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Abstract: The two-additive-factor Gaussian model G2++ (which encom-
passes the famous two-factor Hull-White model) is a stochastic model which
describes the instantaneous short rate dynamic. It has functional qualities re-
quired in various practical purposes as in Asset Liability Management and in
Trading of interest rate derivatives.

Recently we derived analytic expressions for the price sensitivities of zero-
coupon bonds, coupon-bearing bonds and the portfolio with respect to the
shocks linked to the unobservable two-uncertainty factors underlying the G2++
model.

Interest Rate Swaps (IRS) are instruments largely used by market partic-
ipants for many purposes. It appears that sounding analyzes related to the
hedging of portfolios made by swaps is not clear in the financial literature.

Our main goal here is to provide analytic expressions for the price sensi-
tivities for the IRS with respect to the G2++ model of the interest rate. Our
present results might provide a support for practitioners, using portfolio of
swaps in their hedge decision-making.
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1. Introduction

We will derive here suitable price/value sensitivities related to interest rate swap
(IRS) and portfolio of IRSs.The IRS deserve particularly our attention because
it appears to be instruments largely used by market participants (companies,
local governments, financial institutions, traders, ...). Despite this market im-
portance played by IRS, it appears that sounding analyzes related to swaps is
not clear in the financial literature. To partially fill this lack, we provide here
the analysis corresponding to a G2++ model of the interest rate. Recently in
(see [9]), the authors provide same analysis about the zero coupon bonds and
the coupon bearing bonds and its portfolio.

Among our main motivations in this work is to provide suitable tools for
hedging a given position (a portfolio of IRSs) sensitive to the interest rate. Very
often in the literature, the systematic study of a hedging operation is essentially
done by using just one-type of financial instrument, as for example the under-
lying asset in the case of an equity option. However in practice, the market
participant really makes use of a portfolio to perform the hedge. The G2++
model should be considered as a main contribution of this paper. In Section 2
this model is detailed. We explain it also in details in our previous work [9].
The introduction of interest rate sensitivities with respect to the two uncer-
tainty shock factors associated with the considered G2++ model allows us to
fulfill this practice requirement. Our approach is inspired from [17], where the
study is focused on the case of one-factor uncertainty models for the interest
rates (as the Vasicek and CIR models). Our results related to the IRS sensitiv-
ities and the associated price change decomposition are presented in Sections
5 and 6. The zero coupon bonds (ZCB) are keys for deriving price changes for
IRS which are linear functions of ZCBs. As a consequence, we are able to get
directly the IRS change value by an explicit expression depending essentially
on two shock factors, which are actually realizations of independent standard
random Gaussian variables. Here a decomposition of any IRS price change
into three parts is derived. Therefore it is found that the IRS change may be
approximated by the sum of a constant residual term and a polynomial term
whose coefficients are made by the various sensitivities with respect to the two
underlying shock factors (see Theorem 1). The point here is that the change
value of IRS instruments may be seen as linear combination of change values of
various zero-coupon bonds. In Section 10 we apply all the sensitivities findings
in the previous sections in order to derive the three parts decompositions for
the change value of IRS portfolio which is considered as a linear combination
of IRSs (see Theorem 2). As we plan to show in a next project, all the results
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found in this section may be used as starting points for performing the hedging
operation for a portfolio sensitive to the interest rate. It would be emphasized
that the main results obtained in this paper are general enough in the sense
that they do not rely on series of particular data. The basic and starting point
is that the model should be already appropriately calibrated. It is one of the
reasons why we have chosen to mix our result statements with different numer-
ical calibration examples in the numerical work. Numerical illustrations are
given in Section 11, and the conclusion is presented in Section 13.

2. The G2++ model

The two-additive-factor Gaussian model G2++ (see [2]) describes the short rate
rt as

rt = ϕ(t) + xt;1 + xt;2, (1)

where t 7−→ ϕ(t) is a (deterministic) function which allows the model to fit the
current observed interest rates. In (1), xt;1 and xt;2 may be viewed as state
variables whose dynamics are assumed to be given by

dxt;1(·) = −κ1xt;1dt+ σ1dWt;1(·) (2)

and
dxt;2(·) = −κ2xt;2dt+ σ2dWt;2(·). (3)

All of these dynamics are given under an adjusted risk-neutral measure Q.
Here Wt;1(·) and Wt;2(·) are two correlated standard Brownian motions with a
(constant) correlation ρ ≡ ρx1,x2

, with −1 < ρ < 1. In (2) and (3), κ1, κ2, σ1
and σ2 are nonnegative real numbers which represent the model parameters.

3. IRS value

A plain vanilla Interest Rate Swap (IRS) is an OTC contract between two
counter parties to exchange interest payments. The first of them agrees to pay
to the second one, a fixed interest rate on the contractual notional principal.
In return, it receives interest at floating rate on the same notional principal for
the same period of time. IRSs generally help to control instability in interest
rates, but if markets change in a surprising way, they can also lead to losses.

To be explicit, let us consider

0 ≤ t0 < t < t1 < . . . < ti < . . . < tM . (4)
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Here t is the future time such that the remaining cash-flow times payment of
the considered IRS, with maturity tM , should take place at times

T =
(
t1, . . . , ti, . . . , tM

)
. (5)

The time t-value of the zero-coupon bond P (t, ti) under G2++, having maturity
ti is defined by

P (t, ti) = exp

[
−
{
b
(
κ1(ti − t)

)
xt;1 + b

(
κ2(ti − t)

)
xt;2

− 1

(ti − t)
c
(
t, ti; Υ

)}
(ti − t)

]
, (6)

where the future values xt;1(·) and xt;2(·) of the underlying state variables of
G2++ (given their current values x0;1 and x0;2) are needed and are clearly
explictly in Proposition 1:

Υ ≡
(
κ1, κ2, σ1, σ2, ρ

)
, (7)

b(u) ≡
( 1
u

){
1− exp[−u]

}
for u 6= 0, otherwise b(0) = 1, (8)

c
(
t, ti; Υ

)
≡ ln

[
Pmkt(0, ti)

Pmkt(0, t)

]

+
1

2

(
V 2(ti − t; Υ)− V 2(ti; Υ) + V 2(t; Υ)

)
(9)

and

1

u
V 2(u; Υ) =

(σ1
κ1

)2[
1− b

(
κ1u

)
− κ1u

2
b2
(
κ1u

)]

+
(σ2
κ2

)2[
1− b

(
κ2u
)
− κ2u

2
b2
(
κ2u

)]

+2ρ
(σ1σ2
κ1κ2

)[
1− b

(
κ1u

)
− b
(
κ2u

)
+ b
(
{κ1 + κ2}u

)]
. (10)

A proof of the validity of relation (10) is available from the textbook (see [2]).
The form used in [2] is slightly different since it is seen there that

V 2(u; Υ) =
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(σ1
κ1

)2[
u+

( 2

κ1

)
exp[−κ1u]−

( 1

2κ1

)
exp[−2κ1u]−

( 3

2κ1

)]

+
(σ2
κ2

)2[
u+

( 2

κ2

)
exp[−κ2u]−

( 1

2κ2

)
exp[−2κ2u]−

( 3

2κ2

)]

+2ρ
(σ1σ2
κ1κ2

)[
1− b

(
κ1u

)
− b
(
κ2u

)
+ b
(
{κ1 + κ2}u

)]
u. (11)

Actually, (10) and (11) are same since

1

u
exp[−u] =

1

u
− b(u) and

1

u
exp[−2u] = ub2(u) +

1

u
− 2b(u).

With (6), the time-t yield-to-maturity for the maturity T = t+ τ , with 0 < τ ,
is readily given by

y(t; τ) ≡ b(κ1τ)xt;1 + b(κ2τ)xt;2 −
1

τ
c
(
t, t+ τ ; Υ

)
. (12)

Therefore the yield curve defined by the mapping

τ ∈ (0,∞) 7−→ y(t; τ)

can be easily plotted by making use of (12).

The IRS marked-to-market value at time t is defined by:

value Swapt =

value Swap
(
t,T ;notional; rate Swap;P (t, t1), . . . , P (t, tM )

)

= notional×
(
P (t, t1)

{
y(t0, t1)− rate Swap

}
τ(t, t1)

+

M∑

i=2

P (t, ti)
{
F (t; ti−1, ti)− rate Swap

}
τ(ti−1, ti)

)
. (13)

The yield-rate y(t0, t1) for the time-period (t0, t1) is given by

y(t0, t1) =
1

τ(t0, t1)

(
1

P (t0, t1)
− 1

)
. (14)

In (13), rate Swap denotes the contractual predetermined swap rate defined
such that at the contract time issuance t∗, with t∗ ≤ t0, the IRS has a zero
market value, that is value Swapt∗ = 0.
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When time passes, the IRS market value value Swapt at any time t before
the maturity is given as in expression (13) and has no reason to be equal to
zero.

At time t1 the payments are just related to the reduced time-period (t, t1),
such that the reference floating rate is the yield-to-maturity y(t0, t1). The value
of this last is well-known at time t. For the next times ti, with 2 ≤ i ≤ M , the
reference rate at time ti is the forward rate F (t; ti−1, ti) defined by

F (t; ti−1, ti) ≡
1

τ(ti−1, ti)

(
P (t, ti−1)

P (t, ti)
− 1

)
, (15)

which corresponds to the interest rate applies to the time-period (ti−1, ti) seen
at time t. Remind that the forward rate here is useful to determine the IRS
market value since the yield-rate y(ti−1, ti) remains unknown at the future time
t.

When using expression (15) then it appears that

value Swapt

≡ notional×
{
P (t, t1)

{
y(t0, t1)− rate Swap

}
τ(t, t1)

+
(
P (t, t1)− P (t, tM )

)

−rate Swap×
M∑

i=2

P (t, ti)τ(ti−1, ti)

}
. (16)

4. IRS change value

The IRS market value as in (16) is one-thing, but for the position managing or
hedging the market value change matters. Therefore for the time-period (0, t)
let us set

change value Swap0,t(·) ≡ value Swapt(·) − value Swap0. (17)

From (16), we will have

change value Swap0,t(·)

≡ notional×
{

−
{
y(t0, t1)− rate Swap

}
P (0, t1)t
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+
(
1 +

{
y(t0, t1)− rate Swap

}
τ(t, t1)

)(
P (t, t1)(·)− P (0, t1)

)

−
(
P (t, tM )(·) − P (0, tM )

)

−rate Swap×
M∑

i=2

(
P (t, ti)(·)− P (0, ti)

)
τ(ti−1, ti)

}
. (18)

With this last expression, the IRS market value change during the time-period
(0, t) arises as a linear combination of changes of zero-coupon bonds P (t, ti)(·)−
P (0, ti) with some various maturities ti’s. So one has mainly led to the expan-
sion of the zero-coupon bond price change. Each of the zero-coupon bond price
change has been analyzed in [9].

For this, we start to observe more information about the future values xt;1(·)
and xt;2(·) of the underlying state variables (given their current values x0;1 and
x0;2) are needed.

We assumed in this part that the G2++ model is calibrated, such that
x0,1, x0,2 and Υ are known. For this purpose, the dynamic equations (2) and
(3) are explored in order to get the following proposition.

Proposition 1. Under the G2++ model, the future time-t values of the
state variables x·;1 and x·;2, conditionally on their current values x0;1 and x0;2,
are given by

xt;1(·) = E(t;κ1)x0;1 + σ1F
1

2 (t;κ1, κ1)ε1(·) (19)

and

xt;2(·) = E(t;κ2)x0;2 + σ2F
1

2 (t;κ2, κ2)
{
ωε1(·) +

√
1− ω2ε2(·)

}
, (20)

where ε1(·) and ε2(·) are two independent standard normal random variables,

ω ≡ ω(t; ρ, κ1, κ2) = ρ
F(t;κ1, κ2)

F 1

2 (t;κ1, κ1)F
1

2 (t;κ2, κ2)
, (21)

E(u; k) = exp
[
−ku

]
(22)

and the quantity F(u; ki, kj) is defined as

F(u;κi, κj) ≡
1

(κi + κj)

{
1− exp

[
−(κi + κj)u

]}
. (23)

Actually, ε1(·) and ε2(·) are given by

ε1(·) ≡ ε1(·; t, κ1)
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= exp[−κ1t]F− 1

2 (t;κ1, κ1)

∫ t

0
exp[κ1s]dWs;1(·) (24)

and

ε2(·) ≡ ε2(·; t, ρ, κ1, κ2)

=
1√

1− ω2

{
−ω exp[−κ1t]F− 1

2 (t;κ1, κ1)

∫ t

0
exp[κ1s]dWs;1(·)

+ exp[−κ2t]F− 1

2 (t;κ2, κ2)

∫ t

0
exp[κ2s]dWs;2(·)

}
. (25)

Before starting the next section, let us denote by

Υ̃ ≡
(
Pmkt(0, T ), Pmkt(0, t);x0;1, x0;2; Υ

)
. (26)

5. Sensitivities of the IRS

In order to make a decomposition for the IRS value change (which is useful for
the hedging purpose) we are lead to introduce sensitivities of order k, for all
non negative integers k. Under the G2++ model for the short interest rate, a
decomposition for the zero-coupon bond change, as stated in [10] is ready to be
used in the IRS decomposition part.

The Residual term of IRS which represent the sensitivity of order 0 is defined
by the expression

Res Swap(t,T ; Υ̃)

≡ Res Swap
(
t,T ;notional; rate Swap; Υ̃

)

≡ notional×
{

−
{
y(t0, t1)− rate Swap

}
P (0, t1)t

+
(
1 +

{
y(t0, t1)− rate Swap

}
τ(t, t1)

)
Res ZC(t, t1; Υ̃)

−Res ZC(t, tM ; Υ̃)

−rate Swap×
M∑

i=2

Res ZC(t, ti; Υ̃)τ(ti−1, ti)

}
, (27)

where
Res ZC

(
t, ti; Υ̃

)
≡ Θ

(
t, ti
)
− P (0, ti)
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Θ
(
t, ti
)
≡ Θ

(
t, ti;P

mkt(0, t), Pmkt(0, ti);x0,1, x0,2; Υ
)

= exp

[
−
{
b
(
κ1(ti − t)

)
E(t;κ1)x0;1 + b

(
κ2(ti − t)

)
E(t;κ2)x0;2

− 1

(ti − t)
c
(
t, ti; Υ

)}
(ti − t)

]
. (28)

Now for the sensitivity of order k, it is defined as follows:

Sens Swap(k; t,T ; Υ̃)

≡ Sens Swap
(
k; t,T ;notional; rate Swap; Υ̃

)

≡ notional×{(
1 +

{
y(t0, t1)− rate Swap

}
τ̃1

)
Sens ZC(k; t, t1; Υ̃)

−Sens ZC(k; t, tM ; Υ̃)

−rate Swap×
M∑

i=2

Sens ZC(k; t, ti; Υ̃)τ(ti−1, ti)

}
, (29)

where the sensitivities of the zero coupon are expressed by

Sens ZC
(
k; ti, T ; Υ̃

)

≡
(
Θ(t, ti)c(j − 1, k)

[
λ1(t, ti)

]k+1−j[
λ2(t, ti)

]j−1
)

j∈{1,...,k+1}

. (30)

Where Θ(t, ti) as defined as in (28)

λ1 ≡ λ1

(
t, ti; Υ

)
=

{
σ1b
(
κ1(ti − t)

)
F 1

2 (t;κ1, κ1)+

ωσ2b
(
κ2(ti − t)

)
F 1

2 (t;κ2, κ2)

}
(ti − t) (31)

λ2 ≡ λ2

(
t, ti; Υ

)
=
√

1− ω2σ2b
(
κ2(ti − t)

)
F 1

2 (t;κ2, κ2)
(
ti − t

)
, (32)

c(j − 1, k) is the binomial coefficient notation.
It appears here that Sens Swap

(
k; t,T ; Υ̃

)
is a (k + 1)-th dimensional

vectors, as it is a linear combination of M number of (k + 1)-th dimensional
vectors Sens ZC

(
k; t, ti; Υ̃

)
’s as defined in (30).

Then the result related to the swap market value change is contained in the
following three-parts decomposition as defined in Section 6.
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6. Decomposition for IRS change value

As is seen in (see [9]), under the G2++ model, the price at a future horizon t for
any zero coupon bond is the result of two shocks ε1(·) ≡ ε1(·; t, κ1) and ε2(·) ≡
ε2(·; t, κ1, κ2, ρ) corresponding to the two uncertainty risk/opportunity linked
to the model under consideration.

These two shocks should belong to some domain Dswap(t,T ) where all the
zero-coupon bonds involved in the considered position have model prices having
economical sense.

Our result, related to the analysis of the Swap price change under the G2++
model, is included in the following three-parts decomposition result.

Theorem 1. Assume that at a future time horizon t satisfying (4) the
yield curve, under the G2++ model, has moved as a consequence of shocks
ε1(·) ≡ ε1(·; t;κ1) and ε2(·) ≡ ε2(·; t;κ1, κ2, ρ). Consider an IRS maturing at
time tM and let p be a nonnegative integer. Then real numbers η1 = η1(ε1, p)
and η2 = η2(ε2, p) do exist such that the IRS change during the time-period
(0, t) is given by

change value Swap0,t(·) =

Res Swap(t,T ; Υ̃) +

p∑

k=1

(−1)k

k!
Sens Swap′

(
k; t,T ; Υ̃

)
• ε[k](·)

+Rem Swap′
(
p+ 1; t,T ; Υ̃, η(·)

)
• ε[p+1](·), (33)

where η = (η1, η2), not clearly known explicitly, is contained in an open set
∆ ≡ ∆(ε1, ε2) which is one among the following four sets:

]0, ε1[×]0, ε2[ (34)

]0, ε1[×]ε2, 0[ (35)

]ε1, 0[×]0, ε2[ (36)

and
]ε1, 0[×]ε2, 0[. (37)

Because of the big equation, let us denote by

expti = exp
[
−
(
λ1(t, ti)η1 + λ2(t, ti)η2

)
, rs = rate Swap.
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Then the last term in (33) is really defined by

Rem Swap′
(
p+ 1; t,T ; Υ̃, η(·)

)
• ε[p+1]

≡ (−1)p+1

(p + 1)!
notional×

{(
1 +

{
y(t0, t1)− rs

}
τ̃1

)
×

expt1 Sens ZC′(p+ 1; t, t1; Υ̃) • ε[p+1]

− exptM Sens ZC′(p+ 1; t, tM ; Υ̃) • ε[p+1]

−rs×
M∑

i=2

expti Sens ZC(p + 1; t, ti; Υ̃) • ε[p+1]τ(ti−1, ti))

}
.

(38)

With (33), it may be said that we have the approximation

change value Swap0,t(·) ≈
Res Swap(t,T ; Υ̃) +
p∑

k=1

(−1)k

k!
Sens Swap′

(
k; t,T ; Υ̃

)
• ε[k](·). (39)

The error related to this approximation is defined as

error Swap change approx(0, t)(·)

= change value Swap0,t(·)−
{
Res Swap(t,T ; Υ̃)

+

p∑

k=1

(−1)k

k!
Sens Swap′

(
k; t,T ; Υ̃

)
• ε[k](·)

}

≡ Rem Swap′
(
p+ 1; t,T ; Υ̃, η(·)

)
• ε[p+1](·). (40)

A main point here is that a deterministic estimates of the error related to the
IRS change approximation is obtained by

R Swap ≡ max

{∣∣∣Rem Swap′
(
p+ 1; t, T ; Υ̃, η

)
• ε[p+1]

∣∣∣;

η = (η1, η2) ∈ △(ε1, ε2) and (ε1, ε2) ∈ Dswap(t,T )

}
, (41)

where Dswap(t,T ) is some suitable domain detailed in [9].
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7. Portfolio of Interest Rate Swaps

Let us denote by St the time t value of a portfolio made by I∗∗ types of payer
IRSs S∗∗

·;i∗∗ (with a notional of N∗∗
i∗∗ , swap rate r∗∗i∗∗ and maturity tM∗∗(i∗∗)) and

I∗ types of receiver IRSs S∗
·;i∗ (resp. N∗

i∗ , r
∗
i∗ and tM∗(i∗)). Of course, I∗∗ and

I∗ are positive integer numbers. For i∗∗ ∈ {1, . . . , I∗∗} and i∗ ∈ {1, . . . , I∗}, the
IRSs

S∗∗
·;i∗∗ and S∗

·;i∗ ,

are assumed respectively to have the notional

notional(i∗∗) and notional(i∗),

rate swaps
rate Swap(i∗∗) and rate Swap(i∗)

maturities
t∗∗M∗∗(i∗∗)(i

∗∗) and t∗M∗(i∗)(i
∗)

and have the ordered payment times

T ∗∗
·;i∗∗ =

(
t∗∗1 (i∗∗), . . . , t∗∗j∗∗(i

∗∗), . . . , t∗∗M∗∗(i∗∗)(i
∗∗)
)

T ∗
·;i∗ =

(
t∗1(i

∗), . . . , t∗j∗(i
∗), . . . , t∗M∗(i∗)(i

∗)
)

Where j∗∗ ∈
{
1, 2, · · · ,M∗∗(i∗∗)

}
and j∗ ∈

{
1, 2, · · · ,M∗(i∗)

}
. For the whole

portfolio, it is also suitable to introduce

T ∗∗ =
(
T ∗∗
·;i∗∗

)
i∗∗∈{1,...,I∗∗}

and T ∗ =
(
T ∗
·;i∗

)
i∗∈{1,...,I∗}

.

The time-t value of such a portfolio may be written as

St =

I∗∗∑

i∗∗=1

n∗∗
i∗∗S

∗∗
t;i∗∗ −

I∗∑

i∗=1

n∗
i∗S

∗
t;i∗ . (42)

Therefore there are n∗∗
i∗∗ IRSs of type i∗∗ each worth S∗∗

t;i∗∗ , and n∗
i∗ IRSs of type

i∗ each worth S∗
t;i∗ .

It is supposed that the holder of such IRS portfolio has just the purpose of
limiting the risk resulting from an adverse movement of the yield curve at some
time-horizon t. The shape of the yield curve at this future time t is assumed
to be suitably governed by the G2++ model. In practice t corresponds to the
horizon for which she has a more and less clear view about a possible movement
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of the market. To simplify the situation, we will just focus on the case where t

is sufficiently close to the present time 0, in the sense that it satisfies a condition
like (4).

8. IRS portfolio change value

As usual, the future portfolio value St(·) is unknown at time 0, and depends
on the variation of the yield curve at this time t. The change value of the
considered portfolio for the period (0, t) is given by

change value port Swap0,t(·) ≡ St(·)− S0

=
I∗∗∑

i∗∗=1

n∗∗
i∗∗

{
S∗∗
t;i∗∗(·)− S∗∗

0;i∗∗

}
−

I∗∑

i∗=1

n∗
i∗

{
S∗
t;i∗(·)− S∗

0;i∗

}
. (43)

It appears here that the IRS portfolio change value depends on

S∗∗
t;i∗∗(·)− S∗∗

0;i∗∗ and S∗
t;i∗(·)− S∗

0;i∗

which correspond to the price changes for the payer and receiver IRSs having
the maturities t∗∗

M∗∗(i∗∗)(i
∗∗) and t∗

M∗(i∗)(i
∗) respectively. It means that we can

benefit from the above finding related to the IRS single position. It is seen in
(18) that each of these two changes may be represented by a linear combination
of changes of zero-coupon bonds prices. As a result, the IRS portfolio appears
to be a linear combination of various zero coupon bonds.

As in the case of a single IRS position, these two shocks should belong to
some domain for which all the zero-coupon bonds involved in the considered
position have model prices having economical sense.

9. Sensitivities for the IRS portfolio

As the IRS portfolio change is a linear function of IRSs changes, then we can
benefit from the expression in (18) related to change of a single IRS when defin-
ing the sensitivities related to the considered portfolio. Therefore the portfolio
sensitivity of order zero or residual term, measuring the passage of time when
the yield curve remains unchanged, is given by

Res(t,S; Υ̃) ≡
I∗∗∑

i∗∗=1

n∗∗
i∗∗Res Swap(t,T ∗∗

·;i∗∗; Υ̃)
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−
I∗∑

i∗=1

n∗
i∗Res Swap(t,T ∗

·;i∗; Υ̃). (44)

As in (27), the zero order sensitivities for the i∗∗th single IRS position is

Res Swap(t,T ∗∗
·;i∗∗ ; Υ̃)

≡ N∗∗
i∗∗×

{
−
{
y∗∗01(i

∗∗)− r∗∗i∗∗
}
P
(
t, t∗∗1 (i∗∗)

)
t

+
(
1 +

{
y∗∗01(i

∗∗)− r∗∗i∗∗
}
τ̃∗∗j∗∗(i

∗∗)
)
Res ZC

(
t, t∗∗1 (i∗∗); Υ̃

)

−Res ZC
(
t, t∗∗M∗∗(i∗∗)(i

∗∗); Υ̃
)

−r∗∗i∗∗ ×
M∗∗(i∗∗)∑

j∗∗=2

Res ZC(t, tj∗∗(i
∗∗); Υ̃)τ∗∗j∗∗

}
. (45)

Recall that the zero-order sensitivityRes ZC
(
t, t∗∗j∗∗(i

∗∗); Υ̃
)
for the zero coupon

bond having a maturity of t∗∗j∗∗(i
∗∗) is given by

Res ZC
(
t, t∗∗j∗∗(i

∗∗); Υ̃
)
≡ Θ

(
t, t∗∗j∗∗(i

∗∗)
)
− P

(
0, t∗∗j∗∗(i

∗∗)
)

and where Θ
(
t, t∗∗j∗∗(i

∗∗)
)
is defined explicitly as in (28). The IRS zero-order

sensitivity Res Swap
(
t,T ∗

·;i∗; Υ̃
)
is similarly defined as (45) by changing the

double star by one star.
In order to make the three-parts decomposition of the IRS portfolio change,

useful for performing the hedging operation, we are also lead to introduce the
k-th order sensitivity defined as

Sens(k; t,S; Υ̃) ≡
I∗∗∑

i∗∗=1

n∗∗
i∗∗Sens Swap(k; t,T ∗∗

·;i∗∗ ; Υ̃)

−
I∗∑

i∗=1

n∗
i∗Sens Swap(k; t,T ∗

·;i∗ ; Υ̃). (46)

Here the k-th order sensitivity Sens Swap(k; t,T ∗∗
·;i∗∗ ; Υ̃) for the i∗∗-th IRS as-

sociated with the tenor T ∗∗
·;i∗∗ is defined as in (29) by

Sens Swap
(
k; t,T ∗∗

·;i∗∗; Υ̃
)
= N∗∗

i∗∗

{
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(
1 + {y∗∗01(i∗∗)− r∗∗i∗∗}τ̃∗∗1 (i∗∗)

)
Sens ZC

(
k; t, t∗∗1 (i∗∗); Υ̃

)

− Sens ZC
(
k; t, t∗∗M∗∗(i∗∗)(i

∗∗); Υ̃
)

− r∗∗i∗∗ ×
M∗∗(i∗∗)∑

j∗∗=2

Sens ZC
(
k; t, tj∗∗(i

∗∗); Υ̃
)
× τ∗∗j∗∗(i

∗∗)

}
. (47)

The k-th sensitivity Sens ZC
(
k; t, t∗∗j∗∗(i

∗∗); Υ̃
)
for the zero coupon with the

maturity t∗∗j∗∗(i
∗∗) is defined by

Sens ZC
(
k; t, t∗∗j∗∗(i

∗∗); Υ̃
)

≡
(
Θ
(
t, t∗∗j∗∗(i

∗∗)
)
×

c(l − 1, k)
[
λ1

(
t, t∗∗j∗∗(i

∗∗)
)]k+1−l[

λ2

(
t, t∗∗j∗∗(i

∗∗)
)]l−1

)

l∈{1,...,k+1}

.

The expression for Sens Swap(k; t,T ∗
·;i∗ ; Υ̃) is similarly defined by replacing

each double star by a one star. From the above expressions, to get the Res(t,S;
Υ̃) and Sens(k, t,S; Υ̃)’s and reduce the computation efforts, it appears to be
useful to calculate in advance and store all zero-coupon sensitivities

Res ZC
(
t, t∗∗j∗∗(i

∗∗); Υ̃
)
, Res ZC

(
t, t∗j∗(i

∗); Υ̃
)

Sens ZC
(
k; t, t∗∗j∗∗(i

∗∗); Υ̃
)
, Sens ZC

(
k; t, t∗j∗(i

∗); Υ̃
)

for all j∗∗ ∈ {1, . . . ,M∗∗(i∗∗)}, j∗ ∈ {1, . . . ,M∗(i∗)},
i∗∗ ∈ {1, . . . , I∗∗} and i∗ ∈ {1, . . . , I∗}.

It should be emphasized that the IRS portfolio sensitivities Res(t,S; Υ̃)
and Sens(k, t,S; Υ̃) are deterministic quantities computed at the present time
0 and expected to capture the (random) value St(·) of the IRS portfolio at the
future time-horizon t. The fact to account for the horizon, in the sensitivities
computations, is among our main contributions when compared with the ex-
isting sensitivities commonly known and used in the financial industry. By so
doing, the change value of the swap portfolio is better captured and moreover
it is possible to monitor the resulting error approximation.
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10. Decomposition of the IRS portfolio change value

As for the case of a single IRS, the main key is to introduce a decomposition of
the position change value over the following three-part decomposition result.

Theorem 2. The G2++ model is defined as in (1), (2) and (3). Assume
that at a future time horizon t satisfying (4) the yield curve has moved as a
consequence of shocks ε1(·) ≡ ε1(·; t;κ1) and ε2(·) ≡ ε2(·; t;κ1, κ2, ρ). Consider
an IRS portfolio as defined in (42) and let p be a nonnegative integer.

Then real numbers η1 = η1(ε1, p) and η2 = η2(ε2, p) do exist such that the
IRS portfolio change value during the time-period (0, t) is given by the sum

change port value Swap0,t =

Res(t;S; Υ̃) +

p∑

k=1

(−1)k

k!
Sens′

(
k; t;S; Υ̃

)
• ε[k](·)

+Rem′
(
p+ 1; t;S; η(·); Υ̃

)
• ε[p+1](·), (48)

where Res(t, ;S; Υ̃) and Sens
(
k; t;S; Υ̃

)
are respectively defined in (44), (46).

Here η(·) =
(
η1(·), η2(·)

)
, not clearly known explicitly is contained in an

open set ∆ ≡ ∆(ε1, ε2) as defined in (34) to (37).

In (48), the remainder term of the IRS portfolio is defined by

Rem
(
p+ 1; t,S; η; Υ̃

)
≡

I∗∗∑

i∗∗=1

n∗∗
i∗∗Rem Swap

(
p+ 1; t,T ∗∗

·;i∗∗; η; Υ̃
)

−
I∗∑

i∗=1

n∗
i∗Rem Swap

(
p+ 1; t,T ∗

·;i∗ ; η; Υ̃
)
. (49)

For shortness, the expressions for

Rem Swap
(
p+ 1; t,T ∗∗

·;i∗∗ ; η; Υ̃
)
and Rem Swap

(
p+ 1; t,T ∗

·;i∗ ; η; Υ̃
)

are not reported since it is sufficient to mimic things from those ofRes Swap
(
t,

T ∗∗
·;i∗∗; Υ̃

)
and Sens Swap

(
k; t,T ∗∗

·;i∗∗ ; Υ̃
)
in the equation (38) for the single swap.

The first termRes(t,S; Υ̃) in the swap portfolio change value decomposition
(48), corresponds to the passage of time in the sense that

change value port Swap0,t(·)
∣∣∣
ε1=0, ε2=0

= Res(t,S; Υ̃).
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It may be noted that Sens
(
k; t;S; Υ̃

)
is a (k+1)-th dimensional vector, as

being a linear combination of a number M of (k + 1)-th dimensional vectors
Sens ZC

(
k; t, ti; Υ̃

)
’s.

From (48), the swap portfolio change value decomposition may be approx-
imated as

change value port Swap0,t(·) ≈
(
Res(t;S; Υ̃) +

p∑

k=1

(−1)k

k!
Sens′

(
k; t;S; Υ̃

)
• ε[k](·)

)
(50)

such that the error approximation is

error approx port0,t(·) ≡ Rem′
(
p+ 1; t,S, η; Υ̃

)
• ε[p+1](·)

= change value port Swap0,t(·)

−
(
Res(t;S; Υ̃) +

p∑

k=1

(−1)k

k!
Sens′

(
k; t;S; Υ̃

)
• ε[k](·)

)
. (51)

The approximation (50) has only a sense whenever the error approximation
(51) may be neglected from the perspective of the IRS portfolio holder. The
challenge here is that the components of the vector ε[k](·) are made by realiza-
tions of two independent standard normal Gaussian variables and consequently
have no reason to be of small sizes. The introduction of high order sensitivities
as Sens

(
k; t;S; Υ̃

)
and the corresponding term 1

k! are expected to contribute
in the reduction of the size of approximation error.

The size of such a remainder term is of importance as being involved in
the hedging error. Less small is this size, more the approximation of the IRS
portfolio change by the two term in the decomposition is better. It means that
the change is essentially driven by a polynomial function. Then this fact can
be explored in the hedging purpose by matching the various sensitivities. The
challenge in our approach is that this size (when expressed in term of loss)
should be very small from the perspective of the hedger.

It should be emphasized that replacing the future change of the IRS port-
folio by a polynomial function (whose the coefficient are the initial portfolio
sensitivities) is also interesting in the perspective of risk measurement and
management. Indeed instead of re-evaluating the portfolio for each scenario
of shocks considered (which is time and memory consuming) one has just to
calculate the value of the polynomial function. Of course this is meaningful
whenever the remainder term is negligible.
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As in case of a single swap, it is possible to get a high bound for the
remainder of the IRS portfolio under a view on the shocks at the future horizon
t. For doing, let us recall that the suitable domain for the shocks (ε1, ε2) in the
case of the IRS portfolio is

Dport.swap(t,S) ≡
Dport.swap(t,S)

(
t,T ∗∗,T ∗;

Pmkt(0, t), P ∗∗
mkt, P

∗
mkt, x0,1, x0,2,Υ; ε•1, ε

••
1 , ε•2, ε

••
2

)

for some fixed real constants ε•1, ε
••
1 , ε•2 and ε••2 . A high bound ’R port swap’

for the remainder IRS portfolio is given by

R port swap ≡ max

{∣∣∣Rem
(
p+ 1; t,S; Υ̃; η

)
• ε[p+1]

∣∣∣;

η = (η1, η2) ∈ △(ε1, ε2) and (ε1, ε2) ∈ Dport.swap(t,B)
}
.

(52)

11. Numerical Illustration

The results derived in this paper are general enough in the sense that they
do not lean on data. However they depend on a model which is assumed to
be already suitably calibrated. In this section part, we will focus on giving
numerical illustrations for sensitivities of the IRS, portfolio of IRSs. In a first
step, we consider the sensitivities for IRSs which are the mains of our approach.
Then in a next step, we try to show how useful is the introduction of high order
sensitivities when one has to deal with IRS and the associated portfolios.

• The model considered

The G2++ takes as input the market term structure of interest rate at some
point 0 of time. To avoid to choose a particular market data, we assume that
the present interest rate structure

Pmkt(0, T ) = exp
(
−y(0;T )τ(0, T )

)
(53)

is obtained from the initial yield-curve

y(0;T ) = L0 + S0b2(λT ) + C0b3(λT ) for T > 0 (54)
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with b2(u) =
1
u
(
(
1− exp[−u]

)
and b3(u) = b2(u)− exp(−u) and λ > 0. Here λ,

L0, S0 and C0 are used to denote respectively the level, slope and convexity as-
sociated with the used static model.These values are given in Table 1. Actually
(54) was introduced by Diebold, Ji and Li (see [5]) as a parsimonious refor-
mulation of an original interpolation expression for the yield curve pioneered
to Nelson and Siegel. We consider the parameter values as displayed in Table
1. We assume here that the interest rate model at the initial time 0 is driven
by a calibrated G2++ model as in [2] with the parameters presented in Table
2. Another calibration in Table 3 are used. Note that for the two considered
calibrations, we examine various time-horizon t = 90 days to show that the
passage time matters. The state variables x0;1 and x0;2 are initially chosen as
x0;1 = x0;2 = 0 in order to have all the zero-coupon prices generated by the
G2++ to perfectly fit those observed in the market as given in (54).

• Numerical illustrations for IRS

To better visualize our above results on the IRS, especially as those stated in
Theorem 1, it is suitable to consider some numerical illustrations corresponding
to different types of calibration. The results derived in this paper are general
enough in the sense that they do not lean on data. However they depend on a
model which is assumed to be already suitably calibrated. In this section part,
we will focus on giving numerical illustrations for change value, sensitivities and
Error approximations of the IRS.

• IRS change value

In this part, we consider an IRS with the notional 10 000 000, 7 years maturity
and the frequency payment of 6 months. All of these characteristics are sum-
marized in Table 4. Always the time horizon of 3 months is considered, though
in practice for the hedging perspective it is considered shorter horizon, as one
month or, one or two weeks. The large horizon considered here is motivated by
the willing to analyze the behavior of our sensitivities under extreme situations.
We first analyze the IRS price changes at the considered horizon t under the
presence of the shocks (ε1, ε2) and with the different Set calibrations (Tables 2
and 3). It means that the values obtained represent the exact ones which may
be obtained whenever the interest rate really follows the G2++ model. Table
6 show these changes. In Table 6 the exact IRS values change for the different
calibrations are displayed in the third and fourth columns. They are obtained
by computing St(·) − S0 according to (17), and where St is obtained from the
definition of IRS value as in (16).

Under the shocks ε1 = 2 and ε2 = 2 then {S90 − S0}calib1 = 76982.36 and
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{S90 − S0}calib2 = −403 421.92. This confirms the well-known fact that when
calibration changes then the market can greatly change, so that it appears useful
not to wait too long time to hedge the position. For the shocks ε1 = −2, ε2 = 2
the exact change values {S90−S0}calib1 = −534 059.15 (resp. {S90−S0}calib2 =
−571 066.85) which represents 5.34% (resp. 5.71%) of the IRS notional value.
If instead of considering just one IRS we deal with a position of 1 000 of such
IRS, then the values becomes −534 059 150 (resp. -571 066 850). Clearly a loss
with such a magnitude size may be unacceptable for the hedger point of view.

• IRS sensitivities for different order

To get a good understanding about the role of the high order sensitivities,
we provide some results in Tables 8 and 9. Table 8 uses the set calibration 1
(resp. Table 9 uses the set calibration 2.) The IRS sensitivity of order one is
a two dimensional vector whose components are presented in the first column
of Table 8 (resp. 9). It should be read here that the first order sensitivity
with respect to the factor shock ε1 is −150 709.95 (resp. −39 654.64), while
the first order sensitivity with respect to the factor shock ε2 is 78 065.42 (resp.
205 647.24). For the third column, 1.82 (resp. 135.57) is the IRS third order
sensitivity with respect to the shock factor ε32, −14.94 (resp. −81.76) is the third
order sensitivity with respect to the shock ε1ε

2
2, 53.27 (resp. 16.44) is the third

order sensitivity with respect to ε21ε2 and −60.88 (resp. −1.10) is the third order
sensitivity with respect to the shock factor ε31. The other columns and rows
can be similarly interpreted. In the fifth column, the numbers represent the
sensitivities of order 6 multiplied by 103, for example, the 6th order sensitivity
with respect to the shock ε31ε

3
2 is 0.21 × 10−3 (resp. 0.33× 10−3).

When comparing Tables 8 and 9 it appears that the sensitivities of the IRS
using set calibration of Table 2 and set calibration of Table 3 at the same order
have same sizes. For example, Table 8 with seventieth order of sensitivities,
sizes are of order 105 same for Table 9.

• Error approximation of the IRS

In the sequel for the two considered calibration situations, the illustrations
are just limited to long horizon t = 90 days. We are interested to derive numeri-
cal values of the error approximation. For Tables 12 and 13, the first and second
columns are given some possible values of the shocks ε1 and ε2 that belong the
specific domain. In the next columns, the corresponding error approximations
are given for different orders p = {1, 2, 6, 9, 12}. The first order approximation
for the IRS value change for the horizon t, as described in equation (39), are
presented in the first columns of Tables 12 and 13. They are the difference



SENSITIVITIES OF INTEREST RATE SWAPS... 475

between the exact value and the approximation of order 1.

It may be observed from Table 12 (resp. Table 13), that the error is exactly
equal to zero when there is no shock ( i.e. ε1 = ε2 = 0). This is the consequence
that the IRS price change is reduced to the residual term. Under the shocks
ε1 = 2 and ε2 = 2 then {Er1}calib1 = −2 732.88 and {Er1}calib2 = −7 105.54. If
instead of considering just one IRS we deal with a position of 1 000 of such IRS,
then the values becomes −2 732 880 (resp. -7 105 540). Clearly a loss with such
a magnitude size may be unacceptable for the hedger point of view. It means
that limiting to a first order approximation should not be sufficient in practice.
This is the reason why we introduce and consider high order approximations,
whose the numerical results are displayed in Tables 12 and 13. For the same
shocks ε1 = 3.5, ε2 = 3.5, a time-horizon t = 90 days and the Set calibration of
Table2, then the error approximation of order 6 is {Er6}calib1 = 0.01× 10−4 as
given in Table 12. It means that when considering a position of 1 000 of such
IRSs the error approximation is reduced to 0.001. Of course an amount loss
with such a magnitude size is negligible for the hedger point of view giving a
notional of 10 000 000. For the set calibration of Tables 3, as is seen in Table
13, for the same levels of shocks, then the error approximation of order 6 is just
{Er6}calib2 = −0.01 × 10−3.

Observe that under the set calibration of Table2, then in general the error
approximations are lesser than the one obtained under the setting of Table3.
For example with the shocks ε1 = −3, ε2 = −3 and time-horizon t = 90
{Er2}calib1 = −94.29 and {Er2}calib2 = 306.62.

With these latter tables our intention is to illustrate the fact that the cal-
ibration of model is very determining in the risk measurement and position
management. But we can result that when the high order level is here than the
error order of this sensitivity approximation tend to be zero. And this is what
we are searching.

12. Numerical illustrations for the IRS portfolio

This part is devoted to numerical illustrations of the results obtained to the
portfolio of IRS. Same to the examples presented for single IRS, we will focus
on the numerical illustrations for the portfolio of IRSs. Here the emphasis is
put on the hedging aspect, which is one of our main purpose in the future work.
We start on the study of the exact change of the IRS portfolio, under some view
on the possible shocks affecting the interest rate. As mentioned in the previous
Section 10, the sensitivities and the error approximations of this decomposition
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are numerically stated here.

To illustrate the fact that the model calibration is very determining for the
hedging result, we consider both the set calibrations as in Tables 2 and 3. The
time-horizons considered for the hedge are again 90 days.

The portfolio to study is made by three types of payer swaps S1
∗∗, S2

∗∗,
and S3

∗∗, and one type of receiver swaps S1
∗. Each swap has a face value

equal 1 000 000 and differ by annual or semi-annual coupon payment. Their
characteristics are summarized in Table 5. As we assume that the present time
corresponds to the time-inceptions of all of these swaps, then the considered
portfolio has an initial zero value (portf value swap =0).

• IRS portfolio change value

The considered portfolio change values under the scenarios for ε1, ε2 are
displayed in Table 7. In the third column we report the portfolio change value
under set calibration of Table 2 and in the fourth column resp. to Table 3.
Observe that the portfolio change value when the curve remains unchanged
(which corresponds to ε1 = ε2 = 0) at the considered horizon (90 days) for the
set calibration of Table 2 is equal to 164.49 and 237.21 for the set calibration
of Table 3. These values results due to the passage of time. These two change
values are quietly different, while it corresponds to different interest rate en-
vironments (as reflected by the model parameters). As a general view, it may
be observed that under the set calibration of Table 2 the portfolio change is
less than under the set calibration of Table 3. Next we move to numerically
visualize the portfolio IRSs-sensitivities.

• IRS portfolio sensitivities for different order

This table reports some sensitivities of the IRS portfolio given in Table 5 for
the two calibration and for some p = {1, 2, 3, 5, 6, 7, 12}. All these sensitivities
are interpreted as in Tables 8 and 9. As example, in the first column of Table
10 (resp. Table 11), the first order sensitivity with respect to ε1 is equal to
−12 308.38 (resp. −3 234.92) and with respect to ε2 is equal to 2 576.80 (resp.
15 723.55). The other columns are interpreted in the same way of the IRS
sensitivities in Tables 8 and 9. Here we remark that the sensitivity for the set
calibration of Table 2 and the set calibration of Table 3 vary in same way but
it is different in size. This lead us to conclude that for the two calibrations
converge to same way. It is sufficient to have good result for p ≥ 6 in the
approximation using sensitivities. As a result, the choice of a high level order
of p can give a good sensitivities approximation which avoids the effect of any
choice calibration.
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For a best visualization of the error of approximation of a IRS portfolio, we
present the following part.

• Error approximation of the IRS portfolio

It is remarkable here that when using the Set calibration of Tables 2 and 3,
the error approximation for the order p = 6 is sufficient as written in column
six. For this same order and for the set calibration 2, the error is not too far as
shown in the column six. So when using a high level order p ≥ 6, the two sets
vary in the same way and the error approximation is decreasing.

13. Conclusion

In this paper we have introduced the interest rate swap (IRS) price sensitivities
with respect to the underlying uncertainty two-factor related to the G2++
model which govern the interest rate structure. Then these sensitivities are
used in order to obtain a three-parts decomposition of the IRS price change.
Similar results for the portfolio of interest rate swaps are also derived.

In contrast with the usual Greek parameters (delta, gamma, duration, con-
vexities, etc.), the sensitivities introduced in this work have the feature of taking
into account the horizon where one wish to measure the position value change.

This paper is only devoted to the introduction and analysis of various in-
struments sensitivities. The results obtained here may be used as tools for
hedging a position linked to the interest rates by a portfolio of IRS. The full
details for that purpose will be performed in our next project.

Here we have opened a way for the development of sensitivities and hedging
under a general Gaussian Affine Term Structure Model for the interest rate.

There are also important and basic interest rate instruments, as the options
on zero-coupon bonds for which do not appear as linear combination of various
ZCBs. It means that the sensitivities and three-parts decomposition for these
nonlinear instruments would require more technical difficulties than the ones
used in this paper. The details and corresponding results may be a subject of
a future investigation.

As for the well established available prices of IRS, the sensitivities intro-
duced in this work involve unobservable state variables underlying the consid-
ered G2++ model. Proxies for these last can be obtained by using observable
zero-coupon prices. The common way in the literature is to make use of any
filtering approach as the Kalman one or some of its variants. When consid-
ering the price or value changes at a future time, once the sensitivities are
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computed, it may arises the question about the views on shock levels associ-
ated with these unobservable variables at this horizon. To have views on these
variables, as assumed in the robustness tests of the sensitivities introduced in
this paper, is not so intuitive. As these variables follow the standard Gaussian
laws, then conservative values for these shocks should be inside the interval
(−5, 5). But statistical considerations and numerical tests can help in forming
views on extreme values for the shocks. However it should be emphasized that
in the hedging application having view on shock values is not so useful, since
what really matters is just the offset between the sensitivities of the position to
hedge with those of the hedging instruments.

When considering the above mentioned constraints, we have avoided to
use generated model ZCB prices without economical sense. But actually the
weakness of the G2++ model Contents remains an issue, due to the fact that
the model calibration is done on an improper manner as not discarding these
ZCB prices higher than 1. Always staying in the hedging perspective, two
questions can be raised: 1) what does happen if the calibration is done in a
consistent manner? 2) how to modify the standard G2++ model in order to
get a new one which is consistent with the possibility to deal with interest rates
near zero or below?
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14. Tables

Table 1: Nielson and Siegel

λ L0 S0 C0

0.08% 4.58% −1.85% −2.25%

Table 2: Calibration list

κ1 κ2 σ1 σ2 ρ

77.35% 8.20% 2.23% 1.04% −70.19%

Table 3: Set Calibration 2

κ1 κ2 σ1 σ2 ρ

52.16% 7.56% 0.58% 1.16% −98.69%

Table 4: Characteristics of the IRS

type number maturity coupon period

S∗∗ 10 000 000 7 years 6 months

Table 5: Characteristics of the IRS portfolio

type number maturity coupon period

S∗∗
1 1 000 000 2 years 6 months

S∗∗
2 1 000 000 3 years 1 years

S∗∗
3 1 000 000 10 years 1 years

S∗
1 1 000 000 8 years 6 months
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Table 6: IRS value change

ε1 ε2 Exactcalib1 Exactcalib2

-5 -5 -446 488.11 723 209.96

-1.5 -1.5 -176 105.01 180 751.85

0.5 0.5 -29 423.64 -147 767.20

2 2 76 982.36 -403 421.92

3.5 3.5 180 374.88 -667 283.58

5 5 280 821.28 -939 598.58

5 -5 1 013 711.90 1 068 057.70

2 -2 381 391.44 410 767.11

0 0 -65 573.81 -64 331.18

-0.5 0.5 -180 636.60 -187 975.41

-2 2 -534 059.15 -571 066.85

-5 5 -1 279 500.21 -1 394 758.01

Table 7: IRS portfolio value change

ε1 ε2 Exactcalib1 Exactcalib2

-5 -5 -50483.9 59015.65

-1.5 -1.5 -14589.1 18517.18

0.5 0.5 5000.355 -5985.92

2 2 19265.68 -25058.3

3.5 3.5 33173.12 -44756.1

5 5 46729.64 -65107.6

-5 5 69103.05 87438.69

-2 2 28830.87 36707.72

0 0 164.49 237.21

0.5 -0.5 -7248.31 -9237.42

2 -2 -30113.2 -38566.9

5 -5 -78877.9 -101598
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Table 8: IRS Sensitivities using Set calibration 1

S1 S2 S3 S5 S6•103 S7•105 S12•1013
78065.42 -183.25 1.82 0.00 0.00 0.00 0.00

-150709.95 1999.40 -14.94 0.00 0.01 0.00 0.00

-3196.32 53.27 0.01 -0.05 0.04 0.00

-60.88 -0.02 0.21 -0.21 0.00

0.03 -0.53 0.70 -0.01

-0.02 0.72 -1.41 0.03

-0.41 1.59 -0.12

-0.77 0.34

-0.72

1.08

-1.09

0.67

-0.19

Table 9: IRS Sensitivities using Set calibration 2

S1 S2 S3 S5 S6•103 S7•105 S12•1012
205647.24 -5486.29 135.57 0.08 -2.04 5.05 -0.47

-39654.64 2200.41 -81.76 -0.08 2.46 -7.11 1.14

-220.33 16.44 0.03 -1.24 4.281 -1.26

-1.10 -0.01 0.33 -1.43 0.84

0.00 -0.05 0.29 -0.38

0.00 0.00 -0.033 0.12

0.00 0.00 -0.03

0.00 0.00

0.00

0.00

0.00

0.00

0.00
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Table 10: IRS Portfolio Sensitivities using Set calibration 1

S1 S2 S3 S5•102 S6•104 S7•105 S12•1013
2576.80 -54.33 0.72 0.01 -0.01 0.00 0.00

-12308.38 121.99 -4.6 -0.12 0.17 -0.02 0.00

-231.39 7.13 0.50 -0.91 0.15 -0.01

-5.37 -1.03 2.56 -0.54 0.06

1.01 -4.02 1.14 -0.31

-0.40 3.26 -1.45 1.11

-1.08 1.00 -2.85

-0.29 5.38

-7.38

7.17

-4.68

1.84

-0.33

Table 11: IRS Portfolio Sensitivities using Set calibration 2

S1 S2 S3 S5•102 S6•104 S7•105 S12•1012
15723.55 -411.26 14.51 2.16 -8.06 2.94 -1.59

-3234.92 162.25 -8.27 -2.04 9.19 -3.93 3.66

-16.17 1.58 0.77 -4.36 2.24 -3.86

-0.00 -0.15 1.11 -0.71 2.46

0.01 -0.16 0.14 -1.06

0.00 0.01 -0.02 0.33

0.00 0.00 -0.07

0.00 0.01

0.00

0.00

0.00

0.00

0.00
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Table 12: Error approximation order for IRS using Set Calibration1

ε1 ε2 Er1 Er2 Er6•104 Er9•109 Er12•109
-5 -5 -17691.68 -439.61 -0.11 1.11 1.11

0.5 0.5 -172.09 0.43 0.00 0.33 0.33

2 2 -2732.88 27.45 0.00 -0.25 -0.25

5 5 -16827.53 424.54 0.11 -1.05 -1.05

-5 5 -64591.12 2645.85 7.22 -3.73 -1.86

-2 2 -10585.49 172.43 0.01 1.16 1.16

0 0 0 0 0 0 0

2 -2 -10934.61 -176.69 -0.01 0.35 0.35

5 -5 -70049.57 -2812.60 -7.44 -1.86 0.00

Table 13: Error approximation order for IRS using Set Calibration2

ε1 ε2 Er1 Er2 Er6•103 Er9•108 Er12•109
-5 -5 -42421.87 1405.78 0.16 -0.07 -0.47

0.5 0.5 -439.72 -1.44 0.00 -0.06 -0.58

2 2 -7105.54 -93.11 0.00 0.08 0.76

5 5 -45304.39 -1476.74 -0.17 -0.12 -0.93

-2 2 -15505.48 308.58 0.00 -0.01 -0.06

0 0 0 0 0 0 0

0.5 -0.5 -993.29 -4.91 0.00 0.07 0.67

2.5 -2.5 -25332.58 -623.11 -0.02 0.01 0.12

5 -5 -103917.41 -5079.55 -2.87 -1.28 0.23
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Table 14: Error approximation order of the IRS portfolio using Set
Calibration 1

ε1 ε2 Er1 Er2 Er6•103 Er9•108 Er12•109
-5 -5 -2086.08 -45.15 0.00 -0.01 -0.04

-1.5 -1.5 -184.89 -1.21 0.00 -0.01 -0.09

2 2 -323.72 2.83 0.00 -0.01 -0.10

5 5 -1997.12 43.81 0.00 -0.02 -0.17

-5 5 -4682.55 349.70 0.69 -0.64 -0.18

-2 2 -782.07 23.09 0.00 0.05 0.52

0 0 0 0 0 0 0

0.5 -0.5 -50.69 -0.37 0.00 -0.01 -0.09

2 -2 -829.26 -24.10 0.00 0.02 0.15

5 -5 -5421.31 -389.06 -0.73 -0.65 -0.14

Table 15: Error approximation order of the IRS portfolio using Set
Calibration 2

ε1 ε2 Er1 Er2 Er6•103 Er9•108 Er12•109
-5 -5 -3123.68 153.21 0.10 -0.06 -0.13

-1.5 -1.5 -290.67 4.25 0.00 0.02 0.18

2 2 -534.66 -10.36 0.00 -0.01 -0.10

3.5 3.5 -1661.87 -56.19 -0.01 0.01 0.08

5 5 -3442.70 -165.81 -0.11 -0.07 -0.30

-5 5 -6811.02 476.85 1.50 -2.00 -0.04

-2 2 -1134.49 31.57 0.00 -0.02 -0.19

0 0 0 0 0 0 0

0.5 -0.5 -73.39 -0.51 0.00 -0.02 -0.16

2 -2 -1199.11 -33.05 0.00 0.00 -0.03

5 -5 -7822.94 -535.07 -1.58 -2.07 0.11
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