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Abstract: In this paper, we consider the relationship between Padovan num-
bers and perfect matchings of a certain type of bipartite graphs. Then we give
a Maple procedure in order to calculate the number of perfect matchings of this
family.
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1. Introduction

The famous integer sequences (e.g. Fibonacci, Padovan) provide invaluable op-
portunities for exploration, and contribute handsomely to the beauty of math-
ematics, especially number theory [1]-[2]. Among these sequences, Padovan
numbers have achieved a kind of celebrity status. The Padovan sequence
{P (n)} is defined by the recurrence relation, for n > 2, as
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P(n)=P(n—2)+P(n—3)

with P(0) = P(1) = P(2) = 1, see [3]. The number P (n) is called nth
Padovan number. The Padovan numbers are

1,1,1,2,2,3,4,5,7,9,12, 16,21, 28, 37, 49, ...

for n =0,1,2,.... This sequence is named as A000931 in [4].

A bipartite graph G is a graph whose vertex set V' can be partitioned into
two subsets V7 and V5 such that every edge of G joins a vertex in V; and a
vertex in V5. The investigation of the properties of bipartite graphs was begun
by Koénig. His work was motivated by an attempt to give a new approach to the
investigation of matrices on determinants of matrices. As a practical matter,
bipartite graphs form a model of the interaction between two different types of
objects. For example; social network analysis, railway optimization problem,
marriage problem, etc., [5].

A perfect matching (or 1-factor) of a graph is a matching in which each
vertex has exactly one edge incident on it. Namely, every vertex in the graph
has degree 1. The enumeration or actual construction of perfect matching of a
bipartite graph has many applications, for example, in maximal flow problems
and in assignment and scheduling problems arising in operational research [6].
The number of perfect matchings of bipartite graphs also plays a significant
role in organic chemistry, [7].

Let A(G) be adjacency matrix of the bipartite graph G and p(G) denote
the number of perfect matchings of G. Then, one can find the following fact in
(6]: 1(G) = /per (A(G)).

Let G be a bipartite graph whose vertex set V' is partitioned into two subsets
Vi and V3 such that |Vi| = |Va| = n. We construct the bipartite adjacent
matrix B(G) = (b;j) of G as following: b;; = 1 if and only if G' contains
an edge from v; € Vi to v; € Vo, and otherwise b;; = 0. Then, the number of
perfect matchings of bipartite graph G is equal to the permanent of its bipartite
adjacency matrix, [6].

The permanent of an n x n matrix A = (a;;) is defined by

per (4) = Z Haia(i)a

oeSy i=1

where the summation extends over all permutations ¢ of the symmetric group
Sn. The permanent of a matrix is analogous to the determinant, where all of
the signs used in the Laplace expansion of minors are positive. One can find
the basic properties and more applications of permanents in [8]-[11].
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Let A = [aj;] be an m x n real matrix with row vectors a, o,
wery . We say that A is contractible on column (resp. row) k, if column
(resp. row) k contains exactly two nonzero entries. Suppose A is contractible
on column k with a;;, # 0 # a;j, and i # j. Then the (m — 1) x (n — 1) matrix
Aj;j.), obtained from A by replacing row ¢ with aj,o; + a;ra; and deleting row j
and column £k is called the contraction of A on column k relative to rows ¢ and
J. If Ais contractible on row k with ay; # 0 # ai; and ¢ # j, then the matrix

T
Apij = {Az;k] is called the contraction of A on row k relative to columns i

and j. We say that A can be contracted to a matrix B if either B = A or there
exist matrices Ag, A1, ..., Ay (t > 1) such that Ay = A, A, = B, and A, is a
contraction of A,_q for r =1,...,t, [8].

Brualdi and Gibson [8] proved the following result about the permanent of
a matrix.

Lemma 1. Let A be a nonnegative integral matrix of order n forn > 1 and
let B be a contraction of A. Then

perA = perB. (1)

The permanents have many applications in physics, chemistry and electrical
engineering. Some of the most important applications of permanents are via
graph theory. A more difficult problem with many applications is the enumer-
ation of perfect matchings of a graph [6]. Therefore, counting the number of
perfect matchings in bipartite graphs has been very popular problem.

The relationships between perfect matchings (1-factors) of bipartite graphs
and the famous integer sequences and their generalizations have been exten-
sively discussed by many researchers. For example, Lee et al. [12], consider
a bipartite graph G (A, = (a;;)) with bipartite adjacency matrix is the n x n
tridiagonal matrix of the form

1 1 0 - --- 0
11 1
A, = 0 1
1 0
: | 1 1
0O --- -~ 0 1 1

Then they obtain the number of perfect matchings of G (4,,) is the (n + 1)th
Fibonacci number F'(n +1). They also consider a bipartite graph G (]:(n,k))
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with bipartite adjacency matrix F, ) = (fi;) such that f;; = 1if -1 <
Jj—i<k—1and f;; = 0 otherwise, for & < n+ 1. Then the number of perfect
matchings of G (]:(n,k:)) is g* (n 4+ k — 1), where ¢* (n) is the nth k-Fibonacci
number.

In [13], Lee considers a bipartite graph G (B,, = (b; j)) with bipartite adja-
cency matrix is the n x n matrix of the form

1 0 1 O 0
1 1 1 0
B, — 0 1 0
0
: . .. o1
o -~ -~ 0 1 1

Then for n > 3, they obtain the number of perfect matchings of G (B,,) is the
(n — 1)st Lucas number L (n — 1). He also considers a bipartite graph G ([,(n,k))
with bipartite adjacency matrix L, ) = F(nk) + E1 k1 — 2?22 Eqj for n > 3,
where E; ; denotes the nxn matrix with 1 at the (7, j)-entry and zeros elsewhere.
Then the number of perfect matchings of G (E(n,k)) is I¥ (n — 1), where ¥ (n)
is the nth k-Lucas number.

In [14], Shiu et al. firstly define the (k,)-sequences as: For k > 2, n > 1
and a = (ay,as,...,an) € R™, where R is a ring. The k-sequence {sf (n)} is

sf(n) = aiffin+k—-2)+.. . +anffn+k—m-1)

= iaifk(n—l—l—k—i).

=1

The number s¥ (n) is called nth (k, @)-number. Then they give the following
result:

For a fixed m > 1, suppose n,k > 2 and n > m. Let G(B(n,k) (a)) a
bipartite graph with bipartite adjacency matrix has the form

ar as ... Qo 0O ... 0
1
B (@) = | 0 Fn-1)
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Then the number of perfect matching of G (B(n,k.) (@) is nth (k, a)-number
sk (n).

In [15], Kilic et al. consider a bipartite graph G (R,) with bipartite ad-
jacency matrix R, = (r;;) such that r;; = 1if -1 < j—i < lori=1
and 7;; = 0 otherwise. Then the number of perfect matchings of G (R,,) is
Yoo F (i) = F(n+2)—1, where F' (n) is the nth Fibonacci number. They
also consider a bipartite graph G (W,,) with bipartite adjacency matrix W,, =
Ry + Sy, where S, denotes the n x n matrix with —1 at the (1,2)-entry, 1 at
the (2,4)-entry and zeros elsewhere. Then for n > 4, the number of perfect
matchings of G (W,,) is Y/ L (i) = L(n) — 1, where L (n) is the nth Lucas
number.

One can find more applications on the relationship between the number
of perfect matchings of bipartite graphs and the well-known integer sequences,
[16]-[22].

In this paper we consider a class of bipartite graph. Then we show that the
numbers of perfect matchings of this graph generate the Padovan numbers by
the contraction method. Finally, we give a Maple procedure in order to calculate
the numbers of perfect matchings of above-mentioned bipartite graph.

2. Main Results

In this section, we determine a class of bipartite graphs whose number of perfect
matchings is nth Padovan number P (n).

A matrix is said to be a (0, 1)-matrix if each of its entries is either 0 or 1.
Let Hy = (h;j) be n x n (0,1)-matrix as the following

1 1 1 0 0
1 0 1 1 0
0 1 0 1
Hy=1: o 0 (2)
11
E 0 1 1
0 1 0

Theorem 2. Let G(H,) be the bipartite graph with bipartite adjacency
matrix H, given by (2). Then the number of perfect matchings of G(H,,) is
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nth Padovan number P (n).

Proof. Let Hf{ be the kth contraction of H,, 1 < k < n — 2. According to
the definition of the matrix H,,, the matrix H,, can be contracted on column 1
so that

1 0 1 1 0
0 1 0 1
H, = 0 0 :
1 1
: 0 1 0 1
0 -«- -+ -+ 0 1 0

(n—1)x(n—1)

2 2 1 0 0
10 1 1 0
0 1 0 1
Hj = 0 0
11
0 1 1
0 0 1 0

(n—2)x(n—2)

Furthermore, the matrix H2 can be contracted on column 1 and P (3) = P (4) =
2, P (5) = 3, so that

2 3 2 0 0
1 0 1 1 0
0 1 0 1
H, = 0 0
11
0 1 1
0 0 1 0

(n—3)x(n—3)
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P(4) P(B) P3) 0 0
1 0 1 1 0
0 1 0 1
= 0 0
1 1
0 1 0 1
0 0 1 0 (n—3)x (n—3)
Continuing this process, we have
P(k+1) P(k+2) Pk 0 - --- 0
1 0 1 10 :
0 1 0 1
Hy = 0 0
1 1
: 0 1 0 1
0 0 1 0 (k) (k)
for 3 <k <n — 4. Hence,
Pn—2) P(n—1) P(n-—3)
HI P = 1 0 1
0 1 0 3v3

which, by contraction of H?~3 on column 1, gives

H? = < P(nl— 1) P(()n) )M.

By applying equation (1), we obtain perH,, = perH? 2 = P (n) which is the
desired result. O

2.1. Maple Procedure

The following Maple procedure calculates the number of perfect matchings of
bipartite graph G(Hj) given by (2).
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>restart:

with(LinearAlgebra):

permanent:=proc(n)

local i,j,r,f,A;

f:=(i,j)->piecewise(i=1 and j=1,1,abs(j-i)=1,1,j-i=2,1,0);
A:=Matrix(n,n,f):

for r from 0 to n-2 do

print(r,A):

for j from 2 to n-r do
A[Lj:=A[2,1]*A[Lj]+A[1,1]*A[2,]:

od:
A:=DeleteRow(DeleteColumn(Matrix(n-r,n-r,A),1),2):
od:

print(r,eval(A)):

end proc:with(LinearAlgebra):

permanent(n);
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