ON SOME TOPOLOGICAL PROPERTIES OF
GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED

Abstract

In this paper, we define new generalized difference sequence spaces $\ell _{\lambda }^{\mathcal{M}}(\Delta _{v}^{m},u)$ and $\ell _{\mathcal{N}}^{\lambda }(\Delta _{v}^{m},u)$, where $\mathcal{M}=\left( M_{k}\right) $ and $\mathcal{N}=\left( N_{k}\right) $ are sequences of Orlicz functions such that $M_{k}$ and $N_{k}$ are mutually complementary for each $k$. We also examine some topological properties and establish some inclusion relations between these spaces.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 2
Year: 2017

DOI: 10.12732/ijam.v30i2.6

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] Ç. A. Bektaş and G. Atıci, On some new modular sequence spaces, Bol. Soc. Paran. Mat., 31 (2013), 55-65.
  2. [2] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-176.
  3. [3] H. Nakano, Modulared sequence spaces, Proc. Jap. Acad., 27 Reprinted in: Semi-ordered Linear Spaces, Tokyo (1955).
  4. [4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1965), 379-390.
  5. [5] J.Y.T. Woo, On modular sequence spaces, Studia Math., 48 (1973), 271-289.
  6. [6] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math Sc. Soc., 23 (2000), 25-32.
  7. [7] M. Et and R. Çolak, On generalized difference sequence spaces. Soochow J. Math., 21 (1995), 377-386.
  8. [8] M. Gupta and S. Pradhan, On certain type of modular sequence spaces, Turk. J. Math., 32 (2008), 293-303.
  9. [9] P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York (1981).