International Journal of Applied Mathematics

Volume 30 No. 5 2017, 419-423

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v30i5.6

A UNIFORM ABSOLUTE CONTINUITY OF INTEGRAL RESULT IN $L^{p(x)}$

Yasin Kaya

Department of Mathematics
Faculty of Education
Dicle University
Divarbakır – 21280, TURKEY

Abstract: In this paper we prove a uniform absolute continuity of integral result in variable exponent Lebesgue space. The idea of our proof is similar to that for the classical Lebesgue space.

AMS Subject Classification: 26A42, 28A20

Key Words: variable exponent Lebesgue spaces, uniform absolute continuity of integral, modular

1. Introduction

The field of variable exponent Lebesgue and Sobolev spaces is in active development at present, and has found many important applications (see for example, the books [1] and [2], and the references there). One of the reasons for the huge development of the theory of classical Lebesgue and Sobolev spaces L^p and $W^{k,p}$ is the description of many phenomena arising in applied sciences. For instance, many materials can be modeled with sufficient accuracy using the function spaces L^p and $W^{k,p}$, where p is a fixed constant. For some nonhomogeneous materials, for instance electrorheological fluids, this approach is not adequate, but rather the exponent p should be allowed to vary. This leads us to the study of variable exponent Lebesgue and Sobolev spaces $L^{p(x)}$ and $W^{k,p(x)}$, respectively, where p is a real-valued function.

Received: September 19, 2017 (c) 2017 Academic Publications

420 Y. Kaya

Spaces of variable exponent can be traced back to Orlicz [5], but the current investigation goes back to a paper Kováčik and Rákosník [3]. The basic properties of these spaces can be found in the paper [3]; many of these properties were independently established by Fan and Zhao [4].

2. Variable Exponent Lebesgue Spaces

By Ω we denote a non empty subset of \mathbb{R}^n . Let $p:\Omega \to [1,\infty)$ be a measurable function, called a variable exponent on Ω and denote $p^+ = \operatorname{ess\ sup\ } p(x)$ and $p^- = \operatorname{ess\ inf\ } p(x)$. We define the variable exponent Lebesgue $L^{p(x)}(\Omega)$ space to consist of all measurable functions $u:\Omega \to \mathbb{R}$ for which the modular

$$\varrho_{p(.)}(u) = \int_{\Omega} |u(x)|^{p(x)} dx$$

is finite. We define the Luxemburg norm on this space by

$$||u||_{L^{p(x)}(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} dx \le 1 \right\}.$$

Equipped with this norm, $L^{p(x)}$ is a Banach space. When p(x) = p is a constant then $L^{p(x)}(\Omega)$ coincides with the classical Lebesgue space $L^{p}(\Omega)$. One important property of $L^{p(x)}(\Omega)$ is that

$$\int_{\Omega} |u_j(x)|^{p(x)} dx \to 0$$

if and only if $\|u_j(x)\|_{L^{p(x)}(\Omega)} \to 0$, so that the norm and modular topologies are the same. In a classical Lebesgue space the relation between the norm and modular $\varrho_p(u)$ is obtained directly: $\|u\|_{L^{p}(\Omega)} = (\varrho_p(u))^{\frac{1}{p}}$. However, in the variable exponent Lebesgue space $L^{p(x)}(\Omega)$ the relation is given by the following inequalities:

If
$$0 < ||u||_{L^{p(x)}(\Omega)} \le 1$$
, then

$$(\varrho_{p(.)}(u))^{\frac{1}{p^{-}}} \le ||u||_{L^{p(x)}(\Omega)} \le (\varrho_{p(.)}(u))^{\frac{1}{p^{+}}}.$$

If $||u||_{L^{p(x)}(\Omega)} > 1$, then

$$\left(\varrho_{p(.)}(u)\right)^{\frac{1}{p^{+}}} \le ||u||_{L^{p(x)}(\Omega)} \le \left(\varrho_{p(.)}(u)\right)^{\frac{1}{p^{-}}}.$$

The Hölder inequality, i.e.

$$\left\|u\left(x\right)v\left(x\right)\right\|_{L^{1}\left(\Omega\right)}\leq\ 2\left\|u\left(x\right)\right\|_{L^{p\left(x\right)}\left(\Omega\right)}\ \left\|v\left(x\right)\right\|_{L^{p'\left(x\right)}\left(\Omega\right)}$$

holds. If $0 < \max(\Omega) < \infty$ and $p(x) \le q(x)$ in Ω , then there exists an imbedding $L^{q(x)}(\Omega) \hookrightarrow L^{p(x)}(\Omega)$ whose norm does not exceed $\max(\Omega) + 1$. $L^{p(x)}(\Omega)$ are reflexive if and only if $1 < p^- < p^+ < \infty$, smooth functions are dense if $p^+ < \infty$. Some basic properties of the classic Lebesgue spaces are not transferred to the variable exponent case. For example, the variable exponent Lebesgue space is no longer translation invariant. As a consequence, Young's theorem and the so called mean continuity property fail in general. Many other basic results were proven in [3].

The proof of the following theorem follows the pattern in the classical Lebesgue spaces.

Theorem 1. Let $q(x) \in (0,\infty)$, $\{u_{\alpha} : \alpha \in A\} \subset L^{p(x)}(\Omega)$ such that $\sup_{\alpha \in A} \int_{\Omega} |u_{\alpha}(x)|^{p(x)} dx = c < \infty$. Let 0 < p(x) < q(x) and $q(x) - p(x) \ge \beta > 0$. Then,

$$\lim_{\theta \to \infty} \sup_{\alpha \in A} \int_{\left\{x \in \Omega: |u_{\alpha}|^{p(x)} > \theta\right\}} |u_{\alpha}(x)|^{p(x)} dx = 0.$$

ii) For every $\epsilon>0$ there exist $\delta>0$ such that for every $E\subset\Omega$ with $\operatorname{meas}(E)<\delta$ have

$$\int_{E} |u_{\alpha}(x)|^{p(x)} dx < \epsilon \quad \text{for all } \alpha \in A.$$

Proof. i) If $0 < \omega < \sigma$ then $\sigma^{p(x)} \le \omega^{p(x)-q(x)} \sigma^{q(x)}$ holds. By using this inequality in the following integral, we obtain

$$\int_{\{x \in \Omega: |u_{\alpha}|^{p(x)} > \omega^{p^{+}}\}} |u_{\alpha}(x)|^{p(x)} dx \leq \int_{\{x \in \Omega: |u_{\alpha}|^{p(x)} > \omega^{p^{+}}\}} \omega^{p(x) - q(x)} |u_{\alpha}(x)|^{q(x)} dx$$

$$= \int_{\{x \in \Omega: |u_{\alpha}|^{p(x)} > \omega^{p^{+}}\}} \frac{|u_{\alpha}(x)|^{q(x)}}{\omega^{q(x) - p(x)}} dx$$

$$\{x \in \Omega: |u_{\alpha}|^{p(x)} > \omega^{p^{+}}\}$$

422 Y. Kaya

$$\leq \int_{\Omega} \frac{|u_{\alpha}(x)|^{q(x)}}{\omega^{\beta}} dx$$

$$= \frac{1}{\omega^{\beta}} \int_{\Omega} |u_{\alpha}(x)|^{q(x)} \leq \frac{c}{\omega^{\beta}}.$$

By taking supremum we have

$$\sup_{\alpha \in A} \int_{\{x \in \Omega: |u_{\alpha}|^{p(x)} > \omega^{p^{+}}\}} |u_{\alpha}(x)|^{p(x)} dx \le \frac{c}{\omega^{\beta}}.$$

Taking limit of both sides leads to

$$\lim_{\omega \to \infty} \sup_{\alpha \in A} \int_{\left\{x \in \Omega: |u_{\alpha}|^{p(x)} > \omega^{p^{+}}\right\}} |u_{\alpha}(x)|^{p(x)} dx \le \lim_{\omega \to \infty} \frac{c}{\omega^{\beta}} = 0.$$

If we take $\theta = \omega^{p^+}$, we have

$$\lim_{\theta \to \infty} \sup_{\alpha \in A} \int_{\{x \in \Omega: |u_{\alpha}|^{p(x)} > \theta\}} |u_{\alpha}(x)|^{p(x)} dx = 0.$$

ii)

From i), for given any $\epsilon > 0$ there exist $\theta > 0$ such that

$$\lim_{\theta \to \infty} \sup_{\alpha \in A} \int_{\{x \in \Omega: |u_{\alpha}|^{p(x)} > \theta\}} |u_{\alpha}(x)|^{p(x)} dx < \frac{\epsilon}{2} \text{ for all } \alpha \in A.$$

Hence, for every $E \subset \Omega$ we have

$$\begin{split} \int\limits_{E}\left|u_{\alpha}\left(x\right)\right|^{p(x)}dx &= \int\limits_{E\cap\left\{x\in\Omega:\left|u_{\alpha}\right|^{p(x)}>\theta\right\}}\left|u_{\alpha}\left(x\right)\right|^{p(x)}dx \\ &+ \int\limits_{E\cap\left\{x\in\Omega:\left|u_{\alpha}\right|^{p(x)}\leq\theta\right\}}\left|u_{\alpha}\left(x\right)\right|^{p(x)}dx < \frac{\epsilon}{2} + \theta\left[\operatorname{meas}\left(E\right)\right]. \end{split}$$

If we take $\delta = \frac{\epsilon}{2\theta}$, then for every $E \subset \Omega$ with meas $(E) < \delta$ we have

$$\int_{E} |u_{\alpha}(x)|^{p(x)} dx < \frac{\epsilon}{2} + \theta \frac{\epsilon}{2\theta} = \epsilon.$$

References

- [1] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer Science & Business Media (2013).
- [2] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, *Lebesgue and Sobolev Spaces with Variable Exponents*, Lecture Notes in Mathematics, Vol. 2017, Springer, Berlin (2011).
- [3] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J., 41, No 4 (1991), 592-618.
- [4] X. Fan, D. Zhao, On the spaces $L^{p(x)}$ and $W^{m,p(x)}$, J. Math. Anal. Appl., **263**, No 2 (2001), 424-446.
- [5] W. Orlicz, Über konjugierte exponentenfolgen, *Studia Math.*, **3**, No 1 (1931), 200-211.