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1. Introduction

The field of variable exponent Lebesgue and Sobolev spaces is in active develop-
ment at present, and has found many important applications (see for example,
the books [1] and [2], and the references there). One of the reasons for the
huge development of the theory of classical Lebesgue and Sobolev spaces LP
and WP is the description of many phenomena arising in applied sciences.
For instance, many materials can be modeled with sufficient accuracy using the
function spaces LP and W*P, where p is a fixed constant. For some nonho-
mogeneous materials, for instance electrorheological fluids, this approach is not
adequate, but rather the exponent p should be allowed to vary. This leads us to
the study of variable exponent Lebesgue and Sobolev spaces LP®) and Wkp()
respectively, where p is a real-valued function.
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Spaces of variable exponent can be traced back to Orlicz [5], but the current
investigation goes back to a paper Kovécik and Rékosnik [3]. The basic prop-
erties of these spaces can be found in the paper [3]; many of these properties
were independently established by Fan and Zhao [4].

2. Variable Exponent Lebesgue Spaces

By €2 we denote a non empty subset of R”. Let p: Q — [1,00) be a measurable
function, called a variable exponent on 2 and denote p™ = ess sup p(z) and
p~ = ess inf p (). We define the variable exponent Lebesgue LP(*) (Q) space
to consist of all measurable functions u : 2 — R for which the modular

oy (1) = / ju ()" d
Q

is finite. We define the Luxemburg norm on this space by

p(z)
dr <1

u(z)

A

Hu”L p(@)(Q) = inf< A>0: /

Equipped with this norm, L P®) is a Banach space. When p(z) = p is a
constant then LP() (Q) coincides with the classical Lebesgue space L ().
One important property of LP(*) (Q) is that

/ u; (2)[P@ dz 0
Q
if and only if |lu; ()], »@)(q) — 0, so that the norm and modular topologies
are the same. In a classical Lebesgue space the relation between the norm
1
and modular g, (u) is obtained directly: |[u|;, »q) = (0p (u))?. However, in the

variable exponent Lebesgue space p(@) () the relation is given by the following
inequalities:
If 0 < flul () < 1, then

1

1 1
(op() () ?~ < lully sor) < (0p() (W) 77 -
If lull, o)) > 1, then

1

1
(0p() () ?™ < lully, verq) < (p() (w))?
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The Holder inequality, i.e.

lu@)v @, < 2w @)@ v @)

holds. If 0 <meas(2) < oo and p(x) < ¢(z) in Q, then there exists an
imbedding L4*) (Q) < LP®) (Q) whose norm does not exceed meas(Q) + 1.
LP@®) (Q) are reflexive if and only if 1 < p~ < p* < oo, smooth functions are
dense if p™ < 0o. Some basic properties of the classic Lebesgue spaces are not
transferred to the variable exponent case. For example, the variable exponent
Lebesgue space is no longer translation invariant. As a consequence, Young’s
theorem and the so called mean continuity property fail in general. Many other

basic results were proven in [3].

The proof of the following theorem follows the pattern in the classical
Lebesgue spaces.

Theorem 1. Let q(z) € (0,00), {uq:a € A} C LP@ (Q) such that
SUPaea [ |Ua ()P de = ¢ < 00. Let 0 < p(z) < q(z) and q(z) —p(z) >
Q
5 > 0. Then,
i)
lim sup / uq (2)[P@) dz = 0.

0—00 A
{xeﬂz\ua\p(z)>9}

ii) For every ¢ > 0 there exist § > 0 such that for every E C § with
meas(F) < 6 have

/\ua ()P dx <€ forall o€ A.
E

Proof. i) If 0 < w < o then o?®) < WP@)=1@)5a() holds. By using this
inequality in the following integral, we obtain

/ e, ()" dax < / WP@=1@) |y ()] da
{xGQ:|ua|p(x)>wp+} {IGQZ|ua|p(x)>wp+}
_ |ua ()|
- / R OEE R

{xGQ:|ua|p(x)>wp+}
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By taking supremum we have

() ¢

sup / wun ()P do < .

acA | Oé( )| O“/B
{xEQ:\uQ\p(m)>w1’+}

Taking limit of both sides leads to

lim sup / ltg ()P dz < lim )
W00 (e A w—oo Wh
{xEQ:|ua|p(m)>wP+}
If we take 0 = wp+, we have
lim sup / g ()P dx = 0.
60— o0 aEA

{xEQ:\uOé p() >9}

ii)

From i), for given any € > 0 there exist # > 0 such that

lim sup / |ug ()P dz < % for all « € A.

60— o0 aEA
{xeﬂz\ua\p(z)>0}

Hence, for every E C €2 we have

/ o ()P d = / o ()P de
E

Eﬂ{xEQ:|ua|p(x)>9}
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[ @ de < 5+ lmeas ().

Eﬂ{xEQ:\uQ \p(z)§9}

If we take § = 55, then for every I/ C Q with meas(E) < ¢ we have

p(:v)
/\u )P dr < = +020
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