + s]).

Furthermore, suppose that L ∈ Z satisfies

L ≥ max(−1, [σp,q − s]). (4.1)

1. Let κ = {κν,m}ν∈Z, m∈Zn ∈ ḟ sp,q(R
n) and each aν,m is a smooth L-atom

centered at Qν,m for each ν,m. Then

f ≡
∞
∑

ν=−∞

∑

m∈Zn

κν,maν,m

converges in S ′(Rn)/P(Rn) and

‖f‖Ḟ s
p,q

≤ C‖κ‖
ḟsp,q
. (4.2)

2. Any f ∈ Ḟ s
p,q(R

n) admits a decomposition:

f =
∞
∑

ν=−∞

∑

m∈Zn

κν,maν,m. (4.3)

Here, the convergence takes place in S ′(Rn)/P(Rn), each aν,m is a smooth

L-atom centered at Qν,m and the coefficient κ = {κν,m}ν∈N0, m∈Zn satis-

fies

‖κ‖
ḟsp,q

≤ C‖f‖Ḟ s
p,q
. (4.4)

We now turn to the proof of Theorem 10. First we prove the latter half of
Theorem 10.

Let

f ∈ S ′(Rn)/P(Rn)

be such that
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f =

∞
∑

j=1

λjAj .

Let Aj =
∑

µ∈Z
∑

Q∈Dµ
rj,QaQ as in the definition of non-smooth atoms. We

set

fJ ≡
J
∑

j=1

λjAj =

J
∑

j=1

λj





∑

µ∈Z

∑

Q∈Dµ

rj,QaQ





=
∑

µ∈Z

∑

Q∈Dµ





J
∑

j=1

λjrj,Q



 aQ.

We set

κJ ≡







J
∑

j=1

λjrj,Q







Q∈D

.

Let 0 < u ≤ min(1, q). Then we have

‖κJ‖
ḟsp,q

=

∥

∥

∥

∥

∥

∥

gsq











J
∑

j=1

λjrj,Q







Q∈D





∥

∥

∥

∥

∥

∥

Lp

=







∥

∥

∥

∥

∥

∥

gsq











J
∑

j=1

λjrj,Q







Q∈D





u∥
∥

∥

∥

∥

∥

Lp/u







1
u

≤





∥

∥

∥

∥

∥

∥

J
∑

j=1

gsq

(

{λjrj,Q}Q∈D

)u

∥

∥

∥

∥

∥

∥

Lp/u





1
u

=





∥

∥

∥

∥

∥

∥

J
∑

j=1

|λj |ugsq
(

{rj,Q}Q∈D

)u

∥

∥

∥

∥

∥

∥

Lp/u





1
u

≤





∥

∥

∥

∥

∥

∥

J
∑

j=1

|λj |uχQj

∥

∥

∥

∥

∥

∥

Lp/u





1
u

.

Thus, by Theorem 16, we have
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‖fJ‖Ḟ s
p,q

≤ C‖κJ‖
ḟsp,q

≤ C





∥

∥

∥

∥

∥

∥

J
∑

j=1

|λj |uχQj

∥

∥

∥

∥

∥

∥

Lp/u





1
u

.

By the Fatou property of Ḟ s
p,q(R

n) or by the classical Fatou lemma, we conclude

‖f‖Ḟ s
p,q

≤ C





∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |uχQj

∥

∥

∥

∥

∥

∥

Lp/u





1
u

.

Also, by letting J ′ < J ,

lim
J→∞,J ′→∞

‖fJ − fJ
′‖Ḟ s

p,q
≤ C lim

J→∞,J ′→∞

∥

∥

∥

∥

∥

∥

∥





J
∑

j=J ′

|λj|uχQj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

= 0,





J
∑

j=J ′

|λj |uχQj





1
u

∈ Lp(Rn).

Thus {fJ}∞J=1 is a Cauchy sequence in S ′(Rn)/P(Rn). Therefore lim
J→∞

fJ =

f ∈ S ′(Rn)/P(Rn).
Next we prove the first half of Theorem 10. Let f ∈ Ḟ s

p,q(R
n). Decompose

f according to Theorem 16, so that (4.3) and (4.4) hold. If Q = Qν,m, we write
λQ ≡ κν,m and aQ ≡ aν,m. We let

B ≡ {(k, J) : k ∈ Z, J ∈ Bk}.
Let

N : j ∈ N 7→ (kj , Jj) ∈ B
be an enumeration. Let λ = {λQ}Q∈D. Since

gsq(λ;x) <∞
for almost all x ∈ Rn, we have a decomposition:

λ =
∑

k∈Z

∑

J∈Bk

2k+1r(k, J) =

∞
∑

j=1

2kj+1r(kj , Jj),

where each r(k, J) = {r(k, J)Q}Q∈D is an ∞-atom supported on J . According
to the proof of Theorem 5,
∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

2(kj+1)uχJj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

=

∥

∥

∥

∥

∥

∥

∥





∑

k∈Z

∑

J∈Bk

2(k+1)uχJ





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

≤ C‖λ‖
ḟsp,q
. (4.5)
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If we combine (4.4) and (4.5), then we obtain

‖f‖Ḟ s
p,q

≥ C

∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

2(kj+1)uχJj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

. (4.6)

Letting
AQj = 2kjr(kj , Jj)aQ,

we claim that
∞
∑

j=1

∞
∑

ν=−∞

∑

Q∈Dν

AQ,j = lim
T→∞

∞
∑

ν=−∞

∑

Q∈Dν

T
∑

j=1

AQ,j (4.7)

in Ḟ s
p,q(R

n). In fact, for T ∈ N, we have

∥

∥

∥

∥

∥

∥

∞
∑

ν=−∞

∑

Q∈Dν

∞
∑

j=1

AQ,j −
T
∑

j=1

∞
∑

ν=−∞

∑

Q∈Dν

AQ,j

∥

∥

∥

∥

∥

∥

Ḟ s
p,q

=

∥

∥

∥

∥

∥

∥

∞
∑

ν=−∞

∑

Q∈Dν

∞
∑

j=1

AQ,j −
∞
∑

ν=−∞

∑

Q∈Dν

T
∑

j=1

AQ,j

∥

∥

∥

∥

∥

∥

Ḟ s
p,q

=

∥

∥

∥

∥

∥

∥

∞
∑

ν=−∞

∑

Q∈Dν

∞
∑

j=T+1

AQ,j

∥

∥

∥

∥

∥

∥

Ḟ s
p,q

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=T+1

2kj+1r(kj , Jj)

∥

∥

∥

∥

∥

∥

ḟsp,q

thanks to Theorem 16. We define λj ≡ 2kj+1. Since

gsq(r(kj , Jj)) ≤ χJj ,

we have
∥

∥

∥

∥

∥

∥

∞
∑

ν=−∞

∑

Q∈Dν

∞
∑

j=1

AQ,j −
T
∑

j=1

∞
∑

ν=−∞

∑

Q∈Dν

AQ,j

∥

∥

∥

∥

∥

∥

Ḟ s
p,q

≤ C

∥

∥

∥

∥

∥

∥

gsq





∞
∑

j=T+1

2kj+1r(kj, Jj)





∥

∥

∥

∥

∥

∥

Lp

= C





∥

∥

∥

∥

∥

∥

gsq





∞
∑

j=T+1

2kj+1r(kj , Jj)





u∥
∥

∥

∥

∥

∥

L
p
u





1
u
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≤ C





∥

∥

∥

∥

∥

∥

∞
∑

j=T+1

2(kj+1)ugsq(r(kj , Jj))
u

∥

∥

∥

∥

∥

∥

L
p
u





1
u

≤ C

∥

∥

∥

∥

∥

∥

∥





∞
∑

j=T+1

|λj |u χJj





1
u

∥

∥

∥

∥

∥

∥

∥

Lp

.

Letting T → ∞, we obtain (4.7). Thus, we conclude from (4.7) that

f =
∞
∑

ν=−∞

∑

Q∈Dν

λQaQ

=
∞
∑

ν=−∞

∑

Q∈Dν

∞
∑

j=1

2kj+1r(kj , Jj)QaQ

=

∞
∑

j=1

∞
∑

ν=−∞

∑

Q∈Dν

2kj+1r(kj , Jj)QaQ.

If we denote

Aj ≡
∞
∑

ν=−∞

∑

Q∈Dν

r(kj , Jj)QaQ (j ∈ N),

then we have

f =

∞
∑

j=1

λjAj .

Thus, we obtain the desired decomposition.

5. Applications to the boundedness of the Marcinkiewicz operators

Let 0 < ρ < n and 1 < q <∞. The Marcinkiewicz operator is defined by

µΩ,ρ,qf(x) ≡
(
∫ ∞

0

∣

∣

∣

∣

1

tρ

∫

B(t)
f(x− y)

Ω(y/|y|)
|y|n−ρ

dy

∣

∣

∣

∣

q dt

t

) 1
q

, (5.1)

where we write B(r) = {|x| < r} ⊂ Rn for r > 0 here and below.

We suppose
∫

Sn−1

Ω(ω) dσ(ω) = 0, Ω ∈ C1(Sn−1),
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where Sn−1 = {|x| = 1}. According to [9, Theorem 1], we have

‖µΩ,ρ,qf‖Lp ≤ C‖f‖Ḟ 0
p,q

if 1 < p < ∞. We remark that if A is a non-smooth atom supported in 3Q0,
letting r = {rQ}Q∈Q, we have

‖A‖Ḟ s
p̃,q

≤ C‖gsq(r, ·)‖Lp̃(Rn) ≤ C‖χ3Q0‖Lp̃(Rn) ≤ C|3Q0|
1
p̃ . (5.2)

Theorem 17. The estimate ‖µΩ,ρ,qf‖Lp ≤ C‖f‖Ḟ 0
p,q

for all f ∈ Ḟ 0
p,q if

nq

nq + 1
< p <∞, 1 < q <∞.

The rest of this paper is devoted to the proof of Theorem 17. Let f ∈
Ḟ 0
p,q(R

n). Let

f =
∞
∑

j=1

λjAj

be a decomposition as in Theorem 10 (1). Then we have

µΩ,ρ,qf(x) ≤
∞
∑

j=1

|λj|µΩ,ρ,qAj(x)

=

∞
∑

j=1

|λj |χ3nQj(x)µΩ,ρ,qAj(x) +

∞
∑

j=1

|λj |χRn\3nQj
(x)µΩ,ρ,qAj(x).

Lemma 18. Let x ∈ Rn \ 3nQj.

1. Let 0 < t < |x− c(Qj)| − 3
√
n

2 ℓ(Qj). Then

1

tρ

∫

B(t)
Aj(x− y)

Ω(y/|y|)
|y|n−ρ

dy = 0.

2. Let |x− c(Qj)| − 3
√
n

2 ℓ(Qj) ≤ t ≤ |x− c(Qj)|+ 3
√
n

2 ℓ(Qj). Then
∣

∣

∣

∣

1

tρ

∫

B(t)
Aj(x− y)

Ω(y/|y|)
|y|n−ρ

dy

∣

∣

∣

∣

≤ C
ℓ(Qj)

n

|x− c(Qj)|n
.

3. Let t > |x− c(Qj)|+ 3
√
n

2 ℓ(Qj). Then
∣

∣

∣

∣

1

tρ

∫

B(t)
Aj(x− y)

Ω(y/|y|)
|y|n−ρ

dy

∣

∣

∣

∣

≤ C
ℓ(Qj)

n+1

tρ|x− c(Qj)|n−ρ+1
.
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Proof. 1. This is clear from the condition on the support.

2. We observe
∣

∣

∣

∣

∫

B(t)
Aj(x− y)

Ω(y/|y|)
|y|n−ρ

dy

∣

∣

∣

∣

≤ C

∫

supp(Aj(x−·))

∣

∣

∣

∣

Aj(x− y)

∣

∣

∣

∣

dy

|y|n−ρ
.

Note that |y| ≥ |x− c(Qj)| − 3
√
n

2 ℓ(Qj). Hence,

1

|y|n−ρ
≤ 1

(|x− c(Qj)| − 3
2

√
nℓ(Qj))n−ρ

.

Now by x ∈ Rn \ 3nQj,

|x− c(Qj)| −
3

2

√
nℓ(Qj)

=
1

2
|x− c(Qj)|+

1

2
|x− c(Qj)| −

3

2

√
nℓ(Qj) ≥

1

2
|x− c(Qj)|.

Hence
1

|y|n−ρ
≤ 2ρ−n

|x− c(Qj)|n−ρ
. Also,

1

tρ
≤ 1

(|x− c(Qj)| − 3
2

√
nℓ(Qj))ρ

≤ 2ρ

|x− c(Qj)|ρ
.

Therefore,
∣

∣

∣

∣

1

tρ

∫

B(t)
Aj(x− y)

Ω(y/|y|)
|y|n−ρ

dy

∣

∣

∣

∣

≤ C
ℓ(Qj)

n

|x− c(Qj)|n
.

3. Let x(j) = x− c(Qj). We use the moment condition to have:

1

tρ

∫

B(t)
Aj(x− y)

Ω(y/|y|)
|y|n−ρ

dy

=
1

tρ

∫

supp(Aj(x−·))
Aj(x− y)

Ω(y/|y|)
|y|n−ρ

dy

=
1

tρ

∫

supp(Aj(x−·))
Aj(x− y)





Ω( y
|y|)

|y|n−ρ
−

Ω( x(j)

|x(j)|)

|x(j)|n−ρ



 dy.

Note that if Aj(x− y) 6= 0, then |x− y − c(Qj)| ≤ 3
√
n

2 ℓ(Qj). Hence

|x− c(Qj)| −
3
√
n

2
ℓ(Qj) ≤ |y| ≤ |x− c(Qj)|+

3
√
n

2
ℓ(Qj).
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Thus, we have

∣

∣

∣

∣

∣

∣

Ω( y
|y|)

|y|n−ρ
−

Ω(
x−c(Qj)
|x−c(Qj)|)

|x− c(Qj)|n−ρ

∣

∣

∣

∣

∣

∣

≤ C
ℓ(Qj)

|x− c(Qj)|n−ρ+1
.

Thus, we obtain the desired result.

By this lemma, for x ∈ Rn \ 3nQj we have

µΩ,ρ,qAj(x) ≤ C
ℓ(Qj)

n+ 1
q

|x− c(Qj)|n+
1
q

≤ C
(

MχQj(x)
)1+ 1

nq .

Indeed, by letting x(j) = x − c(Qj), aj = |x(j)| − 3
2

√
nℓ(Qj) and bj = |x(j)| +

3
2

√
nℓ(Qj),

µΩ,ρ,qAj(x)

=

(

∫ ∞

aj

∣

∣

∣

∣

∣

1

tρ

∫

B(t)
Aj(x− y)

Ω(y/|y|)
|y|n−ρ

dy

∣

∣

∣

∣

∣

q
dt

t

)
1
q

≤ C

(

∫ bj

aj

ℓ(Qj)
nq

|x(j)|nq
dt

t
+

∫ ∞

bj

ℓ(Qj)
(n+1)qdt

tqρ+1|x(j)|(n−ρ+1)q

) 1
q

≤ C

(

ℓ(Qj)
nq

|x(j)|nq log
bj
aj

+
ℓ(Qj)

(n+1)q

|x(j)|(n+1)q

) 1
q

≤ C

(

ℓ(Qj)
nq+1

|x(j)|nq+1
+
ℓ(Qj)

(n+1)q

|x(j)|(n+1)q

) 1
q

≤ C

(

ℓ(Qj)
nq+1

|x(j)|nq+1

)
1
q

= C
ℓ(Qj)

n+ 1
q

|x(j)|n+
1
q

.

The next lemma is the last step to prove Theorem 17.

Lemma 19.

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χ3nQj

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χQj

∥

∥

∥

∥

∥

∥

Lp

.
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Proof. We have used the Fefferman-Stein vector-valued inequality (see [1]).
Indeed, since

χ3nQj(x) ≤
1

|3nQj |

∫

3nQj

dy =
(3n)n

|3nQj |

∫

Qj

dy ≤ CMχQj(x),

by taking α > max(1, 1
p
), we obtain

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χ3nQj

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |MχQj

∥

∥

∥

∥

∥

∥

Lp

= C







∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

|λj|
(

MχQj

)α





1
α

∥

∥

∥

∥

∥

∥

∥

Lpα







α

= C







∥

∥

∥

∥

∥

∥

∥





∞
∑

j=1

M
(

|λj |
1
α χQj

)α





1
α

∥

∥

∥

∥

∥

∥

∥

Lpα







α

≤ C ′

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj|
(

χQj

)α

∥

∥

∥

∥

∥

∥

Lp

= C ′

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj|χQj

∥

∥

∥

∥

∥

∥

Lp

.

We now conclude the proof of Theorem 17. Let p0 = p+ 1. We know that

‖µΩ,ρ,qAj‖Lp0 ≤ C‖Aj‖Ḟ 0
p0,q

≤ C|3Qj|
1
p0 . Thus, we can use Lemma 15 to have

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χ3nQjµΩ,ρ,qAj

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χ3nQj

(

1

|3nQj |

∫

3nQj

µΩ,ρ,qAj(y)
p0 dy

) 1
p0

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χ3nQj

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χQj

∥

∥

∥

∥

∥

∥

Lp

.

Here we have used Lemma 19.

Meanwhile, by the Fefferman-Stein vector-valued inequality (see [1])
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∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χRn\3nQj
µΩ,ρ,qAj

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |(MχQj )
1+ 1

nq

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

∞
∑

j=1

|λj |χQj

∥

∥

∥

∥

∥

∥

Lp

≤ C‖f‖Ḟ 0
p,q
.

Thus, Theorem 17 is proved.
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