

HOMOGENIZATION OF A DEGENERATE PDE WITH NON LINEAR WENTZELL BOUNDARY CONDITION

A. Coulibaly¹, A. Diédhiou² [§], I. Sané³

^{1,2,3}Department of Mathematics
Assane SECK University of Ziguinchor
BP 523, Ziguinchor, SENEGAL

Abstract: We develop homogenization results of a degenerate semilinear PDE with a Wentzell-type boundary condition. The second order operator is also degenerate. Our approach is entirely probabilistic, and extends the result of Diakhaby and Ouknine [3].

AMS Subject Classification: 60H15, 35K, 35B27

Key Words: homogenization, large deviations principle, viscosity solution, stochastic differential equation, backward stochastic differential equation

1. Introduction

We study the solution of a semi-linear partial differential equation (PDE) in the half-space $\mathbf{D} = \{(x_1, x_2, \dots, x_d) \in \mathbb{R}^d : x_1 > 0\}$ with additional boundary condition on $\partial\mathbf{D}$. For each $\varepsilon > 0$, we consider

Received: November 4, 2016

© 2017 Academic Publications

[§]Correspondence author

$$\begin{cases} \frac{\partial u^\varepsilon}{\partial t}(t, x) = L_\varepsilon u^\varepsilon(t, x) + f\left(\frac{x}{\varepsilon}, u^\varepsilon(t, x)\right) + \frac{1}{\varepsilon}e\left(\frac{x}{\varepsilon}, u^\varepsilon(t, x)\right), \\ \quad x \in \mathbf{D}, \quad 0 < t, \\ \Gamma_\varepsilon u^\varepsilon(t, x) + h\left(\frac{x}{\varepsilon}, u^\varepsilon(t, x)\right) + \frac{1}{\varepsilon}l\left(\frac{x}{\varepsilon}, u^\varepsilon(t, x)\right) = 0, \\ \quad x \in \partial\mathbf{D}, \quad 0 \leq t, \\ u^\varepsilon(0, x) = g(x), \quad x \in \mathbf{D}, \end{cases} \quad (1)$$

where

- $e : R^d \times R \rightarrow R$ is a measurable mapping, which is periodic, of period one in each direction in the first argument, continuous in the second argument uniformly with respect to the first, and satisfies:

$$\int_{T^d} e(x, y) m(dx) = 0, \quad \forall y \in R, \quad (2)$$

where m is the unique invariant measure on the torus T^d .

We suppose that e is twice continuously differentiable in y , uniformly with respect to x , and there exists a constant K such that:

$$|e(x, y)| + \left| \frac{\partial}{\partial y} e(x, y) \right| + \left| \frac{\partial^2}{\partial y^2} e(x, y) \right| \leq K, \quad \forall x \in R^d, \quad y \in R. \quad (3)$$

- $l : R^{d-1} \times R \rightarrow R$ is a measurable mapping, which is periodic, of period one in each direction in the first argument, continuous in the second argument uniformly with respect to the first, and satisfies:

$$\int_{T^{d-1}} l(x, y) m_0(dx) = 0, \quad \forall y \in R, \quad (4)$$

where m_0 denotes the invariant measure on the torus T^{d-1} . We suppose that l is twice continuously differentiable in y , uniformly with respect to x , and there exists a constant K such that:

$$|l(x, y)| + \left| \frac{\partial}{\partial y} l(x, y) \right| + \left| \frac{\partial^2}{\partial y^2} l(x, y) \right| \leq K, \quad \forall x \in R^{d-1}, \quad y \in R. \quad (5)$$

- $f : R^d \times R \rightarrow R$, $g : R^d \rightarrow R$ and $h : R^d \times R \rightarrow R$ are sufficiently smooth functions. Equivalently the coefficients can be seen as periodic

functions with respect to the first variable with period one in each direction on R^d and are such that for some $c > 0$, $p > 0$, $\mu \in R$, $\beta < 0$, and all $x \in R^d$, $y, y' \in R$:

$$|g(x)| \leq c(1 + |x|^p) \quad (6)$$

$$|f(x, y)| \leq c(1 + |y|^2) \quad (7)$$

$$(y - y') [f(x, y) - f(x, y')] \leq \mu |y - y'| \quad (8)$$

$$(y - y') [h(x, y) - h(x, y')] \leq \beta |y - y'| \quad (9)$$

$$|h(x, y)| \leq c(1 + |y|^2). \quad (10)$$

Assumptions and Definitions

Let (Ω, \mathcal{F}, P) be a probability space on which two Brownian motions of $(B^i)_{1 \leq i \leq d}$ and $(N^i)_{1 \leq i \leq d}$ are defined (see [3]). Let E the corresponding expectation operator.

The differential operator L_ε inside \mathbf{D} and Γ_ε in ∂D are given by:

$$L_\varepsilon = \frac{1}{2} \sum_{i,j}^d a_{i,j} \left(\frac{x}{\varepsilon} \right) \frac{\partial^2}{\partial x_i \partial x_j} + \frac{1}{\varepsilon} \sum_{i=1}^d b_i \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_i} + \sum_{i=1}^d c_i \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_i}, \quad (11)$$

$$\Gamma_\varepsilon = \frac{1}{2} \sum_{i,j}^d \tau_{i,j} \left(\frac{x}{\varepsilon} \right) \frac{\partial^2}{\partial x_i \partial x_j} + \frac{1}{\varepsilon} \sum_{i=1}^d \beta_i \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_i} + \sum_{i=1}^d \gamma_i \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_i}. \quad (12)$$

These operators are the generators of the reflected $(L_\varepsilon, \Gamma_\varepsilon)$ -diffusion (see Tanaka [6]):

$$\begin{cases} dX_t^\varepsilon = \sigma \left(\frac{X_t^\varepsilon}{\varepsilon} \right) dB_t + \frac{1}{\varepsilon} b \left(\frac{X_t^\varepsilon}{\varepsilon} \right) dt + c \left(\frac{X_t^\varepsilon}{\varepsilon} \right) dt + \tau \left(\frac{X_t^\varepsilon}{\varepsilon} \right) dN_t \\ \quad + \frac{1}{\varepsilon} \beta \left(\frac{X_t^\varepsilon}{\varepsilon} \right) d\varphi_t^\varepsilon + \gamma \left(\frac{X_t^\varepsilon}{\varepsilon} \right) d\varphi_t^\varepsilon, \quad 0 < t, \\ X_t^{1,\varepsilon} \geq 0, \quad \varphi^\varepsilon \text{ is continuous and increasing,} \\ \quad \int_0^t X_s^{1,\varepsilon} d\varphi_s^\varepsilon = 0, \quad 0 < t, \\ X_0^\varepsilon = x, \end{cases} \quad (13)$$

where $X^{1,\varepsilon}$ denotes the first component of the process X^ε . We recall that $\mathbf{D} = R_+^* \times R^{d-1}$, so that X^ε lives in \mathbf{D} , that is, $X^{1,\varepsilon}$ remains non-negative and φ^ε increases when and only when $X^{1,\varepsilon}$ is zero, just to keep it non-negative.

The functions

$$\tau : \partial D \left(\cong R^{d-1} \right) \longrightarrow R^{(d-1) \times (d-1)}, \beta : \partial D \left(\cong R^{d-1} \right) \longrightarrow R^{d-1}$$

and the function $\gamma : \partial D \left(\cong R^{d-1} \right) \longrightarrow R^d$ with $\gamma^1(x) = 1$, are smooth and periodic of period one in each direction. The matrix $\alpha = \tau \tau^*$ is degenerate and satisfies the hypo-elliptic Hörmander condition.

We suppose that the functions

$$\sigma : R^d \longrightarrow R^{d \times d}, \quad b : R^d \longrightarrow R^d, \quad c : R^d \longrightarrow R^d$$

are smooth and periodic of period one in each direction. The novelty here (in comparison with the work of Diakhaby and Ouaknine [3]), is that assume that the matrix $a = \sigma \sigma^*$ is degenerate and satisfies hypo-elliptic Hörmander condition.

Definition 1.1 (Lie bracket). The Lie bracket between the vectors fields A_j and A_k is defined by:

$$[A_j, A_k] := A_j^\nabla A_k - A_k^\nabla A_j, \quad (14)$$

$$\text{where } A_j^\nabla A_k := A_j^l \partial_l A_k^i \frac{\partial}{\partial x_i}.$$

Definition 1.2 (Strong Hörmander Condition (SHC)). Let $H(n, x)$ be the set of the Lie brackets of the vector field $(m_j(x))_{1 \leq j \leq d}$ of order lower than n at the point $x \in \mathcal{X}$. We say that matrix m satisfies the (SHC) if for all $x \in \mathcal{X}$, there exists $n_x \in N$ such that $H(n_x, x)$ generates \mathcal{X} .

Let us define $\tilde{X}_t^\varepsilon := \frac{1}{\varepsilon} X_{\varepsilon^2 t}^\varepsilon$ and $\tilde{\varphi}_t^\varepsilon := \frac{1}{\varepsilon} \varphi_{\varepsilon^2 t}^\varepsilon$, then we get with two news standard d -dimensional Brownian motions $\{B_t^\varepsilon : t \geq 0\}$, and $\{N_t^\varepsilon : t \geq 0\}$ which in fact depends on ε :

$$\begin{cases} d\tilde{X}_t^\varepsilon = \sigma \left(\tilde{X}_t^\varepsilon \right) dB_t^\varepsilon + b \left(\tilde{X}_t^\varepsilon \right) dt + \varepsilon c \left(\tilde{X}_t^\varepsilon \right) dt + \tau \left(\tilde{X}_t^\varepsilon \right) dN_t^\varepsilon \\ \quad + \beta \left(\tilde{X}_t^\varepsilon \right) d\tilde{\varphi}_t^\varepsilon + \varepsilon \gamma \left(\tilde{X}_t^\varepsilon \right) d\tilde{\varphi}_t^\varepsilon, \quad 0 < t, \\ \tilde{X}_t^{1,\varepsilon} \geq 0, \quad \tilde{\varphi} \text{ is continuous and increasing}, \\ \int_0^t \tilde{X}_s^{1,\varepsilon} d\tilde{\varphi}_s^\varepsilon = 0, \quad 0 < t, \\ \tilde{X}_0^\varepsilon = \frac{x}{\varepsilon}. \end{cases} \quad (15)$$

We set L_0 and Γ_0 the two operators defined as:

$$L_0 := \frac{1}{2} \sum_{i,j}^d a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^d b_i(x) \frac{\partial}{\partial x_i}, \quad x \in T^d, \quad (16)$$

$$\Gamma_0 := \frac{1}{2} \sum_{i,j}^d \alpha_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^d \beta_i(x) \frac{\partial}{\partial x_i}, \quad x \in T^{d-1}. \quad (17)$$

Hypothesis (H): We suppose that σ and α satisfies the SHC.

2. Weak Convergence (SDE and BSDE)

With **(H)** and the boundary condition $\Gamma_0 u = 0$, according to Tanaka [6] (see Pardoux and Diedhiou [2] in the case that $\partial D = \emptyset$), the process \tilde{X}^ε is ergodic and has a unique invariant measure whose density is strictly positive. Thereafter, we set m the invariant measure associated of L_0 on T^d and we set m_0 the invariant measure associated of the differential operator Γ_0 on T^{d-1} .

Throughout the paper, we suppose that

$$\int_{T^d} b(x) m(dx) = 0, \quad (18)$$

$$\int_{T^{d-1}} \beta(x) m_0(dx) = 0. \quad (19)$$

Remark 2.1. τ and β are regarded as $d \times d$ -matrix and d -vector-valued functions respectively, with the convention that:

$$\tau^{i1} = \tau^{1l} = \beta^1 = 0.$$

Let \hat{b} be the solution of Poisson equation : $L_0 \hat{b} = -b$ in \mathbf{D} , and $\Gamma_0 \hat{b} = -\beta$ in $\partial \mathbf{D}$ let us introduce the process \hat{X}_t^ε defined as:

$$\begin{aligned} \hat{X}_t^\varepsilon &= X_t^\varepsilon + \varepsilon \left[\hat{b} \left(\frac{X_t}{\varepsilon} \right) - \hat{b} \left(\frac{x}{\varepsilon} \right) \right] \\ &= x + \int_0^t \left(I + \nabla \hat{b} \right) \sigma \left(\frac{X_s^\varepsilon}{\varepsilon} \right) dB_s + \int_0^t \left(I + \nabla \hat{b} \right) c \left(\frac{X_s^\varepsilon}{\varepsilon} \right) ds \\ &\quad + \int_0^t \left(I + \nabla \hat{b} \right) \tau \left(\frac{X_s^\varepsilon}{\varepsilon} \right) dN_s + \int_0^t \left(I + \nabla \hat{b} \right) \gamma_\varepsilon \left(\frac{X_s^\varepsilon}{\varepsilon} \right) d\varphi_s^\varepsilon. \end{aligned} \quad (20)$$

With **(H)** we know that the pair (L_0, Γ_0) is hypo-elliptic on \overline{D} . Then there exists a bounded and smooth solution η of the PDE with Wentzell-type boundary condition:

$$\begin{cases} L_0\eta = 0 & \text{in } D \\ \Gamma_0\eta = (I + \nabla\hat{b})\gamma - \int_{T^{d-1}} (I + \nabla\hat{b})(x)\gamma(x)m_0(dx) & \text{on } \partial D. \end{cases} \quad (21)$$

Taking such a solution η , we have by Itô:

$$\begin{aligned} \varepsilon^2 \left[\eta \left(\frac{X_t^\varepsilon}{\varepsilon} \right) - \eta \left(\frac{x}{\varepsilon} \right) \right] &= \varepsilon \int_0^t \nabla \eta \sigma \left(\frac{X_s^\varepsilon}{\varepsilon} \right) dB_s + \varepsilon \int_0^t \nabla \eta \tau \left(\frac{X_s^\varepsilon}{\varepsilon} \right) dN_s \\ &+ \varepsilon \int_0^t \nabla \eta c \left(\frac{X_s^\varepsilon}{\varepsilon} \right) ds + \varepsilon \int_0^t \nabla \eta \gamma \left(\frac{X_s^\varepsilon}{\varepsilon} \right) d\phi_s^\varepsilon \\ &+ \int_0^t (I + \nabla\hat{b}) \gamma \left(\frac{X_s^\varepsilon}{\varepsilon} \right) d\varphi_s^\varepsilon - \varphi_t^\varepsilon \int_{T^{d-1}} (I + \nabla\hat{b})(x)\gamma(x)m_0(dx). \end{aligned} \quad (22)$$

Putting (22) into (20) we have

$$\begin{aligned} \hat{X}_t^\varepsilon &= x + \int_0^t (I + \nabla\hat{b}) \sigma \left(\frac{X_s^\varepsilon}{\varepsilon} \right) dB_s + \int_0^t (I + \nabla\hat{b}) \tau \left(\frac{X_s^\varepsilon}{\varepsilon} \right) dN_s \\ &+ \int_0^t (I + \nabla\hat{b}) c \left(\frac{X_s^\varepsilon}{\varepsilon} \right) ds + \varphi_t^\varepsilon \int_{T^{d-1}} (I + \nabla\hat{b})(x)\gamma(x)m_0(dx) \\ &- \varepsilon \int_0^t \nabla \eta \gamma \left(\frac{X_s^\varepsilon}{\varepsilon} \right) d\phi_s^\varepsilon - \varepsilon \int_0^t \nabla \eta \sigma \left(\frac{X_s^\varepsilon}{\varepsilon} \right) dB_s \\ &- \varepsilon \left(\int_0^t \nabla \eta \tau \left(\frac{X_s^\varepsilon}{\varepsilon} \right) dN_s - \int_0^t \nabla \eta c \left(\frac{X_s^\varepsilon}{\varepsilon} \right) ds + \varepsilon \left[\eta \left(\frac{X_t}{\varepsilon} \right) - \eta \left(\frac{x}{\varepsilon} \right) \right] \right). \end{aligned} \quad (23)$$

Before proceeding, we introduce some definitions:

$$a_0 = \int_{T^d} (I + \nabla\hat{b})(x)a(x) (I + \nabla\hat{b})^*(x)m(dx),$$

$$\alpha_0 = \int_{T^d} (I + \nabla\hat{b})(x)\alpha(x) (I + \nabla\hat{b})^*(x)m(dx),$$

$$L = \frac{1}{2} \sum_{i,j=1}^d a_0^{ij} \partial_i \partial_j + \sum_{i=1}^d c_0^i \partial_i, \quad \text{with}$$

$$c_0 = \int_{T^d} (I + \nabla\hat{b})(x)c(x)m_0(dx),$$

$$\Gamma = \frac{1}{2} \sum_{i,j=2}^d \alpha_0^{ij} \partial_i \partial_j + \sum_{i=1}^d \gamma_0^i \partial_i, \quad \text{with}$$

$$\gamma_0 = \int_{T^{d-1}} \left(I + \nabla \hat{b} \right) (x) \gamma(x) m_0(dx).$$

As in [3], we have the following theorem.

Theorem 2.2. *Under **(H)** with conditions (17) and (18), the $(L_\varepsilon, \Gamma_\varepsilon)$ -reflected diffusion process X^ε converges in law to the (L, Γ) -reflected diffusion process X as $\varepsilon \downarrow 0$. Moreover, on the space $C([0, T], R^{2d+1})$ equipped with the sup-norm topology,*

$$(X^\varepsilon, M_t^{X^\varepsilon}, \varphi^\varepsilon) \longrightarrow (X, M^X, \varphi),$$

where:

- M^X is the martingale part of X ,
- φ (resp. φ^ε) is the local time of X^1 (resp. $X^{1,\varepsilon}$).

Let \overline{X} denote the unique diffusion process with values in the d -dimensional torus T^d , whose generator is the operator L_0 .

We now consider a type of BSDE which has been introduced in Pardoux and Zhang [5]. For each fixed $(t, x) \in [0, T] \times \overline{D}$, let $\{ (Y_s^\varepsilon, U_s^\varepsilon) ; 0 \leq s \leq T^d \}$ be the solution of the BSDE

$$\begin{aligned} Y_s^\varepsilon = & g(X_t^\varepsilon) + \int_s^t f \left(\frac{X_r^\varepsilon}{\varepsilon}, Y_r^\varepsilon \right) dr + \frac{1}{\varepsilon} \int_s^t e \left(\frac{X_r^\varepsilon}{\varepsilon}, Y_r^\varepsilon \right) dr \\ & + \int_s^t h \left(\frac{X_r^\varepsilon}{\varepsilon}, Y_r^\varepsilon \right) d\varphi_r^\varepsilon + \frac{1}{\varepsilon} \int_s^t l \left(\frac{X_r^\varepsilon}{\varepsilon}, Y_r^\varepsilon \right) d\varphi_r^\varepsilon - \int_s^t U_r^\varepsilon dM_r^{X^\varepsilon}. \end{aligned} \quad (24)$$

For each fixed $y \in R$, let set \hat{e} be the solution of the Poisson equation:

$$L_0 \hat{e}(x, y) + e(x, y) = 0, \quad x \in T^d, \quad y \in R. \quad (25)$$

More precisely by (2), \hat{e} is centered with respect to the invariant measure m and is given by the formula

$$\hat{e}(x, y) = \int_0^\infty E^x e(\overline{X}_t, y) dt. \quad (26)$$

Note that, see [4], $\hat{e} \in C^{0,2}(T^d, R)$ and $\hat{e}(\cdot, y), \frac{\partial}{\partial y} \hat{e}(\cdot, y), \frac{\partial^2}{\partial y^2} \hat{e}(\cdot, y) \in W^{2,p}(T^d)$, for any $p \geq 1$ there exists K' such that for all $y \in R$

$$\|\hat{e}(\cdot, y)\|_{W^{2,p}(T^d)} + \left\| \frac{\partial}{\partial y} \hat{e}(\cdot, y) \right\|_{W^{2,p}(T^d)} + \left\| \frac{\partial^2}{\partial y^2} \hat{e}(\cdot, y) \right\|_{W^{2,p}(T^d)} \leq K'. \quad (27)$$

For each fixed $y \in R^d$, let set \hat{l} be the solution of the Poisson equation which satisfies (4) :

$$\Gamma_0 \hat{l}(x, y) + l(x, y) = 0, \quad x \in T^d, \quad y \in R. \quad (28)$$

Note that, see [4], $\hat{l} \in C^{0,2}(T^{d-1}, R)$ and $\hat{l}(., y), \frac{\partial}{\partial y} \hat{l}(., y), \frac{\partial^2}{\partial y^2} \hat{l}(., y) \in W^{2,p}(T^d)$, for any $p \geq 1$ there exists K' such that for all $y \in R$

$$\left\| \hat{l}(., y) \right\|_{W^{2,p}(T^d)} + \left\| \frac{\partial}{\partial y} \hat{l}(., y) \right\|_{W^{2,p}(T^d)} + \left\| \frac{\partial^2}{\partial y^2} \hat{l}(., y) \right\|_{W^{2,p}(T^d)} \leq K'. \quad (29)$$

We introduce the notations:

$$M_t^\varepsilon = \int_0^t U_r^\varepsilon dM_r^{X^\varepsilon} \quad \text{and} \quad M_t = \int_0^t U_r dM_r^X, \quad 0 \leq t \leq T,$$

and we consider the quintuple (X, M^X, φ, Y, M) (resp. $(X^\varepsilon, M^{X^\varepsilon}, \varphi^\varepsilon, Y^\varepsilon, M^\varepsilon)$) as a random element of the space $C([0, t], R^{2d+1}) \times D([0, t], R^2)$, where we equip the first factor with the sup-norm topology, and the second factor with the S -topology of Jakubowski (see [1]).

Considering the SDE and the BSDE satisfying respectively by X and Y :

$$\begin{aligned} X_t &= x + c_0 t + \int_0^t b_0(Y_s) ds + \sqrt{a_0} B_t + \int_0^t d_0(Y_s) d\varphi_t \\ &\quad + \sqrt{\alpha_0} N_t + \gamma_0 \varphi_t, \\ Y_t &= g(X_T) + \int_t^T f_0(Y_s) ds + \int_t^T h_0(Y_s) d\varphi_s + M_t - M_T, \end{aligned} \quad (30)$$

where

$$\begin{aligned} b_0(y) &= \int_{T^d} (I + \nabla \hat{b}) a(x) \frac{\partial^2 \hat{e}}{\partial x \partial y}(x, y) m(dx), \\ c_0 &= \int_{T^d} (I + \nabla \hat{b}) c(x) m(dx), \\ f_0(y) &= \int_{T^d} \left[\left\langle \frac{\partial \hat{e}}{\partial x}, c(x) \right\rangle - \left(\frac{\partial \hat{e}}{\partial y} \times e \right) + \frac{\partial^2 \hat{e}}{\partial x \partial y} a(x) \left(\frac{\partial \hat{e}}{\partial x} \right)^* \right] (x, y) m(dx), \\ &\quad + \int_{T^d} f(x, y) m(dx), \\ h_0 &= \int_{T^{d-1}} \left(h(., y) + \left\langle \frac{\partial \hat{e}}{\partial x}(., y), \gamma \right\rangle \right) (x) m_0(dx), \\ d_0(y) &= \int_{T^d} (I + \nabla \hat{b}) \alpha(x) \frac{\partial^2 \hat{e}}{\partial x \partial y}(x, y) m(dx). \end{aligned}$$

Then we have the following theorem.

Theorem 2.3. *Under (H) , (2), (4) and the conditions (6),..., (10), we have*

$$Y_0^\varepsilon \longrightarrow Y_0 \text{ in } R.$$

Proof. We adopt the same techniques as in [3]. \square

3. Main Result

For each $(t, x) \in R_+ \times \overline{D}$, the solution of (1) is into the form

$$u^\varepsilon(t, x) := Y_0^\varepsilon, \quad (31)$$

where Y^ε denotes the solution of the BSDE considered in the previous section. Now, let us consider the following homogenized system:

$$\begin{cases} \frac{\partial u}{\partial t}(t, x) = Lu(t, x) + f_0(u(t, x)) + b_0(u(t, x))\nabla u(t, x), \quad x \in D, \\ \Gamma u(t, x) + d_0(u(t, x))\nabla u(t, x) + h_0(u(t, x)) = 0, \quad x \in \partial D, \quad t \geq 0, \\ u(0, x) = g(x), \quad x \in D. \end{cases} \quad (32)$$

We shall assume w.l.o.g. that the orthogonal basis of R^d has been chosen in such a way that the matrix a_0 is of the form

$$a_0 = \begin{pmatrix} a'_0 & 0 \\ 0 & 0 \end{pmatrix},$$

where a'_0 is a $d' \times d'$ positive definite matrix, with $d' \leq d$.

We set $R^d = E_{d'} \oplus E_{d-d'}$, where $E_{d'}$ is the subspace of R^d of dimension d' generated by the vectors e_i , $i := 1, \dots, d'$ after a new arrangement of the basis vectors of R^d so we can obtain the wished form of a_0 .

Define the space

$$H_{a_0}(D) = \left\{ v \in L^2(\overline{D}) : \text{ s.t. } \sqrt{a_0} \cdot \nabla v \in (L^2(\overline{D}))^d \text{ and } v \Big|_{\partial D} = 0 \right\},$$

which will be associated to the norm:

$$\|v\|_{H_{a_0}(D)} = \left(\|v\|_{L^2(\overline{D})}^2 + \|\sqrt{a_0} \nabla v\|_{(L^2(\overline{D}))^d}^2 \right)^{1/2}.$$

By our assumptions, we have the *a priori* estimates

$$\|f_0(v)\|_{L^2(\overline{\mathbf{D}})} + \|b_0(v)\nabla v\|_{L^2(\overline{\mathbf{D}})} \leq C \left(1 + \|v\|_{H_{a_0}(\mathbf{D})} \right).$$

Thus, we can show the following theorem.

Theorem 3.1. *Under (H) , (2), (4), (18), (19) and the conditions (6), ..., (10); the system (32) has a unique solution u in $L^2([0, T], H_0^1(\overline{\mathbf{D}}))$, such that for all $1 \leq k \leq d$*

$$\begin{aligned} \langle a_0 \nabla u_k, \nabla u_k \rangle &\in L^1([0, T] \times \mathbf{D}), \\ \langle \alpha_0 \nabla u_k, \nabla u_k \rangle &\in L^1([0, T] \times \partial \mathbf{D}), \quad \text{with } u_k = \frac{\partial u}{\partial x_k}. \end{aligned}$$

Moreover

$$u \in C(R_+ \times \overline{\mathbf{D}})$$

and we have for all $t \geq 0$, for all $x \in R^d$

$$u^\varepsilon(t, x) \rightarrow u(t, x), \quad \text{when } \varepsilon \rightarrow 0,$$

where $u^\varepsilon(t, x)$ is the solution of the PDE system (1).

Proof. We adopt similar tools as in [2].

* *Step 1:*

We first assume that the matrix a_0 is elliptic and we look for a solution

$$u \in L^2\left((0, T); H_0^1(\overline{\mathbf{D}})\right) \cap C\left([0, T]; L^2(\overline{\mathbf{D}})\right).$$

Let us prove the existence and uniqueness of the solution of the PDE. Set $F(\mathbf{D}) = L^2\left((0, T); H_0^1(\overline{\mathbf{D}})\right)$ and consider the map:

$$\Psi : F(\mathbf{D}) \longrightarrow F(\mathbf{D})$$

Let us show that Ψ is a contraction. For $\overline{v} \in F$, let $\overline{u} = \Psi(\overline{v})$ where $\overline{u} = u - u'$ and $\overline{v} = v - v'$. Denote by ν the ellipticity constant of a_0 . For any $\alpha > 0$,

$$\begin{aligned} &\frac{1}{2} e^{-\alpha t} \|\overline{u}_t\|_{L^2(\overline{\mathbf{D}})}^2 + \nu \int_0^t e^{-\alpha s} \|\nabla \overline{u}_s\|_{(L^2(\overline{\mathbf{D}}))^d}^2 ds \\ &\leq -\frac{\alpha}{2} \int_0^t e^{-\alpha s} \|\overline{u}_s\|_{L^2(\overline{\mathbf{D}})}^2 ds + \int_0^t e^{-\alpha s} \langle h_0(v_s) - h_0(v'_s), \overline{u}_s \rangle_{L^2(\overline{\mathbf{D}})} d\varphi_s \\ &\quad + \int_0^t e^{-\alpha s} \langle f_0(v_s) - f_0(v'_s), \overline{u}_s \rangle_{L^2(\overline{\mathbf{D}})} ds. \end{aligned}$$

Remark that

$$(h_0(v) - h_0(v'))\bar{u} \leq \beta \|\bar{v}\|_{L^2(\bar{D})} \|\bar{u}\|_{L^2(\bar{D})} \quad (\text{as a reminder } \beta < 0)$$

$$(f_0(v) - f_0(v'))\bar{u} \leq \mu \|\bar{v}\|_{L^2(\bar{D})} \|\bar{u}\|_{L^2(\bar{D})}.$$

From this, we have

$$\begin{aligned} & \frac{1}{2}e^{-\alpha t} \|\bar{u}_t\|_{L^2(\bar{D})}^2 + \nu \int_0^t e^{-\alpha s} \|\nabla \bar{u}_s\|_{(L^2(\bar{D}))^d}^2 ds \\ & \leq -\frac{\alpha}{2} \int_0^t e^{-\alpha s} \|\bar{u}_s\|_{L^2(\bar{D})}^2 ds + \mu \int_0^t e^{-\alpha s} \|\bar{v}_s\|_{L^2(\bar{D})} \|\bar{u}_s\|_{L^2(\bar{D})} ds. \end{aligned}$$

By the fact that:

$$(\nu X - \mu Y)^2 \geq 0 \Rightarrow XY \leq \frac{\nu}{2\mu} X^2 + \frac{\mu}{2\nu} Y^2,$$

we have

$$\begin{aligned} & \frac{1}{2}e^{-\alpha t} \|\bar{u}_t\|_{L^2(\bar{D})}^2 + \nu \int_0^t e^{-\alpha s} \|\nabla \bar{u}(s)\|_{(L^2(\bar{D}))^d}^2 ds \\ & + \frac{\alpha}{2} \int_0^t e^{-\alpha s} \|\bar{u}(s)\|_{L^2(\bar{D})}^2 ds \\ & \leq \frac{\nu}{2} \int_0^t e^{-\alpha s} \left(\|\bar{v}(s)\|_{L^2(\bar{D})}^2 + \underbrace{\|\nabla \bar{v}(s)\|_{(L^2(\bar{D}))^d}^2}_{\text{we add this term}} \right) ds \\ & + \frac{\mu^2}{2\nu} \int_0^t e^{-\alpha s} \|\bar{u}(s)\|_{L^2(\bar{D})}^2 ds. \end{aligned}$$

Thereby,

$$\begin{aligned} & \nu \int_0^t e^{-\alpha s} \|\nabla \bar{u}(s)\|_{(L^2(\bar{D}))^d}^2 ds + \left(\frac{\alpha}{2} - \frac{\mu^2}{2\nu} \right) \int_0^t e^{-\alpha s} \|\bar{u}(s)\|_{L^2(\bar{D})}^2 ds \\ & \leq \frac{\nu}{2} \int_0^t e^{-\alpha s} \left(\|\bar{v}(s)\|_{L^2(\bar{D})}^2 + \|\nabla \bar{v}(s)\|_{(L^2(\bar{D}))^d}^2 \right) ds. \end{aligned}$$

Choose $\alpha = 2\nu + \frac{\mu^2}{\nu}$, then we have

$$\begin{aligned} & \int_0^t e^{-\alpha s} \|\nabla \bar{u}(s)\|_{(L^2(\bar{D}))^d}^2 ds + \int_0^t e^{-\alpha s} \|\bar{u}(s)\|_{L^2(\bar{D})}^2 ds \\ & \leq \frac{1}{2} \int_0^t e^{-\alpha s} \left(\|\bar{v}(s)\|_{L^2(\bar{D})}^2 + \|\nabla \bar{v}(s)\|_{(L^2(\bar{D}))^d}^2 \right) ds. \end{aligned}$$

There follows that Ψ is a contraction on $F(\mathbf{D})$ with the norm:

$$\|\bar{u}\|_\alpha = \left(\int_0^t e^{-\alpha s} \left(\|\bar{u}(s)\|_{L^2(\bar{\mathbf{D}})}^2 + \|\nabla \bar{u}(s)\|_{(L^2(\bar{\mathbf{D}}))^d}^2 \right) ds \right)^{\frac{1}{2}}.$$

* Step 2:

Consider the perturbed matrix $A^n = a_0 + \frac{1}{n} \mathbf{I}_d$, where a_0 can be degenerate. Let u^n be the unique solution of (32) after substituting a_0 to A^n . Multiply equations of (32) by u^n then,

$$\begin{aligned} & \frac{1}{2} \frac{d}{dt} \int_{\mathbf{D}} |u^n(t, x)|^2 dx + \frac{1}{2} \int_{\mathbf{D}} \langle A^n \nabla u^n(t, x), \nabla u^n(t, x) \rangle dx \\ &= \int_{\mathbf{D}} b_0(u^n(t, x)) \cdot \nabla(u^n(t, x)) u^n(t, x) dx + \int_{\mathbf{D}} f_0(u^n(t, x)) u^n(t, x) dx \\ &+ \int_{\partial \mathbf{D}} \Gamma(u^n(t, x)) u^n(t, x) d\varsigma + \int_{\partial \mathbf{D}} h_0(u^n(t, x)) u^n(t, x) d\varsigma \\ &+ \frac{1}{2} \int_{\mathbf{D}} c_0 \cdot \frac{\partial}{\partial x} (u^n(t, x)^2) dx \\ &+ \int_{\partial \mathbf{D}} b_0(u^n(t, x)) \cdot \nabla(u^n(t, x)) u^n(t, x) dx, \end{aligned}$$

where ς is the $(d-1)$ -dimensional volume element on $\partial \mathbf{D}$.

First we note that,

$$\begin{aligned} & \int_{\mathbf{D}} c_0 \cdot \frac{\partial}{\partial x} (u^n(t, x)^2) dx = 0 \quad t \text{ a.e.}, \quad \text{and} \\ & \int_{\partial \mathbf{D}} \gamma_0 \nabla(u^n(t, x)) u^n(t, x) d\varsigma = 0. \end{aligned}$$

Second, by the boundedness of σ, τ and $\frac{\partial^2 \hat{e}}{\partial x \partial y}$, one can easy show that

$$\begin{aligned} & \left| \int_{\mathbf{D}} b_0(u^n(t, x)) \cdot \nabla(u^n(t, x)) u^n(t, x) dx \right| \\ & \leq K \int_{\mathbf{D}} \|\sqrt{a_0} \nabla u^n(t, x)\| |u^n(t, x)| dx \\ & \left| \int_{\partial \mathbf{D}} d_0(u^n(t, x)) \cdot \nabla(u^n(t, x)) u^n(t, x) dx \right| \\ & \leq K \int_{\partial \mathbf{D}} \|\sqrt{a_0} \nabla u^n(t, x)\| |u^n(t, x)| d\varsigma. \end{aligned}$$

Thus,

$$\begin{aligned}
& \frac{1}{2} \frac{d}{dt} \int_{\mathbf{D}} |u^n(t, x)|^2 dx + \frac{1}{2} \int_{\mathbf{D}} \langle A^n \nabla u^n(t, x), \nabla u^n(t, x) \rangle dx \\
& + \frac{1}{2} \int_{\partial \mathbf{D}} \langle \alpha_0 \nabla u^n(t, x), \nabla u^n(t, x) \rangle d\varsigma \\
& \leq \mu \int_{\mathbf{D}} |u^n(t, x)|^2 dx + K \int_{\mathbf{D}} \left\| \sqrt{A^n} \nabla u^n(t, x) \right\| |u^n(t, x)| dx \\
& \leq \left(\mu + \frac{K^2}{2\delta} \right) \int_{\mathbf{D}} |u^n(t, x)|^2 dx \\
& + \frac{\delta}{2} \left(\int_{\mathbf{D}} \langle A^n \nabla u^n, \nabla u^n \rangle (t, x) dx + \int_{\partial \mathbf{D}} \langle \alpha_0 \nabla u^n, \nabla u^n \rangle (t, x) d\varsigma \right).
\end{aligned}$$

Choosing $\delta = \frac{1}{2}$, we deduct by Gronwall's lemma

$$\int_{\mathbf{D}} |u^n(t, x)|^2 dx \leq K' e^{K't},$$

and

$$\begin{aligned}
& \int_0^T \int_{\mathbf{D}} \langle A \nabla u^n(t, x), \nabla u^n(t, x) \rangle dx dt \\
& + \int_0^T \int_{\partial \mathbf{D}} \langle \alpha \nabla u^n(t, x), \nabla u^n(t, x) \rangle d\varsigma d\varphi_t \leq k(T).
\end{aligned}$$

Now we differentiate equations of (32) for u^n with respect to x_k . Then $u_k^n = \frac{\partial u^n}{\partial x_k}$ satisfies:

$$\left\{
\begin{aligned}
& \frac{\partial u_k^n}{\partial t}(t, x) = \frac{1}{2} \sum_{i,j=1}^d A_{ij}^n \frac{\partial^2 u_k^n}{\partial x_i \partial x_j}(t, x) + \sum_{i=1}^d c_0^i \frac{\partial u_k^n}{\partial x_i}(t, x) \\
& + f'_0(u^n(t, x)) u_k^n(t, x) + b'_0(u^n(t, x)) u_k^n(t, x) \nabla u^n(t, x) \\
& + b_0(u^n(t, x)) \nabla u_k^n(t, x), \quad x \in \mathbf{D} \\
& \Gamma[u_k^n(t, x)] + d'_0(u^n(t, x)) u_k^n(t, x) \nabla u^n(t, x) + d_0(u^n(t, x)) \nabla u_k^n(t, x) \\
& + h'_0(u^n(t, x)) u_k^n(t, x) = 0, \quad x \in \partial \mathbf{D} \\
& u_k^n(0, x) = \frac{\partial g}{\partial x}(x).
\end{aligned} \right. \tag{33}$$

Note that

$$\int_{\mathbf{D}} c_0 \cdot \frac{\partial}{\partial x} (u_k^n(t, x)^2) dx = 0, \quad t \text{ a.e.}, \quad \text{and} \quad \int_{\partial \mathbf{D}} \gamma_0 \nabla (u_k^n(t, x)) u_k^n(t, x) d\varsigma = 0.$$

From this, multiplying equations of (33) by u_k^n , we have

$$\begin{aligned}
& \frac{1}{2} \frac{d}{dt} \int_D |u_k^n(t, x)|^2 dx + \frac{1}{2} \int_D \langle A^n \nabla u_k^n(t, x), \nabla u_k^n(t, x) \rangle dx \\
& + \frac{1}{2} \int_D \int_{\partial D} \langle \alpha_0 \nabla u_k^n(t, x), \nabla u_k^n(t, x) \rangle d\varsigma \\
& = \int_D \left[b'_0(u^n(t, x)) \nabla u^n(t, x) (u_k^n(t, x))^2 + b_0(u^n(t, x)) \nabla u_k^n(t, x) u_k^n(t, x) \right] dx \\
& \quad \int_D \left[d'_0(u^n(t, x)) \nabla u^n(t, x) (u_k^n(t, x))^2 + d_0(u^n(t, x)) \nabla u_k^n(t, x) u_k^n(t, x) \right] d\varsigma \\
& + \int_D f'_0(u^n(t, x)) (u_k^n(t, x))^2 dx + \int_{\partial D} h'_0(u^n(t, x)) (u_k^n(t, x))^2 d\varsigma.
\end{aligned}$$

Remark 3.2.

- $\langle b'_0(u^n(t, x)), \nabla u^n(t, x) \rangle (u_k^n(t, x))^2 = -b'_0(u^n(t, x)) u^n(t, x) (\nabla u_k^n) u_k^n(t, x)$
- $b'_0(u^n(t, x)) (u_k^n(t, x))^2 \leq \beta |u^n(t, x)| |u_k^n(t, x)|^2 \leq \beta' |u_k^n(t, x)|^2 \quad (\beta' < 0)$
- $f'_0(u^n(t, x)) (u_k^n(t, x))^2 \leq \mu |u^n(t, x)| |u_k^n(t, x)|^2 \leq \mu' |u_k^n(t, x)|^2$.

Thereafter,

$$\begin{aligned}
& \frac{1}{2} \frac{d}{dt} \int_D |u_k^n(t, x)|^2 dx + \frac{1}{2} \int_D \langle A^n \nabla u_k^n(t, x), \nabla u_k^n(t, x) \rangle dx \\
& + \frac{1}{2} \int_{\partial D} \langle \alpha_0 \nabla u_k^n(t, x), \nabla u_k^n(t, x) \rangle d\varsigma \\
& \leq \mu' \int_D |u_k^n(t, x)|^2 dx + K \int_D \left\| \sqrt{A^n} \nabla u_k^n(t, x) \right\| |u_k^n(t, x)| dx \\
& \leq \left(\mu' + \frac{K^2}{2\delta} \right) \int_D |u_k^n(t, x)|^2 dx \\
& + \frac{\delta}{2} \left(\int_D \langle A^n \nabla u_k^n, \nabla u_k^n \rangle (t, x) dx + \int_{\partial D} \langle \alpha_0 \nabla u_k^n, \nabla u_k^n \rangle (t, x) d\varsigma \right).
\end{aligned}$$

By an appropriate choice of δ , we have using Gronwall's lemma

$$\int_D |u_k^n(t, x)|^2 dx \leq K e^{Kt}.$$

We have proved that u^n is bounded in $L^\infty([0, T]; H_0^1(\overline{\mathbf{D}}))$, and also that each u_k^n is bounded $L^2([0, T]; H_{a_0}(\mathbf{D}))$.

* Step 3:

Let us show that u^n is a Cauchy sequence in $L^2([0, T]; H_{a_0}(\mathbf{D}))$

$$\begin{aligned}
\frac{\partial(u^n - u^m)}{\partial t}(t, x) &= \frac{1}{2} \sum_{i,j=1}^d (a_0)_{ij} \frac{\partial^2(u^n - u^m)}{\partial x_i \partial x_j}(t, x) \\
&\quad + \frac{1}{2n} \sum_{i,j=1}^d \frac{\partial^2 u^n}{\partial x_i \partial x_j}(t, x) \\
&\quad - \frac{1}{2m} \sum_{i,j=1}^d \frac{\partial^2 u^m}{\partial x_i \partial x_j}(t, x) + \sum_{i=1}^d c_0^i \frac{\partial(u^n - u^m)}{\partial x_i}(t, x) \\
&\quad + f_0(u^n(t, x)) - f_0(u^m(t, x)) + b_0(u^n(t, x)) \nabla u^n(t, x) \\
&\quad - b_0(u^m(t, x)) \nabla u^m(t, x) + \Gamma[(u^n - u^m)(t, x)] \\
&\quad + h_0(u^n(t, x)) - h_0(u^m(t, x)) + d_0(u^m(t, x)) \nabla u^m(t, x) \\
&\quad - d_0(u^m(t, x)) \nabla u^n(t, x).
\end{aligned}$$

Then by multiplying this equation by $(u^n - u^m)$, we get

$$\begin{aligned}
&\frac{1}{2} \frac{d}{dt} \|u^n - u^m\|^2(t) + \frac{1}{2} \int_{\mathbf{D}} \langle a_0 \nabla(u^n - u^m), \nabla(u^n - u^m) \rangle(t, x) dx \\
&\quad + \frac{1}{2} \int_{\mathbf{D}} \left\langle \left(\frac{1}{n} \nabla u^n - \frac{1}{m} \nabla u^m \right), \nabla(u^n - u^m) \right\rangle(t, x) dx \\
&= \frac{1}{2} \int_{\mathbf{D}} \sum_{i=1}^d c_0^i \frac{\partial[(u^n - u^m)^2]}{\partial x_i}(t, x) dx \\
&\quad + \int_{\mathbf{D}} \langle f_0(u^n) - f_0(u^m), (u^n - u^m) \rangle(t, x) dx \\
&\quad + \int_{\mathbf{D}} \langle b_0(u^n) \nabla u^n - b_0(u^m) \nabla u^m, (u^n - u^m) \rangle(t, x) dx \\
&\quad + \int_{\partial\mathbf{D}} (\Gamma[(u^n - u^m)](u^n - u^m) + \langle h_0(u^n) - h_0(u^m), (u^n - u^m) \rangle)(t, x) d\varsigma \\
&\quad + \int_{\partial\mathbf{D}} \langle d_0(u^n) \nabla u^n - d_0(u^m) \nabla u^m, (u^n - u^m) \rangle(t, x) d\varsigma.
\end{aligned}$$

Observe that

$$\int_{\mathbf{D}} c_0 \cdot \frac{\partial}{\partial x} [(u^n - u^m)^2] dx = 0 \quad t \text{ a.e.},$$

and

$$\int_{\partial D} \gamma_0 \nabla [(u^n - u^m)] (u^n - u^m) (t, x) d\varsigma = 0.$$

And integrating with respect to t , we have

$$\begin{aligned} & \frac{1}{2} \|u^n - u^m\|^2 (t) + \frac{1}{2} \int_0^t \int_D \langle a_0 \nabla (u^n - u^m), \nabla (u^n - u^m) \rangle (s, x) dx ds \\ & + \frac{1}{2} \int_0^t \int_D \langle \alpha_0 \nabla (u^n - u^m), \nabla (u^n - u^m) \rangle (s, x) d\varsigma d\varphi_s \\ & + \frac{1}{2} \int_0^t \int_D \left\langle \left(\frac{1}{n} \nabla u^n - \frac{1}{m} \nabla u^m \right), \nabla (u^n - u^m) \right\rangle (s, x) dx ds \\ & = \int_0^t \int_D \langle f_0 (u^n) - f_0 (u^m), (u^n - u^m) \rangle (s, x) dx ds \\ & + \int_0^t \int_D \langle b_0 (u^n) \nabla u^n - b_0 (u^m) \nabla u^m, (u^n - u^m) \rangle (s, x) dx ds \\ & + \int_0^t \int_{\partial D} \langle d_0 (u^n) \nabla u^n - d_0 (u^m) \nabla u^m, (u^n - u^m) \rangle (s, x) d\varsigma d\varphi_s \\ & + \int_0^t \int_{\partial D} \langle h_0 (u^n) - h_0 (u^m), (u^n - u^m) \rangle (s, x) d\varsigma d\varphi_s. \end{aligned}$$

Since ∇u^n and ∇u^m are bounded in $L^2([0, T]; \overline{D})^d$,

$$\frac{1}{2} \int_0^T \int_D \left\langle \left(\frac{1}{n} \nabla u^n - \frac{1}{m} \nabla u^m \right), \nabla (u^n - u^m) \right\rangle (t, x) dx dt$$

tends to zero whenever n and m tend to infinity.

For $\varepsilon > 0$, there exists $N_\varepsilon \in N$ such that for $n, m \geq N_\varepsilon$, all $\delta > 0$:

$$\begin{aligned} & \frac{1-\delta}{2} \int_0^t \int_{]0, t[\times D} \langle a_0 (\nabla u^n - \nabla u^m), (\nabla u^n - \nabla u^m) \rangle (s, x) dx ds \\ & + \frac{1}{2} \|u^n - u^m\|^2 (t) \\ & + \frac{1-\delta}{2} \int_0^t \int_{\partial D} \langle \alpha_0 (\nabla u^n - \nabla u^m), (\nabla u^n - \nabla u^m) \rangle (s, x) d\varsigma d\varphi_s \\ & \leq \varepsilon + \left(\mu' + \frac{K^2}{2\delta} \right) \int_0^t \int_D \|u^n - u^m\|^2 (s, x) dx ds. \end{aligned}$$

Hence choosing $\delta = \frac{1}{2}$ and exploiting Gronwall's lemma, we have

$$\begin{aligned} & \frac{1}{2} \|u^n - u^m\|^2(t) + \frac{1}{4} \int_0^t \int_{\mathbf{D}} \langle a_0(\nabla u^n - \nabla u^m), (\nabla u^n - \nabla u^m) \rangle(s, x) dx ds \\ & + \frac{1}{4} \int_0^t \int_{\partial\mathbf{D}} \langle \alpha_0(\nabla u^n - \nabla u^m), (\nabla u^n - \nabla u^m) \rangle(s, x) d\varsigma d\varphi_s \\ & \leq \varepsilon e^{Kt}, \quad \forall n, m \geq N_\varepsilon, \quad t \in [0, T]. \end{aligned}$$

There follows that u^n is a Cauchy sequence in $L^2([0, T]; H_{a_0}(\mathbf{D}))$, and there exists $u \in L^2([0, T]; H_{a_0}(\mathbf{D}))$ such that

$$u^n \longrightarrow u \quad \text{in} \quad L^2([0, T]; H_{a_0}(\mathbf{D})).$$

Moreover, since

$$\begin{aligned} & \int_0^T \int_{\mathbf{D}} \langle f_0(u^n) - f_0(u), (u^n - u) \rangle(t, x) dx dt \\ & + \int_0^T \int_{\mathbf{D}} \langle b_0(u^n) \nabla u^n - b_0(u) \nabla u, (u^n - u) \rangle(t, x) dx dt \\ & \leq K \int_0^T \int_{\mathbf{D}} \left\{ \|u^n - u\|^2(t, x) + \langle a_0(\nabla u^n - \nabla u), \nabla u^n - \nabla u \rangle(s, x) \right\} dx dt \end{aligned}$$

and

$$\begin{aligned} & \int_0^T \int_{\partial\mathbf{D}} |\langle h_0(u^n) - h_0(u), (u^n - u) \rangle| d\varsigma d\varphi_t \\ & + \int_0^T \int_{\partial\mathbf{D}} \langle d_0(u^n) \nabla u^n - d_0(u) \nabla u, (u^n - u) \rangle(t, x) d\varsigma d\varphi_t \\ & \leq K' \int_0^T \int_{\partial\mathbf{D}} \left\{ \|u^n - u\|^2 + \langle a_0(\nabla u^n - \nabla u), (\nabla u^n - \nabla u) \rangle(t, x) \right\} d\varsigma d\varphi_t. \end{aligned}$$

Then,

$$\begin{aligned} f_0(u^n) + b_0(u^n) \nabla u^n & \longrightarrow f_0(u) + b_0(u) \nabla u \quad \text{in} \quad L^2([0, T]; H_{a_0}(\mathbf{D})) \\ h_0(u^n) + d_0(u^n) \nabla u^n & \longrightarrow h_0(u) + d_0(u) \nabla u \quad \text{in} \quad L^2([0, T]; \partial\mathbf{D}). \end{aligned}$$

Moreover the sequence $\{u^n\}$ is bounded in $F(\mathbf{D})$, hence u is in $F(\mathbf{D})$.

By similar arguments, one can easy show the uniqueness of the solution u in $F(\mathbf{D})$. \square

Remark 3.3. We can drop the hypothesis that the matrix α_0 is degenerate without changing the conclusions.

References

- [1] A. Jakubowski, A non-Skorohod topology on the Skorohod space, *Electronic J. of Prob.*, **2** (1997), 1–21.
- [2] E. Pardoux and A. Diedhiou, Homogenization of periodic semilinear hypoelliptic PDES, *Anal. Fac. Scien. de Toulouse Math.*, **16** (2007), 253–283.
- [3] A. Diakhby and Y. Ouknine, Generalized BSDEs, weak convergence, and homogenization of semilinear PDEs with the Wentzell-type boundary condition, *Stoch. Analysis and Appl.*, **3** (2016), 493–509.
- [4] E. Pardoux and Yu.A. Veretennikov, On the Poisson equation and diffusion approximation I, *Annals of Probability*, **29** (2001), 1061–1085.
- [5] E. Pardoux and S. Zhang, Generalized BSDEs and nonlinear boundary value problems, *Prob. Theory and Rel. Fields*, **110** (1998), 535–558.
- [6] H. Tanaka, Homogenization of diffusion processes with boundary conditions, *Stoc. Anal. and Appl., Adv. Probab. Related Topics*, **7** (1984), 411–437.