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Abstract: Let 7., be a sequence of independent random variables, which is
identically distributed and is defined over common probability space (€2, F,.A)
for a continuous distribution function F. Let 7, , denote the r* upper order
statistic between (X,—a, +1, Xn—a, +2, -, Xn), for n > 1 with sequence (a,) of
integers, which is non-decreasing for 0 < a,, < n. In this paper, some forms of
iterated logarithm law for 7, , are obtained.
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1. Introduction

Let (X,,) be a sequence of random variables (r.vs) with independent identically
distributed (i.i.d) terms defined over common probability space (€2, F,.A), and
the common distribution (d.f) F' be continuous. Let us represent r(F’) as right
extremity of F. Observe that if for all real =, F'(z) < 1, then r(f) = oo.
On the same space, define a sequence (U,,) of uniform (0,1) r.vs. If (M,,)
denotes the " largest among X1, Xo, ..., X, and My, denotes the largest among
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Uy, Us, ..., Uy, then (M,,,) and My, are called the upper order statistic among
X1, Xo, ..., X,, and the upper order statistic of Uy, Us, ..., U,,, respectively.

Consider a sequence of integers {a,, } which is non-decreasing, for 0 < a,, <n
and let 7, denote the largest among (X, —a,+1, Xn—a,+2, - Xn), and 0,
denote the 7t largest among (Un—q,+1, Un—ap+2,---s Un). Then, n,, is the
r* upper order statistic among (X1, Xo,...,X,,) and My the r* upper order
statistics of (Up—a,+1, Un—an+2,---»Un) and n,., may be called the " moving
maxima.

Through this paper, we assume {a,} is non-decreasing and a,/n ~ by,
with b,, is non-decreasing as smooth condition. Moreover, we assume that
ap/logn — oo as n — oo. Also i.0 and a.s mean infinitely often and almost
surely. For any A > 0, [A] stands for the greatest integer less than or equal to A.
With suffix or without, we represent constants N (integer) and C' as positive.

Barndorff-Nielson [1] established

%
lim sup w =1, as. (1)
n—soo loglogn
The result in (1) is generalized by Rothman-Russo [2] with the conditions on
(an) for certain classes, to moving maxima 77 ,.. Using the smoothness condi-
tions on (a,) stated above, Vasudeva [9] has observed that

n(l—nj
lim sup w =1, a.s. (2)
n—-ao0 577,
for B, = log = + loglog n.
Bahram and Benchikh [3] established that
n(l—nj
limsupM =1, a.s., (3)

n—so00 ,Bn(Oé)
where ,(a) = log o+ (1 — «)logloga, + aloglogn for 0 < a < 1.

In this paper, we establish Barndoff-Nielson’s form of the L.I.L., for 7, ,,
using the construction of Vasudeva and Moridani [4].

For our convenience, in extreme value theory C1 and Cs are represented as
two major classes. We denote L.I.L., for {n,,}, which is normalized properly
for d.f.s F' and belongs to C7 and Cs. The class (' is for all d.f.s F' with
—log FF = 27 L(z), with x — oo for any constant v > 0 and function L(x)
is a slowly varying. The distributions along Weibullian right tail (including
Normal, Exponential, Gumbel etc.) are contained in this class. Following [5],
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it is observed that distributions along Weibullian tail contain in domain for
attraction in Gumbel law, for 0 < v < 1. Moreover, we observe that when F is
Normal (y = 2) or Exponential (y = 1), {M,} converges properly normalized
to Gumbell r.v [6]. The Cy class is for all d.f.s along F(z) = 27 7L(z), with
x — 00, for any constant v > 0 and function L(z) is a slowly varying. Galambos
[6] observed that the class Cy of all d.f.s contains in the domain of attraction
of Fréchet law. For F' € Cy, we define U(x) = —log(1 — F(z)), = > 0. Also
denoted is V' as the inverse function of U(x). If U(x) = 27 L(x), following [7],
it is observed that for every functions a(.), 0 # a(x) — 0, as * — o0,

Vie(1 +a(x) = V(=) = 4
o)V () — as T — 00. (4)

This follows that for z large enough, V' is continuous and varying regularly
along exponent v~ 1. For F' € Cy, we define U*(z) = 1 — F(z), z > 0. Also,
we observe that U*(x) = 77 L(x), for any constant v > 0 and function L is
slowly varying. Suppose that the inverse of U* is represented by V*. Note that,
V*(y) = yiil(i), 0 < y <1 with [ is varying slowly. Note that the functions
U*(.) and V*(.) are decreasing. Recently, Vasudeva and Srilakshminarayana [8]
established the following theorems.

Theorem 1. Let FF € C. Then

. . n’r‘n
lim inf v(log a,, — log B, , 1) =0 5
im inf y(log a,, —log 8 )(V(logan—logﬁn) ) -8

for B, =log ;= +loglogn, with 0 < o < 1.
Theorem 2. Let ' € Cy. Then

lim inf L’Z
n—oo n
v ()

for B, = 10g% + aloglogn, with 0 < o < 1.

=1 a.s.,

2. Main Results

Our main purpose in this paper is to extend the Vasudeva and Srilakshmi-
narayana’s theorem by using 5, («) = log o+ (1 —a)loglogay, + aloglog n for
0<a<l.
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Theorem 3. Let I € C7. Then

.. Tlrn
n n 7 -1)= o
hnrggf v(log a,, — log B, () (V(log o — log Bu(a) > 0 a.s

Remark 2.1. Let us mention some particular cases:

1. For a, =n and r = 1, 11, coincides with the partial maxima, i.e., with
M; ;,. The L.L.I. in Theorem 3, reduces to

. Mr,n o
hnrggf v(logn —logs n) (V(logn " Tomn) 1> =0 a.s.,

where logs = log loglog n.

2. If « = 1, we have Theorem 1.

3. If a =0, we also have

. . T]TTZ
lim inf (log a,, — log 8, : —l)=0 as,
im inf(log an —log £n(0)) (vaog an —10g An(0)) ) “

where 3,,(0) = log ;- + loglog a;.
Theorem 4. Let ' € Cy. Then

lim inf Irin

a

=1 a.s.

Remark 2.2. 1. For a, = n, the above theorem gives:

rn

lim inf =1 a.s.

— « ( logl
n—oo 1/ ( og ;gn)
2. If « = 1, we have Theorem 2.
3. If a =0, Theorem 4 also implies the following result

lim inf Irin

im in @ =1 a.s.

Qan



SOME FORMS FOR. 7 MOVING MAXIMA OF... 429

We need two lemmas to prove our results. We first present the following
Borel-Cantelli lemma, which is presented by Barndorff-Nielson [1].

Lemma 2.1. (See [1]) Let {A,} be a sequence of events defined over a
probability space such that P(A,) — 0 as n— ooand ) > P(A,NAS )<
0o. Then, P(Ayi.0.) = 0.

The following lemma is crucial from the context of this paper.

Lemma 2.2.

. a’n(l - n:,n) .
limsup ————=1 a.s.,

n—s00 ,Bn(Oé)
for B, (a) = log =y (1 —a)logyan, + alogyn with 0 < a < 1.
a

n

Proof of Lemma 2.2. Equivalently, we show that for any given € € (0, 1),

an(l - n;k,n) . .
P <W >1+4¢€ Z.O) = 0, (5)
and a ‘)
an\l = Mrn . . _
P (W >1—¢ 2.0> 1. (6)
We have:

P( o 77’"” >1+5>:P<n;*7n<1—7ﬁn(a)(l+€)>

Qn

- £ ron) (ot

J=

From the fact that Has — o0, note that ﬁfl—ia) — 0 and

logn

(1 (1+ )Bn(a)> ~ e~ (14)Bn(@) a5 n — 00, 0 < j < r. Consequently,
for all n > Ny, and Ny large enough,

> () (a +e>5’;i“>)j (-0 +€)5r;(a))a"_j

j=0 "
< 25;((1)6—(1%)671(@)'
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In turn, for all n > Ny, we have

nl(l — ;“kn
p(w>1+5> < 267 (a)e” (1+€)Bn(a)

B ()
2 (log("(log 7)) (log an)1 =) ))T
— an

(n(log n)(log an)(l_a) ) 1+e

(bg(n(logn)“(logaw(l a>))
£ — 0 as

n(log n)® (log ap) (1= )

Since n — 00, we may get a No(> Nyp)

an

such that for all n > N,

P (7%(;"?07);”) S 14 5) <

[0}

1+
an
n(logn)%(log an)1—2) )

an(l - n:,n)

Define A,, = ( Bale)

Observe that

> 1 —|—€>. Remark that P(A,) — 0 as n — 0.

(1+ e)ﬁnm))m(xnml_ (1+ e)ﬁnmm)

AnNAL 1 C Ny <l—
29

An+1
Hence, for all n > No,

P(ANAG,) = P(A”)(HE)%

( o )(H;) (1 4 &) Prr1(2)

nlogan An+1

(1+5)
( an ) 2(1+€)ﬁn+1’

nloga, Gn+1

<1. Let u, = ”log” Using (n + 1)log(n + 1) < 2nlog(n) for large

since
An+1
n, we may get a N3 and a ¢; w1th Bn+1 < 18, for all n > N3. Consequently,
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for n > Nj:

| o

B
_ n(logan)

P(A,NAS,,) < ( an )

nlog a, 1+

< o ( an >4 log uy, 5
nlog ay, '~ n(log an)aHz

B G, 7 (logn \1 log uy,

- A <nlogn> <10gE an> n(log an)1+%

B logu, [ logn \* 1

= u% (logan> n(logan)pri

log u, ( logn > 1
= Cl z = -
wl  \1ogan /) n(loga,)'*i
log uy,

Using —=— — 0 as n — o0, one can find a N4 such that for all n > Ny,

U

10gn> 1
P(A, N AS <c =
(A0 ) <o () s

Let a, = [n?], 0 < p < 1, one can find a N5 such that for all n > N5,

Consequently, Y >, P(A, N AS ;) < co. Recalling P(A,) — 0 as n — oo and
applying Lemma 2.1, (5) is established. We now prove (6). From Bahram and
Benchikh [3], we have

P<%>1—5>—0. (8)

Since n,,, < 17 ,,, one can trivially see that

an(l - nr,n) an(l - nin)
Bule) ~ Bula)

In turn, (8) implies (6).
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3. Proofs of the Theorems

Given that (X)) is a sequence of i.i.d. r.vs. with a common continuous d.f.
F define U,, = F(X,), n > 1, and observe that {U,} is a sequence of i.i.d.
Uniform (0,1) r.vs. Recall that 7,,, is the 7'* maxima of X,,_4, 11, ..., X, and
that 7}, the r maxima of U,—q, 11, ..., Un. Note the relation nj,, = F(n,.n).

Proof of Theorem 3. We show that for 0 < e < 1/2,

P (vtog s 10850 (g Shomay )

and

" (’V (log an, —log fn(a)) (V(log annfqog Bala) 1>

1
< log T i.o.) =1 (10)
2
From Lemma 2.1 we have:
P(l—n:fn>5n—@(1+€) ’i.o.) =0 (11)
9 an
and
P (1 > Bule) 1 _ oy 20) = 1. (12)
n

Using the same arguments as in Vasudeva and Moridani [4], we have

Bn(a)(l +¢)

I n;k,n >

n

& —log(l = F(nrn)) < —log <@(1 + €)>

o Ulnpn) < —log <B7;(O‘) (1+ s)>n

n
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& Ny <V <— log(ﬁr;—m)) + log(1 + 5)_1>

n

o -1
SNy <V ((logan — log Bn(a)) (1 + loglaf(_l Eg;ﬂ(@))
<~ Mrn — V(log(an/Bn(a)))

<v<<zog<an/ﬁn<a>>>> <1+ sl e ))

logay, — log B ()
— V(log(an/Bn(a)))-
Using equation (4) one can find a § > 0 such that for all n large,

Nrm — V(log(an — log Bn(a)))
-1 log(1+¢)”!
<7 (1-9) loga,, —log B (a)

N B L
(:)(V(logan—logﬁn(a)) 1><’Y (1-9)

Choose § such that (1—4)log(1—e)~! =log(1+5)~" for n large. Then we
have

V(logay,, — log Bn())

log(1+4¢)~!
loga, —log fBn(a)

PN Mr.n 1) <At log(l + %)_1 ’
V(loga, — log B, () loga,, —log B ()

1- n:,n >

n

Nron
l n _1 n .
or y(logan —log By () (V(logan “log B,

From (11), we hence have (9). Proceeding on similar lines one can show (10)
from (12). The details are omitted.

1) o1 St
@) 1) < log(1+ 2)

Proof of Theorem 4. From Lemma 2.2, we have

P (1 — N > ﬁf;(o‘) (1+4¢) i.o.)> =0 (13)
and
P <1 — Ty > %na)(l —¢) i.o.)) =1. (14)

Using the relations

n;*yn =F(n,) and U'(z)=1-F(x) =z "L(x),
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where L is slowly varying, from (13) we get

Bn(a)

Gn,

P (U*(m,n) > 1+ 5)1’.0.)) — 0. (15)

Note that

14+¢e) e VU () < V" <ﬁ”—(a)(1 + 5))

Qn

Bn(c)

n

U*(0yn) >

1

S N < an (Bn(a)(1+ 5))7% (m)

1
Bn(a)\ 1 1 _1
s ( an N1emm |

S Ny <V <M> (1+e) 7.

Aan,

Hence we get
Nr,n - 1 :
v (5n(a)> (1+e)v

an

P 7.0. | =0.

Similarly from (14) we get

1
P i _ o | =1
ve(2e) T (1-e7
Hence the theorem is proved.
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