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1. Introduction

The field of variable exponent Lebesgue and Sobolev spaces is in active develop-
ment at present, and has found many important applications (see for example,
the books [1] and [2], and the references there). One of the reasons for the
huge development of the theory of classical Lebesgue and Sobolev spaces Lp

and W k,p is the description of many phenomena arising in applied sciences.
For instance, many materials can be modeled with sufficient accuracy using the
function spaces Lp and W k,p, where p is a fixed constant. For some nonho-
mogeneous materials, for instance electrorheological fluids, this approach is not
adequate, but rather the exponent p should be allowed to vary. This leads us to
the study of variable exponent Lebesgue and Sobolev spaces Lp(x) and W k,p(x),
respectively, where p is a real-valued function.
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Spaces of variable exponent can be traced back to Orlicz [5], but the current
investigation goes back to a paper Kováčik and Rákosńık [3]. The basic prop-
erties of these spaces can be found in the paper [3]; many of these properties
were independently established by Fan and Zhao [4].

2. Variable Exponent Lebesgue Spaces

By Ω we denote a non empty subset of Rn. Let p : Ω → [1,∞) be a measurable
function, called a variable exponent on Ω and denote p+ = ess sup p (x) and
p− = ess inf p (x). We define the variable exponent Lebesgue Lp(x) (Ω) space
to consist of all measurable functions u : Ω → R for which the modular

̺p(.) (u) =

∫

Ω

|u (x)|p(x) dx

is finite. We define the Luxemburg norm on this space by

‖u‖L p(x)(Ω) = inf







λ > 0 :

∫

Ω

∣

∣

∣

∣

u (x)

λ

∣

∣

∣

∣

p(x)

dx ≤ 1







.

Equipped with this norm, L p(x) is a Banach space. When p (x) = p is a
constant then Lp(x) (Ω) coincides with the classical Lebesgue space Lp (Ω).
One important property of Lp(x) (Ω) is that

∫

Ω

|uj (x)|
p(x)

dx → 0

if and only if ‖uj (x)‖L p(x)(Ω) → 0, so that the norm and modular topologies
are the same. In a classical Lebesgue space the relation between the norm

and modular ̺p (u) is obtained directly: ‖u‖L p(Ω) = (̺p (u))
1
p . However, in the

variable exponent Lebesgue space Lp(x) (Ω) the relation is given by the following
inequalities:

If 0 < ‖u‖L p(x)(Ω) ≤ 1, then

(

̺p(.) (u)
)

1
p− ≤ ‖u‖L p(x)(Ω) ≤

(

̺p(.) (u)
)

1
p+ .

If ‖u‖L p(x)(Ω) > 1, then

(

̺p(.) (u)
)

1
p+ ≤ ‖u‖L p(x)(Ω) ≤

(

̺p(.) (u)
)

1
p− .
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The Hölder inequality, i.e.

‖u (x) v (x)‖
L1(Ω)

≤ 2 ‖u (x)‖Lp(x)(Ω) ‖v (x)‖Lp′(x)(Ω)

holds. If 0 <meas(Ω) < ∞ and p (x) ≤ q (x) in Ω, then there exists an
imbedding Lq(x) (Ω) →֒ Lp(x) (Ω) whose norm does not exceed meas(Ω) + 1.
Lp(x) (Ω) are reflexive if and only if 1 < p− < p+ < ∞, smooth functions are
dense if p+ < ∞. Some basic properties of the classic Lebesgue spaces are not
transferred to the variable exponent case. For example, the variable exponent
Lebesgue space is no longer translation invariant. As a consequence, Young’s
theorem and the so called mean continuity property fail in general. Many other
basic results were proven in [3].

The proof of the following theorem follows the pattern in the classical
Lebesgue spaces.

Theorem 1. Let q (x) ∈ (0,∞), {uα : α ∈ A} ⊂ Lp(x) (Ω) such that

supα∈A
∫

Ω

|uα (x)|
p(x)

dx = c < ∞. Let 0 < p (x) < q (x) and q (x) − p (x) ≥

β > 0. Then,

i)

lim
θ→∞

sup
α∈A

∫

{x∈Ω:|uα|
p(x)>θ}

|uα (x)|
p(x)

dx = 0.

ii) For every ǫ > 0 there exist δ > 0 such that for every E ⊂ Ω with
meas(E) < δ have

∫

E

|uα (x)|
p(x)

dx < ǫ for all α ∈ A.

Proof. i) If 0 < ω < σ then σp(x) ≤ ωp(x)−q(x)σq(x) holds. By using this
inequality in the following integral, we obtain

∫

{x∈Ω:|uα|
p(x)>ωp+}

|uα (x)|
p(x)

dx ≤

∫

{x∈Ω:|uα|
p(x)>ωp+}

ωp(x)−q(x) |uα (x)|
q(x)

dx

=

∫

{x∈Ω:|uα|
p(x)>ωp+}

|uα (x)|
q(x)

ωq(x)−p(x)
dx
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≤

∫

Ω

|uα (x)|
q(x)

ωβ
dx

=
1

ωβ

∫

Ω

|uα (x)|
q(x) ≤

c

ωβ
.

By taking supremum we have

sup
α∈A

∫

{x∈Ω:|uα|
p(x)>ωp+}

|uα (x)|
p(x)

dx ≤
c

ωβ
.

Taking limit of both sides leads to

lim
ω→∞

sup
α∈A

∫

{x∈Ω:|uα|
p(x)>ωp+}

|uα (x)|
p(x) dx ≤ lim

ω→∞

c

ωβ
= 0.

If we take θ = ωp+, we have

lim
θ→∞

sup
α∈A

∫

{x∈Ω:|uα|
p(x)>θ}

|uα (x)|
p(x)

dx = 0.

ii)
From i), for given any ǫ > 0 there exist θ > 0 such that

lim
θ→∞

sup
α∈A

∫

{x∈Ω:|uα|
p(x)>θ}

|uα (x)|
p(x)

dx <
ǫ

2
for all α ∈ A.

Hence, for every E ⊂ Ω we have

∫

E

|uα (x)|
p(x)

dx =

∫

E∩{x∈Ω:|uα|
p(x)>θ}

|uα (x)|
p(x)

dx

+

∫

E∩{x∈Ω:|uα|
p(x)≤θ}

|uα (x)|
p(x)

dx <
ǫ

2
+ θ [meas (E)] .

If we take δ = ǫ
2θ , then for every E ⊂ Ω with meas(E) < δ we have

∫

E

|uα (x)|
p(x)

dx <
ǫ

2
+ θ

ǫ

2θ
= ǫ.
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[5] W. Orlicz, Über konjugierte exponentenfolgen, Studia Math., 3, No 1
(1931), 200-211.



424


