EXISTENCE OF POSITIVE SOLUTIONS FOR A COUPLED
SYSTEM OF NONLINEAR BOUNDARY VALUE PROBLEMS
OF FRACTIONAL ORDER WITH INTEGRAL
BOUNDARY CONDITIONS

Abstract

In this work, we discuss the existence of positive solutions for a coupled system of nonlinear boundary value problems of fractional order with integral boundary conditions.

The existence result is obtained by means of Krasnosel'skii fixed-point theorem in a cone.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 4
Year: 2017

DOI: 10.12732/ijam.v30i4.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] B. Ahmad, J.J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Boundary Value Problems, 2009 (2009), Article ID 708576, 11pp.; doi:10.1155/2009/708576.
  2. [2] B. Ahmad, J.J. Nieto, A. Alsaed, Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions, Acta Mathematica Scientia, 31 (2011), 2122-2130.
  3. [3] M.B. Akorede, P.O. Arawomo, Positive solutions for a coupled system of nonlinear second order eigenvalue problems, Int. J. Pure and Applied Mathematics 100, No 1 (2015), 19-28; doi:10.12732/ijpam.v100i1.3.
  4. [4] B. Ahmad, J.J. Nieto, Existence results for a coupled system nonlinear fractional differential equations with three-point boundary conditions, Computers and Mathematics with Appl., 58, No 9 (2009), 1838-1843; doi:10.1016/j.camwa.2009.07.091.
  5. [5] Z. Bai, H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495-505; doi:10.1016/j.jmaa.2005.02.052.
  6. [6] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Analysis: Theory, Methods and Appl., 72, No 2 (2010), 916-924; doi:10.1016/j.na.2009.07.033.
  7. [7] M. Benchohra, A. Cabada, D. Seba, An existence result for fractional differential equations on Banach spaces, Boundary Value Problems, 2009 (2009), Article ID 628916, 11pp; doi:10.1155/2009/628916.
  8. [8] A. Cabada, Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, Applied Mathematics and Computation, 228 (2014), 251-257; doi:10.1016/j.amc.2013.11.057.
  9. [9] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl. 389 (2012), 403-411; doi:10.1016/j.jmaa.2011.11.065.
  10. [10] M. Feng, X. Liu, H. Feng, The existence of positive solutions for a nonlinear fractional differential equation with integral boundary conditions, Adv. Difference Equations, 2011 (2011), Art. ID 546038, 14pp.; doi:10.1155/2011/546038.
  11. [11] J. Henderson, R. Luca, Positive solutions for a system of fractional differential equations with coupled integral boundary conditions, Applied Mathematics and Computation, 249 (2014), 182-197; doi:10.1016/j.amc.2014.10.028.
  12. [12] J. Henderson, R. Luca, A. Tudorache, Positive solutions for systems of coupled fractional boundary value problems, Open J. Applied Sciences, 5 (2015), 600-608; doi:10.4236/ojapps.2015.510059.
  13. [13] J. Henderson, R. Luca, A. Tudorache, Positive solutions for a fractional boundary value problem, Nonlinear Studies, 22, No 1 (2015), 139-151.
  14. [14] J. Jin, X. Liu, M. Jia, Existence of positive solutions for singular fractional differential equations with integral boundary conditions, Electron. J. Diff. Equations, 2012 (2012), No 63, 14pp.
  15. [15] M.A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen (1964).
  16. [16] M. Li, Y. Liu, Existence and uniqueness of positive solutions for a coupled system of nonlinear fractional differential equations, Open J. Applied Sciences, 3 (2013), 53-61; doi:10.4236/ojapps.2013.31B1011.
  17. [17] J. Mao, Z. Zhao, N. Xu, On existence and uniqueness of positive solutions for integral boundary value problems, Electron. J. Qual. Theory Diff. Eqs., 2010, No 16 (2010), 8pp.
  18. [18] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York (1993).
  19. [19] I. Podlubny, Fractional Differential Equations, Ser. Mathematics in Science and Engineering # 198, Academic Press, San Diego (1999).
  20. [20] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives (Theory and Applications), Gordon and Breach, Switzerland (1993).
  21. [21] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Applied Mathematics Letters, 22 (2009), 6469; doi:10.1016/j.aml.2008.03.001.
  22. [22] Y. Sun, M. Zhao, Positive solutions for a class of fractional differential equations with integral boundary conditions, Applied Mathematics Letters, 34 (2014), 17-21; doi:10.1016/j.aml.2014.03.008.
  23. [23] J. Wang, H. Xiang, Z. Liu, Positive solutions to nonzero boundary value problem for a coupled system of nonlinear fractional differential equations, Int. J. of Diff. Eqs, 2010 (2010), Art. ID 186928, 12pp.; doi:10.1155/2010/186928.
  24. [24] X. Wang, X. Liu, X. Deng, Existence and nonexistence of positive solutions for fractional integral boundary value problem with two disturbance parameters, Boundary Value Problems, 2015 (2015), No 186; doi:10.1186/s13661-015-0450-1.
  25. [25] Y. Wang, L. Liu, X. Zhang, Y. Wu, Positive solutions for (n − 1, 1)type singular fractional differential system with coupled integral boundary conditions, Abstr. App. Anal., 2014 (2014), Art. ID 142391, 14pp.; doi:10.1155/2014/142391.
  26. [26] W. Yang, Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions, Computers and Mathematics with Appl., 63 (2012), 288-297; doi:10.1016/j.camwa.2011.11.021.
  27. [27] K. Zhao, P. Gong, Positive solutions of m-point multi-term fractional integral BVP involving time-delay for fractional differential equation, Boundary Value Problems, 2015, No 19 (2015); doi:10.1186/s13661-014-0280-6.
  28. [28] X. Zhang, L. Wang, Q. Sun, Existence of positive solutions for a class of nonlinear fractional differential equation with integral boundary conditions and a parameter, Applied Mathematics and Computation, 226 (2014), 708718; doi:10.1016/j.amc.2013.10.089.
  29. [29] H. Zhang, Multiple positive solutions of nonlinear BVPs for differential systems involving integral conditions, Boundary Value Problems, 2014, No 61 (2014); doi:10.1186/1687-2770-2014-61.
  30. [30] C. Zhai, M. Hao, Multiple positive solutions to nonlinear boundary value problem of a system for fractional differential equations, The Scientific World Journal, 2014 (2014), Art. ID 817542, 11pp.; doi:10.1155/2014/817542.
  31. [31] X. Zhang, C. Zhu, Z. Wu, Solvability for a coupled system of fractional differential equations with impulses at resonance, Boundary Value Problem, 2013, No 80 (2013), 23pp.; doi:10.1186/1687-2770-2013-80.
  32. [32] C. Zhu, X. Zhang, Z. Wu, Solvability for a coupled system of fractional differential equations with nonlocal integral boundary conditions, Taiwanese J. Math., 17, No 6 (2013), 2039-2054; doi:10.11650/tjm.17.2013.3174.
  33. [33] Y. Zhao, S. Sun, Z. Han, W. Feng, Positive solutions for a coupled system of nonlinear differential equations of mixed fractional orders, Adv. Difference Equ., 2011, No 10 (2011), 13pp.; doi:10.1186/1687-1847-2011-10.