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Abstract: Through this paper, we introduce Fourier transform as an alter-
native approach to pricing option when the underlying asset follows Stochastic
Volatility double Jump model (SVJJ). In fact the weakness of the traditional
approaches does not depend on closed formula of probability density function
which is explicitly unknown under this model. The advantage of Fourier trans-
form technique is that for a wide class of stock price the only thing necessary
to evaluate European call is a so called characteristic function since there is
one-to-one relation-ship between a p.d.f & ch.f and both of which uniquely de-
termine a probability distribution. For accuracy and validation we implement
pricing formulas FFT, Monte Carlo simulation and we compare both of them
to the benchmark model BS.
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1. Introduction

Although the fame of Black & Scholes formula [4], [12], this log-normal pure
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diffusion model miscalculate option. First of all, model leaves out the effect of
jump size uncertainty of return volatility and the arrival of abnormal informa-
tion [13]. Moreover, normality distribution contradict empirical evidence. In
fact, market exhibit a non-zero skewness and higher kurtosis.

Luckily, the stochastic volatility double jump model corrects this flaw [11].
The literature point out that this model [7], [15] and [1] is the most accurate
one to describe precisely the logarithm underlying asset price distribution with
stochastic volatility under jumps [14]. However, the problem arises when the
probability density function is not explicitly known in term of closed formula.

In this paper, we will discuss the problem of valuing a European call option
though Fourier transform (see [5], [15]). This approach is able to give in wide
class of underlying asset a distribution of the model by substitutes as so called
a characteristic function in some predefined integral. We present the outline
of this paper in Section 2 where we briefly describe SVJJ model. Then, in
Section 3 and Section 4 we present the characteristic function of the model and
show the accurate closed form expression of Fourier inversion transform option
pricing. Finally, we conclude with numerical results.

2. Stochastic Volatility Double Jump

2.1. Model Descriptions

Throughout this section, we consider a complete probability space (Ω,F , P )
with an information filtration {Ft; 0 ≤ t ≤ T}, satisfying the usual conditions.
We denote by {e−rtSt; 0 ≤ t ≤ T} a discounted asset price process where
T is a finite time horizon. In an arbitrage-free market, prices of any asset
can be calculated as an expected terminal payoffs under discounted by a risk-
free interest rate r such that EQ[e−rTST |Ft] = e−rtSt, which is a martingale
condition. We define the stochastic volatility double Jump model (SVJJ) as

dSt = (r − λsκ)Stdt+
√

VtStdB
s
t + Js(Y )St−dN

s
t , (1)

dVt = ǫ(v̄ − Vt)dt+ σ
√

VtdB
v
t + Jv(Z)dNv

t . (2)

Here r is the riskless interest rate which is assumed to be constant, ǫ ≥
0, v̄ ≥ 0 and σ > 0 are called the speed of mean reversion, the mean level
of variance and the volatility of the volatility, respectively. Furthermore, the
Brownian motions Bs and Bv are assumed to be correlated with correlation
coefficient ρ. N s

t and Nv
t are independent Poisson processes with constant
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intensities λs and λv respectively. Moreover, we assume that the jump processes
N s

t and Nv
t are independent with standard Brownian motion Bs and Bv.

In equation (1), Js(Y ) (rep. Jv(Z)) is the Poisson jump-amplitude. Y

(resp. Z) is an underlying Poisson amplitude mark process selected defined as
Y = ln(1 + J(Y )).

For convenience, N s
t (resp. Nv

t ) is the standard Poisson jump counting
process with jump intensity λs (resp. λv) and expected value λsdt (resp. λvdt).
Also, the symbolic jump term for the asset price and volatility respectively are

Js(Y )dN s
t =

dNs
t

∑

i=1

Js(Yi),

Jv(Z)dN s
t =

dNv
t

∑

j=1

Jv(Zj).

Here Yi (resp. Zj) is the ith (resp. jth) jump-amplitude random variable taken
from a set of independent, identically distributed random variables. We assume
that the density of both jump-amplitude Y and Z are receptively log-normal
and exponential distributed (see [15])

φY (y) ∼ N (ln(1 + µ)− 1

2
δ2, δ2), (3)

φZ(z) ∼ exp(
1

ζ
). (4)

3. European Call Option Price

In this section, we want to price a European call option by using the PDE
approach which is by now quite standard in literature (see e.g. Heston [10],
Bates [3], Bakshi [1]). We let C denote the price at time t of a European style
call option on St with strike price K and expiration time T = t + τ . Using
the fact that a terminal payoffs of an European call option on the underlying
asset St with strike price K is max(St−K, 0) and assuming that the short-term
interest rate r is constant over the lifetime of the option. European call price
at time t is computed as discounted risk-neutral conditional expectations of the
terminal payoffs

C(t, St, Vt) = e−r(T−t)EQ[max(St −K, 0)|Ft], (5)
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where EQ (resp. Q(.)) is the conditional expectation with respect to the risk-
neutral probability measure Q (resp. Q(.) is the conditional probability density
function of terminal asset price ST ).

Through the definition of contingent claim value, we cannot express the
call value in term of closed formula since the probability density function of
the underlying asset under SVJJ model is not available. Luckily, there is a
very useful theorem 2-dim Dynkin’s formula (see Hanson [9]) known as partial
integro-differential equations which transforms a stochastic differential system
to a partial differential system and solve with respect to Riemann integral.

3.1. Partial Integro-Differential Equations

The same treatment framework was done by Bates [3]and Heston [10], here we
will elaborate 2-dim Dynkin’s theorem to derive the partial integro-differential
equation (PIDE) satisfied by the value of an option. Let us define X1

t and X2
t

as

dX1
t = f1(t,X

1
t ,X

2
t )dt+ g1(t,X

1
t ,X

2
t )dB

1
t + h1(t,X

1
t )dP

1(t;X1
t , t),

dX2
t = f2(t,X

1
t ,X

2
t )dt+ g2(t,X

1
t ,X

2
t )dB

1
t + h2(t)dP

2(t).

The Dynkin theorem states that the conditional expectation, where T is the
terminal time,

u(t, x1, x2) = EQ[U(X1
T ,X

2
T )|X1

t = x1,X
2
t = x2],

is the solution of the PIDE

0 =
∂u

∂t
+A[u] + λs

∫

Q

(u(t, x1 + y, x2)− u(t, x1, x2))φY (y)dy

+ λv
∫

Q

(u(t, x1, x2 + z)− u(t, x1, x2))φZ(z)dz,

(6)

with

A[u] = f1(t, x1, x2)
∂u(t, x1, x2)

∂x1
+ f2(t, x1, x2)

∂u(t, x1, x2)

∂x2

+
1

2
g21(t, x1, x2)

∂2u(t, x1, x2)

∂x21
+

1

2
g22(t, x1, x2)

∂2u(t, x1, x2)

∂x22

+ ρg1(t, x1, x2)g2(t, x1, x2)
∂2u(t, x1, x2)

∂x1x2
.
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3.2. Characteristic Function Formulation for Solution

In 1993, Heston [10] derive the characteristic function from Heston model, this
was done in a Gil-Palaez inversion framework [8]. Here we present the deriva-
tion in a Carr & Madan setting. To start with, before introduce the lemma
which present partial Integro-differential equations of contingent claim value,
we simplify the pricing PIDE in equation (6) by defining respectively, forward
option price C̃(t,Xt, Vt) and change of variable Xt as

C̃(t,Xt, Vt) ≡ er(T−t)C(t, St, Vt), (7)

Xt = ln

(

er(T−t)St

K

)

. (8)

Corollary 1. The forward option price in equation (7) satisfies the partial
integro-differential equation (PIDEs)

0 =
∂C̃

∂t
+A[C̃] + λs

∫

Q

(C̃(t, x1 + y, x2)− C̃(t, x1, x2))φY (y)dy

+ λv
∫

Q

(C̃(t, x1, x2 + z)− C̃(t, x1, x2))φZ(z)dz,

(9)

with

A[C̃] = (r − λsκ− 1

2
v)
∂C̃(t, x, v)

∂x
+ ǫ(v̄ − v)

∂C̃(t, x, v)

∂v

+
1

2
v
∂2C̃(t, x, v)

∂x2

+
1

2
σ2v

∂2C̃(t, x, v)

∂v2
+ ρσv

∂2C̃(t, x, v)

∂x∂v
− rC̃,

(10)

and

Vt = v,

Xt = x.

Proof. Through Itô’s chain rule and under a risk-neutral probability mea-
sure Q, the log-return process (lnSt)t∈[0,T ] satisfies the SDE

d lnSt = (r − λsκ− 1

2
v)dt+

√
vdBs

t + ln(yt + 1)dN s
t ,
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changing variable

X(t) = ln

(

er(T−t)St

K

)

,

and applying 2-dim Dynkin’s formula to the stochastic differential system

dXt = (r − λsκ− 1

2
Vt)dt+

√

VtdB
s
t + Js(Y )St−dN

s
t − r,

dVt = ǫ(v̄ − Vt)dt+ σ
√

VtdB
v
t + Jv(Z)dNv

t ,

(11)

we tend to the desired result.

Next, we present three lemmas that culminate in the characteristic function
of SVJJ model. Before presenting the lemmas, we need to refer to advanced
results from Duffie, Pan & Singleton [6]. They indicated that for diffusion
processes the characteristic function exp[eiωxτ ] of xτ is of the form

f(τ, x, v, ω) = exp{A(ω, τ) + vB(ω, τ) + C(ω, τ)x}. (12)

The characteristic function must satisfy the initial condition f(0, x, v, ω) =
exp(iωxT ), which in turn implies that A(ω, 0) = B(ω, 0) = 0 and C(ω, 0) = iω

for all ω. Since f(τ, x, v, ω) ≡ EQ[eiωxτ ], where Q is as defined above, substi-
tuting (12) into (10) and using the initial condition for C(ω, τ) one can easily
show that

f(τ, x, v, ω) = exp{A(ω, τ) + vB(ω, τ) + iωx}. (13)

The solutions to A(ω, τ) and B(ω, τ) are provided by the next two lemmas.

Lemma 2. The functions A(ω, τ) and B(ω, τ) in (13) with the initial
conditions A(ω, 0) = B(ω, 0) = 0, satisfy the following system of ordinary
differential equations(ODEs) for all ω ∈ R

dA

dτ
= αB + β, (14)

dB

dτ
= aB2 − bB + c. (15)

Proof. As indicated above, the ch.f f(τ, x, v, ω) satisfies PIDE. Substituting
(13) into (10) yields

0 =
∂f

∂t
+A[f ] + λs

∫

R

(f(t, x+ y, v)− f(t, x, v))φY (y)dy

+ λv
∫

R

(f(t, x, v + z)− f(t, x, v))φZ(z)dz.

(16)
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First we compute

∂f

∂t
= (

∂A

∂τ
+ v

∂B

∂τ
)f,

∂f

∂x
= iωf,

∂2f

∂x2
= ω2f

∂f

∂v
= Bf,

∂2f

∂v2
= B2f,

∂f2

∂x∂v
= iωBf,

and

f(x+ y, v, τ) − f(x, v, τ) = exp{A(ω, τ) + vB(ω, τ) + iω(x+ y)}
− exp{A(ω, τ) + vB(ω, τ) + iωx},
= [exp iωy − 1]f(x, v, τ),

f(x, v + z, τ) − f(x, v, τ) = exp{A(ω, τ) + (v + z)B(ω, τ) + iωx}
− exp{A(ω, τ) + vB(ω, τ) + iωx},
= [exp zB − 1]f(x, v, τ).

We substitute all terms above into equation (16) and get

0 = −∂A
∂τ

+ ǫv̄B + (r − λsκ)iω + λs
∫

R

(eiωy − 1)φY (y)dy

+ λv
∫

R

(ezB − 1)φZ(z)dz + v[−∂B
∂τ

+
1

2
(−iω + ω2)

+ (−ǫ+ ρσiω)B +
1

2
σ2B2],

(17)

which is simplified to

0 = −∂A
∂τ

+ αB + β + v[−∂B
∂τ

+ c− bB + aB2]. (18)

Separating the order v in terms to reduce the equation (17) to two ordinary
differential equations (ODEs),

∂A

∂τ
= αB + β,

∂B

∂τ
= aB2 − bB + c,

(19)
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with

α = ǫv̄,

β = (r − λsκ)iω + λs
∫

R

(eiωy − 1)φY (y)dy + λv
∫

R

(ezB − 1)φZ(z)dz,

a =
1

2
σ2,

b = ǫ− ρσiω,

c =
1

2
(iω + ω2).

(20)

Lemma 3. The solution to the system of ODEs as specified in first lemma
is given by

A(ω, τ) =
ǫv̄

σ2

(

(ǫ− ρσiω −∆)τ − 2 ln

(

1−B0e
−∆τ

1−B0

))

+ iω(r − λsκ)τ

+ λsτ

∫

R

(eiωy − 1)φY (y)dy + λvτ

∫

R

(ezB − 1)φZ(z)dz,

B(ω, τ) =
1

σ2

(

1− e−∆τ

1−B0e−∆τ

)

(ǫ− ρσiω −∆),

C(ω, τ) = iω,

(21)

where
∆ =

√

(ǫ− ρσiω)2 − (iω + ω2)σ2,

B0 =
ǫ− ρσiω −∆

ǫ− ρσiω +∆
.

Proof. First we solve for B(ω, τ)

dB

dτ
= aB2 − bB + c = a(B −B1) + (B −B2),

with

Bj =
b±∆

2a
, j = 1, 2,

∆ =
√

b2 − 4ac.

Separating variables gives

1

a(B −B1)(B −B2)
dB = dτ,
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which is equivalent to

1
(B1−B2)

a(B −B1)
−

1
(B1−B2)

a(B −B2)
dB = dτ,

integrating on both sides gives

ln(
B −B1

B −B2
) = ∆τ +∆cB ,

using initial condition B(ω, 0) = 0, we have

cB =
1

∆

(

ln
B1

B2

)

.

Solving for B in equation (15) yields

B(ω, τ) =
1

σ2

(

1− e−∆τ

1−B0e−∆τ

)

(ǫ− ρσiω −∆).

Now we are able to solve for A(ω, τ)

A(ω, τ) =

∫

(αB + β) dτ,

= α

∫

Bdτ + βτ + cA,

= α[B2τ −
1

a
ln
(

1−B0e
−∆τ

)

] + βτ + cA,

from the initial condition A(ω, τ) = 0, the constant of integration cA is as
follows

cA =
α

a
ln(1−B0),

with

B2 =
ǫ− ρσiω −∆

σ2
,

α = ǫv̄, a =
σ2

2
,
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A(ω, τ) = α

[

B2τ −
1

a
ln

(

1−B0e
−∆τ

1−B0

)]

+ βτ,

= ǫv̄

[

ǫ− ρσiω −∆

σ2
τ − 2

σ2
ln

(

1−B0e
−∆τ

1−B0

)]

+ βτ,

=
ǫv̄

σ2

[

(ǫ− ρσiω −∆)τ − 2 ln

(

1−B0e
−∆τ

1−B0

)]

+ βτ,

=
ǫv̄

σ2

[

(ǫ− ρσiω −∆)τ − 2 ln

(

1−B0e
−∆τ

1−B0

)]

+ iω(r − λsκ)τ

+ λsτ

∫

R

(eiωy − 1)φY (y)dy + λvτ

∫

R

(ezB − 1)φZ(z)dz.

Consequently, we arrived to the desired result by replacing β by its value.

Lemma 4. In Stochastic Volatility double Jump model (SVJJ), the char-
acteristic function φT (ω) of log-terminal asset price lnST is given by

φT (ω) = exp

(

ǫv̄

σ2

[

(ǫ− ρσiω −∆)T − 2 ln

(

1−B0e
−∆T

1−B0

)])

+ iω(r − λsκ)T + λsT
(

(1 + µ)iωe−
1
2
δ2iω(iω−1) − 1

)

+ λvT

(

1

1− ζB
− 1

)

× exp

(

v0

σ2

(

1− e−∆T

1−B0e−∆T

)

(ǫ− ρσiω −∆)

)

× exp (iw[lnS0 + rT ]) ,

(22)

where ∆ and B0 are as defined in the previous lemma.

Proof. On the one hand, at maturity the characteristic function exp[eiωXt ]
of Xt is as follows

EQ
[

eiωXt
]

= EQ

[

eiω ln(
er(T−t)St

K
)

]

= EQ[expiω lnSt expiωr(T−t) exp−iω lnK ].
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At the maturity, substituting t = T in the characteristic function of Xt gives

EQ
[

eiωXT
]

= EQ[expiω lnST e−iω lnK ]

= e−iω lnKEQ[expiω lnST ],

hence

EQ
[

eiωXT
]

= exp[A(ω, T ) + vB(ω, T ) + iωXT ],

the characteristic function of log-terminal asset price ST is as follows

EQ
[

eiω lnST

]

= eiω lnKEQ[exp(iωXT )]

= exp(iω lnK) exp[A(ω, T ) + vB(ω, T ) + iω ln
ST

K
]

= exp

(

ǫv̄

σ2

[

(ǫ− ρσiω −∆)T − 2 ln

(

1−B0e
−∆T

1−B0

)])

+ iω(r − λsκ)T + λsT

∫

R

(eiωy − 1)φY (y)dy

+ λvT

∫

R

(ezB − 1)φZ(z)dz

× exp

(

v0

σ2

(

1− e−∆T

1−B0e−∆T

)

(ǫ− ρσiω −∆)

)

× exp (iw[lnS0 + rT ]) .

On the other hand, applying the log-normal distribution of jump-amplitude
Y in our general formulas, leads to the following integral

∫ ∞

−∞
eiωyφY (y)dy =

∫ ∞

−∞
eiωy

1√
2πδ

exp[
−(ln(y + 1)− (ln(µ+ 1)− δ2

2 ))
2

δ2

2

]dy,

=

∫ ∞

−∞
exp[

−1

2δ2
(−(δ2iω)2 − 2δ2iω(ln(1 + µ)− δ2

2
)]

1√
2πδ

exp[
−[(ln(y + 1)− (ln(µ+ 1)− δ2

2 − 2δ2iω))2]
δ2

2

]dy,

= (1 + µ)iω exp[
1

2
δ2iω(iω − 1)],

with
∫∞
−∞

1√
2πδ

exp[
−(y − µ)2

δ2

2

]dy = 1.
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Then applying exponential distribution to the jump-amplitude of stochastic
volatility yields

∫ ∞

−∞
ezBφZ(z)dz =

∫ ∞

0
ezB

1

ζ
e
− 1

ζ
z
dz

=
1

ζ

∫ ∞

0
e
−z( 1

ζ
+B)

dz =
1

1− ζB
.

Summarizing the above, we get the desired results.

Remark 5. The integral
∫∞
−∞ eiωyφY (y)dy (resp.

∫∞
−∞ ezBφZ(z)dz) repre-

sents how small variation in log-terminal price of underlying asset (resp. volatil-
ity) impacts the value of option.

4. Fourier Transform Inversion

4.1. Discretization

In 1999, Carr & Madan [5], developed a different method designed to use the
fast Fourier transform pricing options. They introduced a new technique to
calculate the Fourier transform of a modified call option price with respect to
the logarithmic strike price so that the fast Fourier transform can be applied
to calculate the integrals. Consider a European call with the maturity T and
the strike price lnK ≡ k, which is written on a stock whose price process
is lnST ≡ s, under a risk-neutral probability density function Q(lnST |Ft).
Consider the price of a call option in t = 0 without lost of generality,

C(T, k) = e−rTEQ[(esT − ek)+|F0]

= e−rT

∫ ∞

k

(esT − ek)Q(sT |F0)dsT .
(23)

Note that CT (k) → S0 as k → ∞ and the function CT (k) is not square-
integrable. Thus, we cannot express the Fourier transform in strike in terms
of the characteristic function φT (ω) of sT and then find a range of strikes by
Fourier inversion to obtain a square-integrable function we consider the modi-
fied call price

Cmod(T, k) = eαkC(T, k),
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for some α > 0, which is chosen to improve the integrability. Carr & Madan [5],
showed that a sufficient condition for square-integrability of C(T, k) is given by
∫

|Cmod(T, k)|dk. Now consider the Fourier transform of Cmod(T, k)

ψT (ω) = F (Cmod(T, k)) (ω),

=

∫ ∞

−∞
eiωkCmod(T, k)dk.

(24)

A call price can be obtained by an inverse Fourier transform of ψT (ω) as

C(T, k) =
e−αk

2π

∫ ∞

−∞
e−iωkψT (ω)dω. (25)

Substitute equation (25) into equation (24) and interchanging integrals yields

ψT (ω) =
e−rTφT (ω−(α+1)i)

α2 + α− ω2 + i(2α + 1)ω
. (26)

Thus, a call pricing function is obtained by substituting equation (26) into
equation (25)

C(T, k) =
e−αk

2π

∫ ∞

−∞
e−iωk e−rTφT (ω−(α+1)i)

α2 + α− ω2 + i(2α + 1)ω
dω. (27)

Now this integral can be evaluated by the numerical approximation using the
Simpson rule

C(T, kp) ≈
e−αkp

π

∆ωn

3

Re{
N
∑

1

e
−i2πpn

N eiωnbψT (ωn)(3 + (−1)n − δn−1)dωn}. (28)

Here, kp and ωn are the step size of the summation grid. Denote the Kronecker
delta function that equals one whenever n = 1. Where, 1

3 (3 + (−1)n − δn−1) is
the weight implementing a choice of Simpson’s summation. The constant b ∈ R
can be tuned such that the grid is laid around at-the-money strikes, since we
are mainly interested in option prices with these particular strikes. To apply
the algorithm of FFT (see [7]), we define the grid points as follow

ωn = n∆ωn, n = 1, 2, · · · , N, (29)

kp = −b+ p∆kp, p = 1, 2, · · · , N, (30)

step sizes ∆ωn and ∆kp, satisfy the Nyquist relation given by

∆ωn∆kp =
2π

N
.
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4.2. Numerical Results

In this section we present the numerical results for the SVJJ model, which
includes jumps in both SDE, log terminal asset price and volatility. As our goal
is to price European call options using the methods considered in the previous
section we implement FFT method at different levels strike price near at-the-
money (ATM). Then, we compare the result to traditional valuation methods
Monte Carlo simulation.

For this model, all the graphics and results corresponding to an European
call option with the following conditions: S0 = 20.0, V0 = 0.1, σ = 0.1, r =
0.05, ǫ = 3.0, v0 = 0.25, ρ = 0.6, λs = 0.75, λv = 0.25, µ = 0.5, δ = 2.5, ζ =
1.2, α = 1.0 While ωn (resp. kp), varies from ωn = 1, .., N (resp. in the range
(−b, b)) and which we assume to be equal in length. Considering the maturity
T = 1.0 and the expected value of relative price jump size κ = E[Y − 1] =
µ − 1. Furthermore, the model has been implemented considering I = 10000
simulation with M = 50 time grid.

We implement SVJJ model in PYTHON. The illustration below shows dy-
namic of stock price and volatility in market free-arbitrage.

Figure 1: The graph on the left-hand side (resp. right hand side) shows

how distribution of Asset price (resp. stochastic volatility ) look like under

SVJJ model.

As expected, the evolution of call price at different level strike looks more
closely to the Black & Scholes than Monte Carlo simulation.

5. Conclusion

It is important to point out that the numerical results represent an empirical
support to prove or disprove the effectiveness of model. Fortunately, FFT al-
gorithm is more accurate and faster than the other models, it provide at the
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Figure 2: The graphs display the relation ship between call value and

strike under different models B&S, SVJJ and M.C simulation.

same time prices for about 210 strikes, while Monte Carlo simulations provide
only single strike price. Therefore, all the analyzes performed show that Fourier
transform pricing option under SVJJ model is versatile enough to describe pre-
cisely the value of call option since they are usually traded near-the-money. For
this reason, we strongly recommend the solution techniques FFT as a flexible
and promising framework to be applied at general derivative security pricing
problem and it is not only limited to SVJJ case.
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