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Abstract: A three-dimensional dispersion air pollution model for point, line
or area sources is considered in a limited region. Particular solutions of such
model and their respective maximum values are used to pose a quadratic pro-
gramming problem with the aim to determine optimal emission rates of the
sources and meet the standards of air quality at every point in a zone and each
instant in an interval of time. The existence and uniqueness of the optimal
control problem solution is proved. An efficient algorithm of successive orthog-
onal projections is used to calculate the optimal solution. Numerical examples
obtained in the case of point sources demonstrate the method’s ability.
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1. Introduction

The main objective of any air pollution control program is to establish a set of
activities to reduce the concentration of each of atmospheric pollutants to air
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quality standards, or at least, minimize the number of hours or days when these
standards are violated. All control programs can be classified in two categories:
long-term and short-term strategies of control [5]. These programs complement
each other, but differ in the methods and duration of their implementation. The
long-term control (from several months to several years) is usually implemented
for large-scale regions (from urban to global) in order to diminish emissions and
reduce the mean concentration of the air pollutants. The replacement of fuel
and introduction of new combustion technologies in factories and automobiles
are typical actions that make up this control. Nevertheless, it is important
to note that a long-term control cannot guarantee full protection for days with
weak conditions for dispersion in the atmosphere, when the concentrations of air
pollutants can reach dangerous levels. For such short events (from several hours
to several days), a short-term control should be applied at the local (urban)
scale, in order to ensure that the concentrations of pollutants meet air quality
standards. Actions of this kind of control must provide immediate reduction in
pollutant emissions and may even include stopping certain activities.

The idea of using mathematical programming models for environmental
quality control comes from the late 60’s, [2], [8]. In particular, the linear pro-
gramming models proposed by Teller [22] and Kohn [10] for the abatement of
pollutants in the atmosphere are the first optimal strategies that took into ac-
count economic and environmental variables. Since then, various air pollution
control models have been posed for different purposes and polluted regions.
The elements that characterize such optimization models are: i) the air pol-
lutants under consideration, that is, primary or secondary substances which
define the complexity of the chemical reactions to be considered in the disper-
sion model; ii) the objective function, or cost function that estimates the cost
of changes in emission rates; iii) the environmental constraints to be fulfilled in
a particular limited area (control zone); and iv) the technological constraints
which define the upper and lower bounds for scarce resources or materials as
fuels. Certainly, the different formulations of these elements produce linear or
nonlinear programming models, which can be classified and solved as convex or
nonconvex optimization problems. However, the fulfilment of ecological goals,
technological restrictions and minimizing the costs associated with the reduc-
tion of emission rates are the common objectives of all air pollution control
models [1], [4], [13], [14], [18].

In this work, it is assumed that a short-term forecast made with a disper-
sion model is adverse, i.e. the concentration of a pollutant emitted from several
sources is above the respective air quality standard in a control zone. Then the
problem of quadratic programming is formulated with the aim to calculate the
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damping coefficients and determine the optimum reduction in emission rates
at the lowest price. We point out that the dispersion model solutions indepen-
dently calculated for each source, along with theirs respective maximum values,
play an important role in determining this control strategy. In our formulation
of the problem, the quadratic objective function evaluates the cost of the con-
trol, while the linear constraints guarantee the fulfilment of the air quality norm
at every point of the control zone and any moment of the control time interval.
The existence and uniqueness of the optimal damping coefficients is proved.
The quadratic programming problem is solved by the algorithm of successive
orthogonal projections, which converges to the solution in a finite number of
iterations. We emphasize that this control strategy is stricter than the strate-
gies which are able to reduce the mean value concentrations of pollutants in
the control zone or concentrations at specific control sites [13].

2. Dispersion Model

The dispersion of primary pollutants emitted into the atmosphere by point,
line or area sources is usually described with a linear three-dimensional model.
Dispersion models of such type are useful to establish the linear relationship
between emissions and concentrations for single (passive) pollutants such as
CO, SO2, NO,, and soot [7]. In this section, a model of such type is formulated
for one pollutant by means of the transport equation, and it is shown that this
model is well-posed in the sense of Hadamard [9].

Let D =D x (0, H) be a simply connected bounded domain in R? with the
boundary 0D = Sy U S U Sy which is the union of the cylindric lateral surface
S, the base Sy at the bottom, and top cover Sy at z = H (see Fig. 1). The
short-term dispersion model, considered for one passive pollutant in the domain
D is defined by the following equations:
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Here ¢(r,t) > 0 represents the concentration of one primary pollutant with
a distribution ¢°(r) in D at initial moment ¢ = 0, o(r,t) > 0 is the chemical
transformation coefficient, and p(r,t) > 0 and f(r,t) > 0 are the turbulent

diffusion arrays,
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Figure 1: Cross section of region D.

In equation (1), the term V - ¢° describes the change of concentration of
particles in unit time because of sedimentation with constant velocity v* > 0. It
is assumed that the wind velocity U(r,t) = (u,v,w) is known in D and satisfies
the continuity equation (9).

Assume that the forcing,
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is formed by point, line or area emission sources f;(r,t) located in the domain
D,i=1,...,N. Each point emission source f;(r,t) can be described through its
emission rate Qj(t) and emission site r;, that is, f;(r,t) = Q;(t)d(r —r;), where
d(r—rj) is the Dirac delta centered at r; € D. The domain of function f(r,t) is
restricted to a line 'y, C D in the case of a line source, and to a two-dimensional
set A; C D in the case of an area source fi(r,t). It is important to note that each
linearly distributed source, as well as each source distributed over an area, can
be approximated by the sum of point sources [16]. However, the formulation of
the control problem does not require such transformation, because such details
are part of the numerical scheme used to solve the dispersion model (1)-(9).

The conditions on the open boundary 0D of domain D lead to the well-
posed problem in the sense of Hadamard [9]. We denote by U,, = U - n the
projection of the velocity U on the outward unit normal n to the boundary 5,
which is divided into the outflow part St where U,, > 0 (advective pollution
flow is directed out of D) and the inflow part S~ where U, < 0 (advective
pollution flow is directed into D). The region D is assumed to be large enough
to include all important pollution sources. Thus, we suppose that there is no
sources outside D, and by condition (4), the combined (diffusive plus advective)
pollution flow is zero on the inflow part S~. The pollution flow is non-zero only
on ST, besides, according to (5), the diffusive pollution flow on ST is assumed to
be negligible as compared with the corresponding advective pollution flow. The
conditions (7) and (8) have similar meanings on Sy, where the sedimentation
of the particles has been taken into account. Equation (6) indicates no flow of
the substances through Sy, since U -n and v* are both zero on the irregular
terrain (see Fig. 1). In general, equations (7) and (8) are necessary because
w =0 on Sy and (9) lead to a non-zero vertical velocity component at Sy:

£(0u Ov
w(z,y, z,t) = —/0 <% + 8_y) dz. (12)

The boundary conditions are mathematically good, because problem (1)-(9)
is well posed, that is, its solution exists, is unique and continuously depends
on the initial condition and forcing [21]. This follows from the fact that the
problem operator

9¢
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is linear and nonnegative:
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Here (¢,1) = [p¢ndr and |||, = (Jp ¢*dr) Y2 Jefine the inner product
and the norm in the Hilbert space La(D), respectively. It can be shown [21]
that

[0l < T e 1) + [16°] (15)

The boundary conditions are also physically appropriate, since the integra-
tion of transport equation (1) over domain D leads to a mass balance equation

g /D ¢dr—é /D filr, t)dr /S sy Ur99S

—/ J¢dr—/ vi¢|es - n|dS. (16)
D So

Thus, the total mass of the pollutants increases due to the nonzero emission
rates f;(r,t), and decreases because of advective outflow across S*TU S;; , chem-
ical transformations (o # 0) and settlement on the ground (v* # 0).

Finally, we point out that the numerical solution of the dispersion model
(1)-(9) is obtained with a balanced and absolutely stable second-order finite-
difference scheme based on the application of the splitting method and Crank-
Nicolson scheme [3], [12], [20].

3. Optimal Control

Let the meteorological conditions and air quality be predicted during a time
interval (0,7") by the dispersion model (1)-(9) in combination with a weather
forecast model. Suppose that the air quality forecast obtained with emission
rates fi(r,t) (i = 1,...,N) is unfavorable, that is ¢(r,t) > Jy at some points
of a zone Q C D and some moments of the time interval (0,7"), where Jy is
the air quality norm for the pollutant. Then, in order to prevent an excessive
concentration of the pollutant in the zone 2, a short-term control must be
applied to establish a suitable intensity of all pollution sources within (0,77). In
other words, we should determine in the time interval (0,7") reduced emission
rates, optimal in the sense that the air quality standard will be satisfied:

o(r,t) < Jy, forany re Qand t e (0,7). (17)



CONTROLLING THE FORCING OF THE LINEAR... 533

In order to simplify the discussion we write the dispersion model (1)-(9) in
the form
90 l
o7 tAe=>) filr,t), ¢(r,0)=¢"(x) in D. (18)
i=1
The boundary conditions (4) to (8) and equation (9) are omitted because they
do not depend on the forcing and initial condition. At the same time, we
assume that the solutions of dispersion model (1)-(9) for different forcing and
initial conditions are continuos functions. Indeed, the Laplace operator which is
included in the definition of the operator A guarantees not only the continuity
of the solution, but also the continuity of its derivatives.
The control strategy for the emission rates of sources of pollutant consists
of finding nonnegative damping coefficients \; < 1 which determine the new
emission rates as

)\Z-fi(r,t), 1= 1,...,N, (19)

where (1 — ;) x 100 represents the percentage short-term decrease of emissions
of the ith pollution source. The aim of parameters \; is the fulfillment of
the environmental condition (17) for the solution ¢ of the following dispersion
problem:

N
aa_s: + A(,D - Z )‘ifi(rat)a (p(I‘,O) = ¢O(r) in D. (20)
=1

Since this objective can be accomplished by different sets of such parame-
ters, the optimal values will be obtained by means of a suitable optimization
process.

We now introduce concentration functions C; = Ci(r,t), i = 0, ..., N, as the
solutions of the following dispersion problems:

0Cy

W + ACy = 0, CO(I', 0) = QZ)O(I') in D, (21)

and
o0C;
ot

Note that when Cj(r,t) =0, for any r € Q and any instant ¢ € (0,7), then
the jth source can be excluded from the control problem. Hereafter we consider
that such sources have been identified and removed, i.e., we assume that all N
sources of the model (1)-(9) are responsible for polluting the zone €.

Since the dispersion model (1)-(9) is linear and has unique solution, one can
write the solution of problem (20) as a linear combination of the concentration

+ AC; = fi(r,t), Ci(r,0)=0 in D, i=1,...,N. (22)
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functions Cj,

N
p(r,t) = Co(r,t) + > _NCi(r,t), re€D and te(0,7) (23)
i=1
for any set of nonnegative damping coefficients \; < 1,i=1,...,N.

Due to (23), the environmental condition (17) is equivalent to the following
relation:

N
D> NCi(rt) < Jo = Co(r,t), TeQ and te(0,T). (24)
=1

It should be noted that the function
a(r,t) = Jy— Cy(r,t), reQ and te(0,7), (25)

defined by the right-hand side of inequality (24), indicates different cases of the
control problem.

Control cases:

1. If a <0 at apoint r € Qand ¢ € (0,7), then the damping coefficients must
be taken as A\; = 0 for any ¢, namely, all emissions must be stopped in order to
prevent dangerous concentrations of the pollutant. This case appears when the
initial pollutant concentration ¢°(r) is sufficiently high.

2. If a(r,t) >0 for all r € Q and ¢t € (0,7"), then a quadratic programming
problem is posed to calculate optimal values of the damping coefficients \;.
In order to formulate such optimization problem we establish the following
theorem.

Theorem 1. Let M; = max {C’i(r,t), (r,t) € Q x (O,T)} >0,i=1,...,N,

and ap = min {a(r,t), (r,t) € Q x (O,T)} > 0. Then the environmental con-

dition (17) is fulfilled for any set of nonnegative damping coefficients A\; < 1
(i=1,...,N) such that

N
Z)\ZMZ S o, (26)
i=1

Proof. The constants M; and «qg are well defined by means of the Weier-

strass theorem for continuous functions optimized on compact sets of an Eu-
clidean space [11]. Now, using the extreme values as upper and lower bounds,
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and inequality (26), we can establish that

N N
D NCilr,t) < NM; < ag
i=1 i=1
<a(r,t)=Jp— Co(r,t), reQ and te(0,T). (27)
From equations (27) and (23) we obtain that

N
p(r,t) = Co(r,t) + > NCi(r,t) < Jo, r€Q and te(0,7),
=1

and consequently, condition (17) is satisfied. O

With the aim to choose an optimal set of nonnegative damping coefficients
which satisfies the relation (26) for oy > 0, let us define the relative cost function
as follows:

N T 2
[ [ Lfi(r,t) = Nifi(x, 1)) drdt
FM, . dy) =Y 720D
. v Zl T fp Ui, 0)) drdt

— Y- a2 (28)
i=1
Here each coefficient ¢; > 0, ¢ = 1,..., N, represents the price to be paid
by the ith-source according to the control strategy, that is, for reducing its
emissions by (1—\;)x 100 percentage. Taking into account the cost function (28)
and condition (26), the optimal control problem is to determine the damping
coefficients \; by solving the following quadratic programming problem:

Minimize F(Ar,...,An) =Y ¢f(1— )%, (29)
i=1
N
M. <
subject to: Z; Abi < ag,  and : (30)
o< N<1l,i=1,....N
Note that due to Theorem 1, any set of the damping coefficients from the

feasible space (30) also fulfills the environmental condition (17). Besides, the
quadratic programming problem (29)-(30) can be written as follows:

Minimize F(z1,...,2N) = Z(ﬂcz — 900)2, (31)



536 D. Parra-Guevara, Yu.N. Skiba, D. Pena-Maciel

N

e <
subject to: 121 bizi < ag,  and . (32)

0<z; <29, i=1,...,N

where x; = ¢;\;, :):? =¢; and b; = M;/c¢;. Observe that the optimal control of
emissions has been reduced to an optimization problem in RY whose feasible
space F is defined by the constraints (32). Also note that the point {:):?} is not

N

in the feasible space F because ) bix? > ), otherwise, there is not a problem
i=1

of excessive pollution in €2,

N N N
ZCZ‘(I‘,t) S ZMZ = szflfg S (7)) S a(r,t) = J() — C()(I‘,t).
i=1 i=1

=1

Theorem 2. The solution of the quadratic programming problem (31)-
(32) is unique

Proof. The feasible space F is a nonempty set since 0 = {0} € F, moreover,
it is a bounded set since {x;} € F implies that ||{z;}|| < [|{z}|| =constant, for

the Euclidean norm in RY. In order to prove that F is a closed set we define
N

the function g as follows, g(x1,...,xy) = >_ b;z;. g is a continuous function in
i=1

RY and (—o0, ag) is a closed interval in R! then g~!(—o00, ap] is a closed set in
RY [6]. By the same argument the sets P, ' [0,29] are closed, where P; is the
projection function from RY to R! for the ith-component of vector {z;} and
[0, x?] is a closed interval in R!. Finally, the feasible set F is an intersection of
closed sets in RN, F =g~ !(—o0, ag] ﬂPfl [O,x?] N--- ﬁP&l [0,:1:9\,], therefore,
F is a closed set in RY [6]. With these properties the feasible space F is a
nonempty compact set in RY . By using the Weierstrass Theorem [11] we
conclude that the solution of the quadratic programming problem (31)-(32)
always exists because of the feasibility space F is a nonempty compact set in
RY and the objective function F is continuous.

On the other hand, the feasible space F is a convex set in R because it
is the intersection of convex sets in RV, and F is a strictly convex function
because its Hessian (0*F/0z;0z;) nxn = 21 is a positive definite matrix [11],
such characteristics determine that the solution of the quadratic programming
problem (31)-(32), which is a global minimum, is unique [11]. O

The solution of problem (31)-(32) is the point {z}} in F that minimizes
the distance from the feasible space F to the point {x?} It is clear that in the
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Euclidean space R such solution is the orthogonal projection of point {x?} on

N
the set defined by the equation ) b;z; = ag (see Fig. 2), that is, the solution
=1
' N
of control problem always satisfies the constraint > b;x; = ap. In this way, the
i=1
problem (31)-(32) can be replaced by a simpler optimization problem whose
solution is also the point {z}:

Minimize F(z1,...,2N) = Z(mz —29)?, (33)

N
subject to: Z; bizi = ao,  and . (34)

0§$i, ’izl,...,N

N

N

Z bixi < (24 ’f,"'
54

i=1

Figure 2: The optimal solution {z}} as an orthogonal projection of point {x?}
on the feasible set F (gray zone).

We point out that the problem (33)-(34) is efficiently solved by means of
the algorithm of successive orthogonal projections [15].

Algorithm of successive orthogonal projections. The optimization

*} is found by using the differential characterization

problem solution x* = {xj



538 D. Parra-Guevara, Yu.N. Skiba, D. Pena-Maciel

theorem [11] which states that x* is the solution if —VF(x*) - (x —x*) <0,
for all x € F (x # x¥).

The first approximation of x* is obtained as an orthogonal projection, or
equivalently, as the minimization process using the method of Lagrange multi-

pliers [11]:
1
_ N 0 N 9
B=2 <Z¢:1 bix) — a0> <Zi:1 bi> ,

xf =2y —0.58b;, j=1,..,N. (35)

This approximation satisfies the condition Z?{: 1 bj:c}*- = qag. To improve the
approximation, successive orthogonal projections are used.

Step L. If 27 > 0 for j=1,...,N, then x* € F and

N N

—VF(x")  (x —x") = 5ij:cj — ,Bijx;f = Bagy — Bag =0,
j=1 j=1

for all x* € F (x # x*). By the differential characterization theorem, x* is the

minimum.

Step II. If at least one component of x* is negative then the projection
needs to be redefined. Without loss of generality, assume that 27 < 0 for
j=14+1,...,N (at any rate one of the components must be always positive,
since ag > 0). Let us define xj* =0for j=1+1,...,N, and the rest variables
are taken from the new projection with restricted F' and feasible space F:

Yoiy biad — ag
l 2
> e b

This approximation also leads to the condition Z;V:1 bjx;f* = ay. If x;‘* >0
for j =1,...,1, then x* € F and

x ::1:9»—0.577bj, j=1.1 n=2

: (36)

N
SVF(xT) - (x—x") =2 3 a, (xg - —bl-) . xEF, x£x".
i=l+1

[\ Bt

Since Zizl bix} > ap, it follows from (35) that n > 5. This inequality,
together with (35), leads to —VF(x*™) - (x —x™) < 2 Zf\;lﬂ x;x; <0 for all
x € F (x # x*). Due to the differential characterization theorem, x** is the
minimum.

This algorithm converges to the exact solution at most in N iterations (pro-
jections), because ag > 0. Moreover, it is not computer time consuming, since
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the number of arithmetic operations does not exceed 3(N? + N). For exam-
ple, if a computer realizes 1,000,000 op/s then all the optimal variables x can
be determined at most in 3.5 s for N = 1000, and in 75.5 s for N = 5000.
Thus, every time when a short-term forecast is unfavorable, the quadratic pro-
gramming problem (29)-(30) can rapidly be solved. This property is especially
important when the number of emission sources is large.

We point out that this control method could result rigorous for some pol-
lution sources due to the fact that it is based on condition (26), according to
which the emissions are limited through the maximum values M;. However, this
method is the only option during some pollution events. For example, when
each pollution source generates a maximum value of concentration M; around
the same point in 2 then the maximum value of the pollutant concentration
in the Q zone is the sum Zf\; 1 M;, and hence, to satisfy the environmental
condition (17) any control strategy must use the condition (26). To imagine
this pollution event one can consider many pollution sources located on a line
coinciding with the wind direction, at some point downwind on this line the
concentration of the pollutant is the sum of the maximum contributions of all
sources.

In order to estimate how large can be the damping coefficients for any
control strategy, including the control method described in this section, we
establish the following theorem.

Theorem 3. The upper bounds for the nonnegative damping coefficients
in any control strategy that fulfills the environmental condition (17) are given
as

)\;‘:min{l,Jo/Mi}, 1= 1,...,N. (37)
Proof. The environmental condition (17) means that
N
C()(I‘,t) + Z)\jCj(I‘,If) <Jyp, reQ and te€ (O,T).
j=1
Since A\;Cj(r,t) > 0 for all j, then for a fixed i
N
AiCi(rt) < Co(r,t) + Y NCy(r,t) < Jo, T€Q and te(0,7),
j=1

and hence, \;C;(r,t) < Jo, r € Q and t € (0,7). In particular, such inequality
holds for the maximum value, that is, \;M; < Jy. Then (37) follows from this
condition and the fact that A\; < 1. O



540 D. Parra-Guevara, Yu.N. Skiba, D. Pena-Maciel

Due to (37), to control the emissions for large values of M;, one must pose
small damping coefficients. Finally, it is important to observe that the upper
bounds (37) are only the necessary conditions for any control strategy, but
generally they are not sufficient conditions.

4. An Example of Optimal Control

In this section we consider a two-dimensional version of dispersion model (1)-
(9), [17] to estimate and control the concentration of one passive pollutant
(SO2). The method for the control of emission rates studied in the previous
section is applied to a synthetic situation that involves two point sources. The
aim is to reduce the concentration of sulphur dioxide below the sanitary norm.
Let us consider in the square domain D = (0,3) x (0, 3) of 9 km? the two in-
dustrial (point) sources with coordinates r; = (1.55,0.25) and ro = (0.55, 2.05),
which emit sulphur dioxide with the following nonstationary rates (in kg/h):

10000t,  t € [0,0.5)
Qui(t) = 5000,  te[05,7]
5000(8 — ), t € (7,8.0]

5000t t€0,0.5]
2500, t e (0.5,1]

Qa(t) =< 2500 42000(t — 1), te(1,1.5) . (38)
3500, t € [1.5,7.5]

3500 — 7000(t — 7.5), t € (7.5,8.0)

Assume that the initial distribution of sulphur dioxide in D is ¢(r,0) = 0,
while the parameters ¢ = 0.36 h~! and p = 1.8 km?h~! for the dispersion
model are taken from Shir and Shieh [19]. The wind velocity U = (u,v) is
generated by the stream function ¥(r) = (5/3)x? — 5y, and hence, the velocity
components u = —0y /0y = —5 and v = O /dx satisfy the continuity equation
(9): V-U = 0. We consider the control problem for the concentration of
sulphur dioxide in the zone Q2 = [1,2] x [1,2] during the whole time interval
(0,7), where T' = 8 h. In order to observe the evolution of concentration
with time in €2, we consider five monitoring points distributed in this area:
Ry = (1.05,1.05), Ry = (1.95,1.05), R3 = (1.55,1.55), Ry = (1.05,1.95) and
Rs = (1.95,1.95). Figure 3 shows the respective concentrations ¢(R;,t), i =
1,..,5, and the allowed limit for the pollutant concentration Jy = 210 ugm3
for the eight hours exposure [23]. We note that at points Re, R3, Ry and Rs,
the concentrations are above this limit for five hours, from ¢t = 2 to t = 7,
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representing a violation of the corresponding sanitary norm. Thus, a control of
emissions is necessary to protect the zone €.

In order to apply the control method to this example we note that due to
the initial condition ¢(r,0) = 0 we obtain that a(r,t) = Jy — Cy(r,t) = Jy, and
hence, oy = Jy. Besides, the solutions of problems (22), calculated for each
point source, allow to estimate the following maximum values of concentration:
M = 363.5665 and My = 317.1413. Finally, we assume the same values of cost
for each point source, namely, ¢; = ¢o = 1.

By using Theorem 3 we estimate the following upper bounds for the damp-
ing coefficients: A} = 0.5776 and Ay = 0.6621. Note that in this example,
each pollution source must be severely restricted due to the fact that they are
responsible for very high concentrations of the pollutant.

All this information allows us to pose and solve the quadratic program-
ming problem (33)-(34). The algorithm of successive orthogonal projections
converges in one iteration, that is, we obtain the solution of problem (33)-(34)
only by the application of equation (35). The optimal damping coefficients are

1 = 0.2648 and A5 = 0.3586. Figure 4 shows the respective concentrations
o(R;,t), i = 1,..,5, which were obtained for the new emission rates defined
through equation (19). In all the monitoring sites R;, i = 1,..,5, the concen-
tration of the pollutant satisfies the air quality norm in the whole time interval
(0,7), T = 8 h. Moreover, by Theorem 1 it is sure that the environmental
condition ¢(r,t) < Jy is fulfilled for all r € Q and ¢ € (0,7).

T R

Figure 3: The evolution in time of the pollutant concentration at five
monitoring sites in ) before applying the control of emissions.
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Figure 4: The evolution in time of the pollutant concentration at five
monitoring sites in ) after applying the control of emissions.

5. Conclusions

Progress in numerical short-term weather forecasting and modeling of pollu-
tion transport has opened up new opportunities for developing methods that
not only can predict pollutant concentrations but also control emission rates
to prevent dangerous levels of concentrations in the case of weak dispersion
conditions in the atmosphere.

The development of various control strategies is based on using different
optimization formulations which depend on the ecological goals, technological
restrictions and the minimization of the cost that the sources of pollution must
pay for reducing their emissions. In this work, we have posed and analyzed a
quadratic programming problem with the aim to determine optimal emission
rates of the pollution sources and meet the standards of air quality at every point
in a zone and each instant in a time interval. The existence and uniqueness of a
solution of the optimal control problem is proved. Also, an efficient algorithm
of successive orthogonal projections is applied to calculate the optimal solution.
Note two important advantages of the new control method. At first, it can be
applied to any linear dispersion model. To this end, it is necessary to calculate
various particular solutions of such model and the respective maximum values of
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these solutions. And secondly, the control method is useful to obtain damping
coefficients for point, line and area sources of pollution.
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