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Abstract: Four-dimensional lattices with block circulant generator matrices
are constructed from submodules of the ring of integers of the totally real num-
ber field Q(

√
2,
√
5). The obtained lattices are of full diversity and their sphere

packing densities are the highest known for the given relative minimum product
distances.
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1. Introduction

Lattices occupy a prominent position in both pure and applied mathematics:
On the theory side, they are the central entities in the geometry of numbers; on
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the application side, they have been instrumental in the design of signal sets for
efficient data transmission [4]. For a given positive integer n, an n-dimensional
lattice Λ is a discrete subgroup of Rn of rank n; alternatively, Λ can be described
as the set of all integral linear combinations of a set of n linearly independent
vectors in Rn (in passing, that set is referred to as a basis of the lattice).

By regarding the points of Λ as the centers of identical spheres of radii equal
to half the minimum Euclidean distance between those points, one obtains an
arrangement of spheres known as the sphere packing associated to Λ. The
density of the packing, that is, the fraction of space occupied by the spheres,
is one of the most important parameters associated to Λ. Finding dense lat-
tice packings is a famous problem which remains open except in dimensions
n = 1, 2, . . . , 8, and 24, see [4] for its rich history, and [3] and [9] for recent
developments.

Lattices of high packing density are suitable for data transmission over a
Gaussian channel, whereas lattices with a high minimum product distance1 are
suitable for data transmission over the Rayleigh fading channel, see [2] and [4].
Lattices possessing both of those features are of interest because they allow
the associated signal sets to be used at the same time over both channels [2].
Number fields have proved to be a useful tool in obtaining lattices with those
properties, see [1], [2], and [4]. In particular, totally real number fields can be
used to produce lattices of high minimum product distance [1].

Having the above in mind, the focus of the present work is on the number
field F = Q(

√
2,
√
5). The motivation for its choice, which will become clear

in the sections, is that among all totally real biquadratic number fields, F pos-
sesses the smallest discriminant in absolute value [5]. Four-dimensional lattices
featuring high relative minimum product distances and packing densities will
be obtained from submodules of OF , the ring of integers of F .

2. Background on Algebraic Lattices

In this section the definitions and properties of lattices needed for this work will
be briefly reviewed. For further details, the reader is referred to either [4] or [8].
Let Λ be an n-dimensional lattice. The minimum of Λ, minΛ, is the minimum
of the squared Euclidean norms of the nonzero vectors of Λ. The minimum
distance of Λ, dmin(Λ), is the square root of minΛ. The packing radius of Λ is

1The product distance of a nonzero lattice point is defined as the absolute value of the

product of the point coordinates.
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the real number

ρ =
dmin(Λ)

2
.

The volume of Λ, denoted by vol Λ, is defined as the volume of the parallelotope
determined by any basis of the lattice. The center density of Λ is defined as
δ(Λ) = ρn/vol Λ, see [4, Chap. 1].

For the purposes of this work, let K be a totally real number field of degree
n whose embeddings (Q-monomorphisms of K into C) are σ1, σ2, . . . , σn. If
OK is the ring of integers of K, then σK : OK → Rn, given by σK(x) =
(σ1(x), σ2(x), . . . , σn(x)), is the canonical embedding of K into Rn. If M is a
submodule of OK of rank n, then σK(M) is an n-dimensional algebraic lattice
whose minimum and volume are given, respectively, by

min
x∈M
x 6=0

TrK/Q(x
2) and

√

|Disc(K)| · [OK : M],

where TrK/Q(·) denotes the field trace and Disc(K) denotes the discriminant of
K. Therefore, the center density of Λ is given by

(

minx∈M
x 6=0

TrK/Q(x
2)

)n/2

2n ·
√

|Disc(K)| · [OK : M]
. (1)

An n-dimensional lattice Λ is said to have full diversity [1] if for every
y = (y1, . . . , yn) in Λ with y 6= 0, one has yi 6= 0 for i = 1, . . . , n. In that case,
the minimum product distance of Λ is defined as

dp,min(Λ) = min
y∈Λ
y 6=0

n
∏

i=1

|yi|.

Finally, let K be a totally real number field of degree n and M a submodule of
OK of rank n. Then Λ = σK(M) has full diversity and its minimum product
distance equals

dp,min(Λ) = min
y∈Λ
y 6=0

|NK/Q(y)|,

where NK/Q(·) denotes the field norm, see [6, Proposition 3.2]. Finally, the
relative minimum product distance of Λ, viz.,

dp,rel(Λ) =

(

dp,min(Λ)

dmin(Λ)

)1/n

,

is the standard parameter used for comparison purposes.
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3. Lattices from Q(
√
2,
√
5)

With the objective of maximizing the center density, in view of (1), we will
work with fields of small discriminant. Among all totally real biquadratic
fields, the one with smallest discriminant in absolute value is F = Q(

√
2,
√
5).

In particular, Disc(F ) = 26 · 52. An integral basis for F is {1, α1, α2, α3} =

{1,
√
2, 1+

√
5

2 ,
√
2+

√
10

2 }, see [7, Exercise 42, pp. 51–52]. The automorphisms of

Q(
√
2,
√
5) are:

id :

{
√
2 7→

√
2√

5 7→
√
5

σ :

{
√
2 7→ −

√
2√

5 7→
√
5

,

τ :

{
√
2 7→

√
2√

5 7→ −
√
5

στ :

{
√
2 7→ −

√
2√

5 7→ −
√
5

.

Let u = u0 + u1 · α1 + u2 · α2 + u3 · α3 be a given arbitrary element of
OF , where u0, u1, u2, u3 are rational integers, and let M be the submodule of
OF with basis {u, σ(u), τ(u), στ(u)}, where:

σ(u) = u0 − u1 · α1 + u2 · α2 − u3 · α3,

τ(u) = (u0 + u2) + (u1 + u3) · α1 − u2 · α2 − u3 · α3,

στ(u) = (u0 + u2)− (u1 + u3) · α1 − u2 · α2 + u3 · α3.

Let σF : F → R4 be the canonical embedding of F . The lattice Λ = σF (M)
is generated by the rows of

G =









u σ(u) τ(u) στ(u)
σ(u) u στ(u) τ(u)
τ(u) στ(u) u σ(u)
στ(u) τ(u) σ(u) u









. (2)

We can write the latter matrix as G = A · B where

A =









u0 u1 u2 u3
u0 −u1 u2 −u3

u0 + u2 u1 + u3 −u2 −u3
u0 + u2 −u1 − u3 −u2 u3









and

B =









α1 α1 α1 α1

α2 σ(α2) τ(α2) στ(α2)
α3 σ(α3) τ(α3) στ(α3)
α4 σ(α4) τ(α4) στ(α4)









.
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Since detA = 4 · (2u0 + u2) · (2u1 + u3) · u2 · u3, it follows that the volume of Λ
equals

vol Λ = |detG| = |detA ·
√

Disc(F )| = 25 · 5 · |(2u0 + u2) · (2u1 + u3) · u2 · u3|.

Therefore, Λ is of full rank if and only if u2 6= 0, u2 6= −2u0, u3 6= 0, and
u3 6= −2u1.

Now we turn to the trace form, i.e., TrF/Q(x
2)|M where

x = x0 · u+ x1 · σ(u) + x2 · τ(u) + x3στ(u)

is an arbitrary element of M with x0, x1, x2, x3 in Z. We have

TrF/Q(x
2) = t0 · (x20 + x21 + x22 + x23) + 2 · t1 · (x0x1 + x2x3)

+2 · t2 · (x0x2 + x1x3) + 2 · t3 · (x0x3 + x1x2), (3)

where:

t0 = TrF/Q(u
2) = 4u20 + 4u0u2 + 6u22 + 8u21 + 8u1u3 + 12u23

= (2u0 + u2)
2 + 2 · (2u1 + u3)

2 + 5u22 + 10u23,

t1 = TrF/Q(u · σ(u)) = 4u20 + 4u0u2 + 6u22 − 8u21 − 8u1u3 − 12u23

= (2u0 + u2)
2 − 2 · (2u1 + u3)

2 + 5u22 − 10u23,

t2 = TrF/Q(u · τ(u)) = 4u20 + 4u0u2 − 4u22 + 8u21 + 8u1u3 − 8u23

= (2u0 + u2)
2 + 2 · (2u1 + u3)

2 − 5u22 − 10u23,

t3 = TrF/Q(u · στ(u)) = 4u20 + 4u0u2 − 4u22 − 8u21 − 8u1u3 + 8u23

= (2u0 + u2)
2 − 2 · (2u1 + u3)

2 − 5u22 + 10u23.

Alternatively,

TrF/Q(x
2) = y21(z1 + z2)

2 + 5y22(z1 − z2)
2 +

2y23(w1 + w2)
2 + 10y24(w1 − w2)

2,

where














z1 = x0 + x1
z2 = x2 + x3
w1 = x0 − x1
w2 = x2 − x3

and















y1 = 2u0 + u2
y2 = u2
y3 = 2u1 + u3
y4 = u3

.

With this notation, it follows that

vol Λ = 25 · 5 · |y1y2y3y4|.
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3.1. New Four-Dimensional Lattices

The generator matrix in (2) has the form

M =









a b c d
b a d c

c d a b
d c b a









,

with a, b, c, d in R, which characterizes it as a block circulant matrix with cir-
culant blocks. For M of full rank, a lower bound on the center density of
four-dimensional lattices generated by M equals δ∗ = 1

4
√
5
= 0.111803, and this

is attained when a = b = c = 1 and d = 2 −
√
5. It seems that δ∗ is an upper

bound as well, however we have not been able to prove this so far. Nonethe-
less, we can still construct lattices with better parameters (center density and
relative minimum product distance) than what is presently known as follows.

Notation as before, by choosing u ∈ M such that three of the quantities
u, σ(u), τ(u), and στ(u) are close to k and the other is close to k(2−

√
5) for k

a nonzero constant, one can obtain lattices whose center densities are close to
δ∗. With this in mind, let

u0 = 34, u1 = 0, u2 = 55, u3 = 87,

so u = u0 + u1α2 + u2α3 + u3α4. Let M be the submodule of OF generated by
u, σ(u), τ(u), and στ(u). The parameters of σF (M) are:















minimum = 121016 = 23 · 7 · 2161,
attained at x∗ = (1, 1, 0, 0);

volume = 8192685600 = 25 · 33 · 52 · 11 · 292 · 41;
center density = 72·21612

23·33·52·11·292·41 = 0.111722.

The minimum product distance of σF (M) is equal to

NF/Q(u+ σ(u)) = 16.

Thus,

dp,rel(σF (M)) =

(

16√
121016

)1/4

= 0.463099.

For comparison purposes, the center density and relative minimum product
distance of the lattice Z4 are equal to 0.0625 and 0.385553, respectively; the
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center density and relative minimum product distance of the lattice D4 are
equal to 0.125 and 0.324210, respectively, see [6, Table 2, p. 2404].

As a second example, let

u0 = −13551, u1 = 1974, u2 = 4517, u3 = 3194,

and M the submodule of OF generated by u, σ(u), τ(u), and στ(u). The min-
imum of σF (M) is equal to 816130752 and it occurs at x∗ = (1,−1, 0, 0). The
volume of σF (M) is equal to 372344485105097600, hence

δ(σF (M)) =
325229201347698

2908941289883575
= 0.111803.

Finally, the minimum product distance of σF (M) is equal to

NF/Q(u− σ(u)) = 1024.

Thus,

dp,rel(σF (M)) =

(

1024√
816130752

)1/4

= 0.435115,

which also compare favorably with previous results.
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