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Abstract: Let ηr,n be a sequence of independent random variables, which is
identically distributed and is defined over common probability space (Ω,F ,A)
for a continuous distribution function F . Let ηr,n denote the rth upper order
statistic between (Xn−an+1,Xn−an+2, ...,Xn), for n ≥ 1 with sequence (an) of
integers, which is non-decreasing for 0 ≤ an ≤ n. In this paper, some forms of
iterated logarithm law for ηr,n are obtained.
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1. Introduction

Let (Xn) be a sequence of random variables (r.vs) with independent identically
distributed (i.i.d) terms defined over common probability space (Ω,F ,A), and
the common distribution (d.f) F be continuous. Let us represent r(F ) as right
extremity of F . Observe that if for all real x, F (x) < 1, then r(f) = ∞.
On the same space, define a sequence (Un) of uniform (0, 1) r.vs. If (Mr,n)
denotes the rth largest amongX1,X2, ...,Xn andM∗

r,n denotes the largest among
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U1, U2, ..., Un, then (Mr,n) and M∗

r,n are called the upper order statistic among
X1,X2, ...,Xn and the upper order statistic of U1, U2, ..., Un, respectively.

Consider a sequence of integers {an} which is non-decreasing, for 0 < an ≤ n
and let ηr,n denote the largest among (Xn−an+1,Xn−an+2, ...,Xn), and η∗r,n
denote the rth largest among (Un−an+1, Un−an+2, ..., Un). Then, ηr,n is the
rth upper order statistic among (X1,X2, ...,Xn) and η∗r,n the rth upper order

statistics of (Un−an+1, Un−an+2, ..., Un) and ηr,n may be called the rth moving
maxima.

Through this paper, we assume {an} is non-decreasing and an/n ∼ bn,
with bn is non-decreasing as smooth condition. Moreover, we assume that
an/ log n → ∞ as n → ∞. Also i.o and a.s mean infinitely often and almost
surely. For any λ > 0, [λ] stands for the greatest integer less than or equal to λ.
With suffix or without, we represent constants N (integer) and C as positive.

Barndorff-Nielson [1] established

lim sup
n−→∞

n(1−M∗

1,n)

log log n
= 1, a.s. (1)

The result in (1) is generalized by Rothman-Russo [2] with the conditions on
(an) for certain classes, to moving maxima η∗1,r. Using the smoothness condi-
tions on (an) stated above, Vasudeva [9] has observed that

lim sup
n−→∞

n(1− η∗1,n)

βn
= 1, a.s. (2)

for βn = log n
an

+ log log n.

Bahram and Benchikh [3] established that

lim sup
n−→∞

n(1− η∗1,n)

βn(α)
= 1, a.s., (3)

where βn(α) = log n
an

+ (1− α) log log an + α log log n for 0 ≤ α ≤ 1.

In this paper, we establish Barndoff-Nielson’s form of the L.I.L., for ηr,n,
using the construction of Vasudeva and Moridani [4].

For our convenience, in extreme value theory C1 and C2 are represented as
two major classes. We denote L.I.L., for {ηr,n}, which is normalized properly
for d.f.s F and belongs to C1 and C2. The class C1 is for all d.f.s F with
− log F̄ = xγL(x), with x → ∞ for any constant γ > 0 and function L(x)
is a slowly varying. The distributions along Weibullian right tail (including
Normal, Exponential, Gumbel etc.) are contained in this class. Following [5],
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it is observed that distributions along Weibullian tail contain in domain for
attraction in Gumbel law, for 0 < γ < 1. Moreover, we observe that when F is
Normal (γ = 2) or Exponential (γ = 1), {Mn} converges properly normalized
to Gumbell r.v [6]. The C2 class is for all d.f.s along F̄ (x) = x−γL(x), with
x → ∞, for any constant γ > 0 and function L(x) is a slowly varying. Galambos
[6] observed that the class C2 of all d.f.s contains in the domain of attraction
of Fréchet law. For F ∈ C1, we define U(x) = − log(1 − F (x)), x > 0. Also
denoted is V as the inverse function of U(x). If U(x) = xγL(x), following [7],
it is observed that for every functions a(.), 0 6= a(x) → 0, as x → ∞,

V (x(1 + a(x)))− V (x)

a(x)V (x)
→ γ−1 as x → ∞. (4)

This follows that for x large enough, V is continuous and varying regularly
along exponent γ−1. For F ∈ C2, we define U∗(x) = 1 − F (x), x > 0. Also,
we observe that U∗(x) = x−γL(x), for any constant γ > 0 and function L is
slowly varying. Suppose that the inverse of U∗ is represented by V ∗. Note that,

V ∗(y) = y
−

1
γ l( 1

y
), 0 < y ≤ 1 with l is varying slowly. Note that the functions

U∗(.) and V ∗(.) are decreasing. Recently, Vasudeva and Srilakshminarayana [8]
established the following theorems.

Theorem 1. Let F ∈ C1. Then

lim inf
n→∞

γ(log an − log βn)

(

ηr,n
V (log an − log βn)

− 1

)

= 0 a.s.,

for βn = log n
an

+ log log n, with 0 ≤ α ≤ 1.

Theorem 2. Let F ∈ C2. Then

lim inf
n→∞

ηr,n

V ∗

(

βn

an

) = 1 a.s.,

for βn = log n
an

+ α log log n, with 0 ≤ α ≤ 1.

2. Main Results

Our main purpose in this paper is to extend the Vasudeva and Srilakshmi-
narayana’s theorem by using βn(α) = log n

an
+(1−α) log log an+α log log n for

0 ≤ α ≤ 1.
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Theorem 3. Let F ∈ C1. Then

lim inf
n→∞

γ(log an − log βn(α))

(

ηr,n
V (log an − log βn(α)

− 1

)

= 0 a.s.

Remark 2.1. Let us mention some particular cases:

1. For an = n and r = 1, η1,n coincides with the partial maxima, i.e., with
M1,n. The L.L.I. in Theorem 3, reduces to

lim inf
n→∞

γ(log n− log3 n)

(

Mr,n

V (log n− log3 n)
− 1

)

= 0 a.s.,

where log3 = log log log n.

2. If α = 1, we have Theorem 1.

3. If α = 0, we also have

lim inf
n→∞

(log an − log βn(0))

(

ηr,n
V (log an − log βn(0))

− 1

)

= 0 a.s.,

where βn(0) = log n
an

+ log log an.

Theorem 4. Let F ∈ C2. Then

lim inf
n→∞

ηr,n

V ∗

(

βn(α)
an

) = 1 a.s.

Remark 2.2. 1. For an = n, the above theorem gives:

lim inf
n→∞

Mr,n

V ∗

(

log logn
n

) = 1 a.s.

2. If α = 1, we have Theorem 2.

3. If α = 0, Theorem 4 also implies the following result

lim inf
n→∞

ηr,n

V ∗

(

βn(0)
an

) = 1 a.s.
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We need two lemmas to prove our results. We first present the following
Borel-Cantelli lemma, which is presented by Barndorff-Nielson [1].

Lemma 2.1. (See [1]) Let {An} be a sequence of events defined over a

probability space such that P (An) → 0 as n → ∞ and
∑

∞

n=1 P (An ∩Ac
n+1) <

∞. Then, P (Ani.0.) = 0.

The following lemma is crucial from the context of this paper.

Lemma 2.2.

lim sup
n−→∞

an(1− η∗r,n)

βn(α)
= 1 a.s.,

for βn(α) = log
n

an
+ (1− α) log2 an + α log2 n with 0 ≤ α ≤ 1.

Proof of Lemma 2.2. Equivalently, we show that for any given ε ∈ (0, 1),

P

(

an(1− η∗r,n)

βn(α)
> 1 + ε i.o

)

= 0, (5)

and

P

(

an(1− η∗r,n)

βn(α)
> 1− ε i.o

)

= 1. (6)

We have:

P

(

an(1− η∗r,n)

βn(α)
> 1 + ε

)

= P

(

η∗r,n < 1−
βn(α)(1 + ε)

an

)

=
r
∑

j=0

(

an
j

)

(

(1 + ε)
βn(α)

an

)j (

1− (1 + ε)
βn(α)

an

)an−j

.

From the fact that an
logn → ∞, note that βn(α)

an
→ 0 and

(

1− (1 + ε)βn(α)
an

)an−j

∼ e−(1+ε)βn(α) as n → ∞, 0 ≤ j ≤ r. Consequently,

for all n ≥ N1, and N1 large enough,

r
∑

j=0

(

an
j

)

(

(1 + ε)
βn(α)

an

)j (

1− (1 + ε)
βn(α)

an

)an−j

≤ 2βr
n(α)e

−(1+ε)βn(α).
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In turn, for all n ≥ N1, we have

P

(

an(1− η∗r,n)

βn(α)
> 1 + ε

)

≤ 2βr
n(α)e

−(1+ε)βn(α)

=
2

(

log

(

n(log n)α(log an)(1−α)

an

))r

(

n(log n)α(log an)(1−α)

an

)1+ε .

Since

(

log

(

n(log n)α(log an)(1−α)

an

))r

(

n(log n)α(log an)(1−α)

an

) ε
2

→ 0 as n → ∞, we may get aN2(≥ N1)

such that for all n ≥ N2,

P

(

an(1− η∗r,n)

βn(α)
> 1 + ε

)

≤
(

an
n(logn)α(log an)(1−α)

)1+ ε
2

=
(

an
n

(

( logn
log an

)1−α 1
logn

))1+ ε
2

≤
(

an
n

(

( logn
log an

) 1
log n

))1+ ε
2

=
(

an
n

(

( logn
log an

) 1
log n

))1+ ε
2

=
(

an
n log an

)1+ ε
2
.

(7)

Define An =

(

an(1− η∗r,n)

βn(α)
> 1 + ε

)

. Remark that P (An) → 0 as n → ∞.

Observe that

An∩Ac
n+1⊆









η∗r,n<1−
(1 + ε)βn(α)

an









∩









Xn+1>1−
(1 + ε)βn+1(α)

an+1









.

Hence, for all n ≥ N2,

P (An ∩Ac
n+1) = P (An)(1 + ε)

βn+1(α)

an+1

≤

(

an
n log an

)(1+ ε
2
)

(1 + ε)
βn+1(α)

an+1

≤

(

an
n log an

)(1+ ε
2
)

(1 + ε)
βn+1

an+1
,

since
an

an+1
≤ 1. Let un = n logn

an
. Using (n+ 1) log(n+ 1) ≤ 2n log(n) for large

n, we may get a N3 and a c1 with βn+1 ≤ c1βn for all n ≥ N3. Consequently,
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for n ≥ N3:

P (An ∩Ac
n+1) ≤ c1

(

an
n log an

)
ε
4 βn

n(log an)
1+ ε

4

≤ c1

(

an
n log an

) ε
4 log un

n(log an)
1+ ε

4

= c1

(

an
n log n

) ε
4
(

log n

log an

) ε
4 log un

n(log an)
1+ ε

4

= c1
log un

u
ε
4
n

(

log n

log an

)
ε
4 1

n(log an)
1+ ε

4

= c1
log un

u
ε
4
n

(

log n

log an

)

1

n(log an)
1+ ε

4

.

Using
log un

u
ε
4
n

−→ 0 as n −→ ∞, one can find a N4 such that for all n ≥ N4,

P (An ∩Ac
n+1) ≤ c3

(

log n

log an

)

1

n(log an)
1+ ε

4

.

Let an = [np], 0 < p < 1, one can find a N5 such that for all n ≥ N5,

P (An ∩Ac
n+1) ≤ c4

1

n(log n)1+
ε
4

.

Consequently,
∑

∞

n=1 P (An ∩Ac
n+1) < ∞. Recalling P (An) → 0 as n → ∞ and

applying Lemma 2.1, (5) is established. We now prove (6). From Bahram and
Benchikh [3], we have

P

(

an(1− η∗1,n)

βn(α)
> 1− ε

)

= 0. (8)

Since η∗r,n ≤ η∗1,n, one can trivially see that

an(1− ηr,n)

βn(α)
>

an(1− η∗1,n)

βn(α)
.

In turn, (8) implies (6).
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3. Proofs of the Theorems

Given that (Xn) is a sequence of i.i.d. r.vs. with a common continuous d.f.
F define Un = F (Xn), n ≥ 1, and observe that {Un} is a sequence of i.i.d.
Uniform (0, 1) r.vs. Recall that ηr,n is the rth maxima of Xn−an+1, ...,Xn and
that η∗r,n the rth maxima of Un−an+1, ..., Un. Note the relation η∗r,n = F (ηr,n).

Proof of Theorem 3. We show that for 0 < ε < 1/2 ,

P

(

γ(log an − log βn(α))

(

ηr,n
V (log an − log βn(α))

− 1

)

< log
1

1 + ε
2

i.o.

)

= 0 (9)

and

P

(

γ(log an − log βn(α))

(

ηr,n
V (log an − log βn(α)

− 1

)

< log
1

1− ε
2

i.o.

)

= 1. (10)

From Lemma 2.1 we have:

P

(

1− η∗r,n >
βn(α)

an
(1 + ε) i.o.

)

= 0 (11)

and

P

(

1− η∗r,n >
βn(α)

an
(1− ε) i.o.

)

= 1. (12)

Using the same arguments as in Vasudeva and Moridani [4], we have

1− η∗r,n >
βn(α)

an
(1 + ε)

⇔ − log(1− F (ηr,n)) < − log

(

βn(α)

an
(1 + ε)

)

⇔ U(ηr,n) < − log

(

βn(α)

an
(1 + ε)

)
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⇔ ηr,n < V

(

− log(
βn(α)

an
) + log(1 + ε)−1

)

⇔ ηr,n < V

(

(logan − log βn(α))

(

1 +
log(1 + ε)−1

logan − log βn(α)

))

⇔ ηr,n − V (log(an/βn(α)))

< V

(

(log(an/βn(α))))

(

1 +
log(1 + ε)−1

logan − log βn(α)

))

− V (log(an/βn(α))).

Using equation (4) one can find a δ > 0 such that for all n large,

ηr,n − V (log(an − log βn(α)))

< γ−1(1− δ)
log(1 + ε)−1

logan − log βn(α)
V (logan − log βn(α))

⇔

(

ηr,n
V (logan − log βn(α))

− 1

)

< γ−1(1− δ)
log(1 + ε)−1

logan − log βn(α)
.

Choose δ such that (1− δ) log(1− ε)−1 = log(1+ ε
2)

−1 for n large. Then we
have

1− η∗r,n >
βn(α)

an
(1 + ε)

⇔

(

ηr,n
V (logan − log βn(α))

− 1

)

< γ−1 log(1 + ε
2)

−1

logan − log βn(α)
,

or γ(logan − log βn(α))

(

ηr,n
V (logan − log βn(α))

− 1

)

< log(1 +
ε

2
)−1.

From (11), we hence have (9). Proceeding on similar lines one can show (10)
from (12). The details are omitted.

Proof of Theorem 4. From Lemma 2.2, we have

P

(

1− η∗r,n >
βn(α)

an
(1 + ε) i.o.)

)

= 0 (13)

and

P

(

1− η∗r,n >
βn(α)

an
(1− ε) i.o.)

)

= 1. (14)

Using the relations

η∗r,n = F (ηr,n) and U∗(x) = 1− F (x) = x−γL(x),
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where L is slowly varying, from (13) we get

P

(

U∗(ηr,n) >
βn(α)

an
(1 + ε)i.o.)

)

= 0. (15)

Note that

U∗(ηr,n) >
βn(α)

an
(1 + ε) ⇔ V ∗(U∗(ηr,n)) < V ∗

(

βn(α)

an
(1 + ε)

)

⇔ ηr,n < a
1
γ
n (βn(α)(1 + ε))−

1
γ l

(

an
(βn(α)(1 + ε)

)

⇔ ηr,n <

(

βn(α)

an

)

−
1
γ

l

(

1

1 + ε

1
βn(α)
an

)

(1 + ε)−
1
γ

⇔ ηr,n < V ∗

(

βn(α)

an

)

(1 + ε)
−

1
γ .

Hence we get

P





ηr,n

V ∗

(

βn(α)
an

) <
1

(1 + ε)
1
γ

i.o.



 = 0.

Similarly from (14) we get

P





ηr,n

V ∗

(

βn(α)
an

) >
1

(1− ε)
1
γ

i.o.



 = 1.

Hence the theorem is proved.
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