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1. Introduction

We study the solution of a semi-linear partial differential equation (PDE) in
the half-space D =

{
(x1, x2, . . . , xd) ∈ Rd : x1 > 0

}
with additional boundary

condition on ∂D. For each ε > 0, we consider
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





∂uε

∂t
(t, x) = Lεu

ε(t, x) + f
(x

ε
, uε(t, x)

)

+
1

ε
e
(x

ε
, uε(t, x)

)

,

x ∈ D, 0 < t,

Γεu
ε(t, x) + h

(x

ε
, uε(t, x)

)

+
1

ε
l
(x

ε
, uε(t, x)

)

= 0,

x ∈ ∂D, 0 ≤ t,

uε(0, x) = g(x), x ∈ D,

(1)

where

• e : Rd×R −→ R is a measurable mapping, which is periodic, of period one
in each direction in the first argument, continuous in the second argument
uniformly with respect to the first, and satisfies:

∫

T d

e(x, y)m(dx) = 0, ∀y ∈ R, (2)

where m is the unique invariant measure on the torus T d.

We suppose that e is twice continuously differentiable in y, uniformly with
respect to x, and there exists a constant K such that:

|e(x, y)|+
∣
∣
∣
∣
∣

∂

∂y
e(x, y)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∂2

∂y2
e(x, y)

∣
∣
∣
∣
∣
≤ K, ∀x ∈ Rd, y ∈ R. (3)

• l : Rd−1 × R −→ R is a measurable mapping, which is periodic, of pe-
riod one in each direction in the first argument, continuous in the second
argument uniformly with respect to the first, and satisfies:

∫

T d−1

l(x, y)m0(dx) = 0, ∀y ∈ R, (4)

where m0 denotes the invariant measure on the torus T d−1. We suppose
that l is twice continuously differentiable in y, uniformly with respect to
x, and there exists a constant K such that:

|l(x, y)| +
∣
∣
∣
∣
∣

∂

∂y
l(x, y)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∂2

∂y2
l(x, y)

∣
∣
∣
∣
∣
≤ K, ∀x ∈ Rd−1, y ∈ R. (5)

• f : Rd × R −→ R, g : Rd −→ R and h : Rd × R −→ R are sufficiently
smooth functions. Equivalently the coefficients can be seen as periodic
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functions with respect to the first variable with period one in each direc-
tion on Rd and are such that for some c > 0, p > 0, µ ∈ R, β < 0, and all
x ∈ Rd, y, y′ ∈ R:

|g(x)| ≤ c (1 + |x|p) (6)

|f(x, y)| ≤ c
(

1 + |y|2
)

(7)

(y − y′) [f(x, y)− f (x, y′)] ≤ µ |y − y′| (8)

(y − y′) [h(x, y) − h (x, y′)] ≤ β |y − y′| (9)

|h(x, y)| ≤ c
(

1 + |y|2
)

. (10)

Assumptions and Definitions

Let (Ω,F , P ) be a probability space on which two Brownian motions of
(
Bi
)

1≤i≤d

and
(
N i
)

1≤i≤d
are defined (see [3]). Let E the corresponding expectation op-

erator.
The differential operator Lε inside D and Γε in ∂D are given by:

Lε =
1

2

d∑

i,j

ai,j

(x

ε

) ∂2

∂xixj
+

1

ε

d∑

i=1

bi

(x

ε

) ∂

∂xi
+

d∑

i=1

ci

(x

ε

) ∂

∂xi
, (11)

Γε =
1

2

d∑

i,j

τi,j

(x

ε

) ∂2

∂xixj
+

1

ε

d∑

i=1

βi

(x

ε

) ∂

∂xi
+

d∑

i=1

γi

(x

ε

) ∂

∂xi
. (12)

These operators are the generators of the reflected (Lε,Γε)-diffusion (see Tanaka
[6]):







dXε
t = σ

(
Xε

t

ε

)

dBt +
1

ε
b

(
Xε

t

ε

)

dt+ c

(
Xε

t

ε

)

dt+ τ

(
Xε

t

ε

)

dNt

+
1

ε
β

(
Xε

t

ε

)

dϕε
t + γ

(
Xε

t

ε

)

dϕε
t , 0 < t,

X
1,ε
t ≥ 0, ϕε is continuous and increasing,
∫ t

0
X1,ε

s dϕε
s = 0, 0 < t,

Xε
0 = x,

(13)

where X1,ε denotes the first component of the process Xε. We recall that
D = R∗

+ ×Rd−1, so that Xε lives is D, that is, X1,ε remains non-negative and
ϕε increases when and only when X1,ε is zero, just to keep it non-negative.
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The functions

τ : ∂D
(

∼= Rd−1
)

−→ R(d−1)×(d−1), β : ∂D
(

∼= Rd−1
)

−→ Rd−1

and the function γ : ∂D
(∼= Rd−1

)
−→ Rd with γ1(x) = 1, are smooth and

periodic of period one in each direction. The matrix α = ττ∗ is degenerate
and satisfies the hypo-elliptic Hörmander condition.

We suppose that the functions

σ : Rd −→ Rd×d, b : Rd −→ Rd, c : Rd −→ Rd

are smooth and periodic of period one in each direction. The novelty here
(in comparison with the work of Diakhaby and Ouknine [3]), is that assume
that the matrix a = σσ∗ is degenerate and satisfies hypo-elliptic Hömander
condition.

Definition 1.1 (Lie bracket). The Lie bracket between the vectors fields
Aj and Ak is defined by:

[Aj , Ak] := A
▽
j Ak −A

▽
k Aj, (14)

where A
▽
j Ak := Al

j∂lA
i
k

∂

∂xi
.

Definition 1.2 (Strong Hömander Condition (SHC)). Let H(n, x)
be the set of the Lie brackets of the vector field (mj(x))1≤j≤d of order lower
than n at the point x ∈ X . We say that matrix m satisfies the (SHC) if for all
x ∈ X , there exists nx ∈ N such that H(nx, x) generates X .

Let us define X̃ε
t :=

1

ε
Xε

ε2t and ϕ̃ε
t :=

1

ε
ϕε
ε2t, then we get with two news stan-

dard d-dimensional Brownian motions {Bε
t : t ≥ 0}, and {N ε

t : t ≥ 0} which in
fact depends on ε:







dX̃ε
t = σ

(

X̃ε
t

)

dBε
t + b

(

X̃ε
t

)

dt+ εc
(

X̃ε
t

)

dt+ τ
(

X̃ε
t

)

dN ε
t

+ β
(

X̃ε
t

)

dϕ̃ε
t + εγ

(

X̃ε
t

)

dϕ̃ε
t , 0 < t,

X̃
1,ε
t ≥ 0, ϕ̃ is continuous and increasing,
∫ t

0
X̃1,ε

s dϕ̃ε
s = 0, 0 < t,

X̃ε
0 =

x

ε
.

(15)
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We set L0 and Γ0 the two operators defined as:

L0 :=
1

2

d∑

i,j

ai,j (x)
∂2

∂xixj
+

d∑

i=1

bi (x)
∂

∂xi
, x ∈ T d, (16)

Γ0 :=
1

2

d∑

i,j

αi,j (x)
∂2

∂xixj
+

d∑

i=1

βi (x)
∂

∂xi
, x ∈ T d−1. (17)

Hypothesis (H): We suppose that σ and α satisfies the SHC.

2. Weak Convergence (SDE and BSDE)

With (H) and the boundary condition Γ0u = 0, according to Tanaka [6] (see
Pardoux and Diedhiou [2] in the case that ∂D = ∅), the process X̃ε is ergodic
and has a unique invariant measure whose density is strictly positive. There-
after, we set m the invariant measure associated of L0 on T d and we set m0 the
invariant measure associated of the differential operator Γ0 on T d−1.

Throughout the paper, we suppose that
∫

T d

b(x)m(dx) = 0, (18)

∫

T d−1

β(x)m0(dx) = 0. (19)

Remark 2.1. τ and β are regarded as d × d-matrix and d-vector-valued
functions respectively, with the convention that:

τ i1 = τ1l = β1 = 0.

Let b̂ be the solution of Poisson equation : L0b̂ = −b in D, and Γ0b̂ = −β

in ∂D let us introduce the process X̂ε
t defined as:

X̂ε
t = Xε

t + ε

[

b̂

(
Xt

ε

)

− b̂
(x

ε

)]

= x+

∫ t

0

(

I +∇b̂
)

σ

(
Xε

s

ε

)

dBs +

∫ t

0

(

I +∇b̂
)

c

(
Xε

s

ε

)

ds

+

∫ t

0

(

I +∇b̂
)

τ

(
Xε

s

ε

)

dNs +

∫ t

0

(

I +∇b̂
)

γε

(
Xε

s

ε

)

dϕε
s.

(20)
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With (H) we know that the pair (L0,Γ0) is hypo-elliptic on D. Then there ex-
ists a bounded and smooth solution η of the PDE with Wentzell-type boundary
condition:

{
L0η = 0 in D

Γ0η =
(

I +∇b̂
)

γ −
∫

T d−1

(

I +∇b̂
)

(x)γ(x)m0(dx) on ∂D.
(21)

Taking such a solution η, we have by Itô:

ε2
[

η

(
Xε

t

ε

)

− η
(x

ε

)]

= ε

∫ t

0
∇ησ

(
Xε

s

ε

)

dBs + ε

∫ t

0
∇ητ

(
Xε

s

ε

)

dNs

+ ε

∫ t

0
∇ηc

(
Xε

s

ε

)

ds+ ε

∫ t

0
∇ηγ

(
Xε

s

ε

)

dφε
s

+

∫ t

0

(

I +∇b̂
)

γ

(
Xε

s

ε

)

dϕε
s − ϕε

t

∫

T d−1

(

I +∇b̂
)

(x)γ(x)m0(dx).

(22)

Putting (22) into (20) we have

X̂ε
t = x+

∫ t

0

(

I +∇b̂
)

σ

(
Xε

s

ε

)

dBs +

∫ t

0

(

I +∇b̂
)

τ

(
Xε

s

ε

)

dNs

+

∫ t

0

(

I +∇b̂
)

c

(
Xε

s

ε

)

ds+ ϕε
t

∫

T d−1

(

I +∇b̂
)

γ(x)m0(dx)

− ε

∫ t

0
∇ηγ

(
Xε

s

ε

)

dφε
s − ε

∫ t

0
∇ησ

(
Xε

s

ε

)

dBs

− ε

(∫ t

0
∇ητ

(
Xε

s

ε

)

dNs −
∫ t

0
∇ηc

(
Xε

s

ε

)

ds+ ε

[

η

(
Xt

ε

)

− η
(x

ε

)])

.

(23)

Before proceeding, we introduce some definitions:

a0 =

∫

T d

(

I +∇b̂
)

(x)a(x)
(

I +∇b̂
)∗

(x)m(dx),

α0 =

∫

T d

(

I +∇b̂
)

(x)α(x)
(

I +∇b̂
)∗

(x)m(dx),

L =
1

2

d∑

i,j=1

a
ij
0 ∂i∂j +

d∑

i=1

ci0∂i, with

c0 =

∫

T d

(

I +∇b̂
)

(x)c(x)m0(dx),

Γ =
1

2

d∑

i,j=2

α
ij
0 ∂i∂j +

d∑

i=1

γi0∂i, with
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γ0 =

∫

T d−1

(

I +∇b̂
)

(x)γ(x)m0(dx).

As in [3], we have the following theorem.

Theorem 2.2. Under (H) with conditions (17) and (18), the (Lε,Γε)-
reflected diffusion process Xε converges in law to the (L,Γ)-reflected diffusion
process X as ε ↓ 0. Moreover, on the space C

(
[0, T ], R2d+1

)
equipped with the

sup-norm topology,
(
Xε,MXε

t , ϕε
)
−→

(
X,MX , ϕ

)
,

where:

• MX is the martingale part of X,

• ϕ (resp. ϕε) is the local time of X1 (resp. X1,ε).

Let X denote the unique diffusion process with values in the d-dimensional
torus T d, whose generator is the operator L0.

We now consider a type of BSDE which has been introduced in Pardoux

and Zhang [5]. For each fixed (t, x) ∈ [0, T ] ×D, let
{

(Y ε
s , U

ε
s ) ; 0 ≤ s ≤ T d

}

be the solution of the BSDE

Y ε
s =g (Xε

t ) +

∫ t

s
f

(
Xǫ

r

ε
, Y ε

r

)

dr +
1

ε

∫ t

s
e

(
Xε

r

ε
, Y ǫ

r

)

dr

+

∫ t

s
h

(
Xε

r

ε
, Y ε

r

)

dϕε
r +

1

ε

∫ t

s
l

(
Xε

r

ε
, Y ε

r

)

dϕε
r −

∫ t

s
U ε
r dM

Xε

r .

(24)

For each fixed y ∈ R, let set ê be the solution of the Poisson equation:

L0ê(x, y) + e(x, y) = 0, x ∈ T d, y ∈ R. (25)

More precisely by (2), ê is centered with respect to the invariant measure m

and is given by the formula

ê(x, y) =

∫ ∞

0
Exe

(
X t, y

)
dt. (26)

Note that, see [4], ê ∈ C0,2
(
T d, R

)
and ê(., y),

∂

∂y
ê(., y),

∂2

∂y2
ê(., y) ∈ W 2,p

(
T d
)
,

for any p ≥ 1 there exists K ′ such that for all y ∈ R

‖ê(., y)‖W 2,p(T d) +

∥
∥
∥
∥
∥

∂

∂y
ê(., y)

∥
∥
∥
∥
∥
W 2,p(T d)

+

∥
∥
∥
∥
∥

∂2

∂y2
ê(., y)

∥
∥
∥
∥
∥
W 2,p(T d)

≤ K ′. (27)
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For each fixed y ∈ Rd, let set l̂ be the solution of the Poisson equation which
satisfies (4) :

Γ0l̂(x, y) + l(x, y) = 0, x ∈ T d, y ∈ R. (28)

Note that, see [4], l̂ ∈ C0,2
(
T d−1, R

)
and l̂(., y),

∂

∂y
l̂(., y),

∂2

∂y2
l̂(., y) ∈ W 2,p

(
T d
)
,

for any p ≥ 1 there exists K ′ such that for all y ∈ R

∥
∥
∥l̂(., y)

∥
∥
∥
W 2,p(T d)

+

∥
∥
∥
∥
∥

∂

∂y
l̂(., y)

∥
∥
∥
∥
∥
W 2,p(T d)

+

∥
∥
∥
∥
∥

∂2

∂y2
l̂(., y)

∥
∥
∥
∥
∥
W 2,p(T d)

≤ K ′. (29)

We introduce the notations:

M ε
t =

∫ t

0
U ε
r dM

Xε

r and Mt =

∫ t

0
UrdM

X
r , 0 ≤ t ≤ T,

and we consider the quintuple
(

X,MX , ϕ, Y,M
)

(resp.
(

Xε,MXε

, ϕε, Y ε,M ε
)

)

as a random element of the space C
(
[0, t], R2d+1

)
× D

(
[0, t], R2

)
, where we

equip the first factor with the sup-norm topology, and the second factor with
the S-topology of Jakubowski (see [1]).

Considering the SDE and the BSDE satisfying respectively by X and Y :

Xt = x+ c0t+

∫ t

0
b0(Ys)ds +

√
a0Bt +

∫ t

0
d0(Ys)dϕt

+
√
α0Nt + γ0ϕt,

Yt = g(XT ) +

∫ T

t
f0(Ys)ds +

∫ T

t
h0(Ys)dϕs +Mt −MT ,

(30)

where

b0(y) =

∫

T d

(I +∇b̂)a(x)
∂2ê

∂x∂y
(x, y)m(dx),

c0 =

∫

T d

(

I +∇b̂
)

c(x)m(dx),

f0(y) =

∫

T d

(

[
〈 ∂ê

∂x
, c(x)

〉

− (
∂ê

∂y
× e) +

∂2ê

∂x∂y
a(x)

( ∂ê

∂x

)∗

]

)(x, y)m(dx),

+

∫

T d

f(x, y)m(dx),

h0 =

∫

T d−1

(

h(., y) +

〈
∂ê

∂x
(., y), γ

〉)

(x)m0(dx),

d0(y) =

∫

T d

(

I +∇b̂
)

α(x)
∂2ê

∂x∂y
(x, y)m(dx).
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Then we have the following theorem.

Theorem 2.3. Under (H), (2), (4) and the conditions (6),..., (10), we
have

Y ε
0 −→ Y0 in R.

Proof. We adopt the same techniques as in [3].

3. Main Result

For each (t, x) ∈ R+ ×D, the solution of (1) is into the form

uε(t, x) := Y ε
0 , (31)

where Y ε denotes the solution of the BSDE considered in the previous section.
Now, let us consider the following homogenized system:







∂u

∂t
(t, x) = Lu(t, x) + f0

(
u(t, x)

)
+ b0

(
u(t, x)

)
∇u(t, x) , x ∈ D,

Γu(t, x) + d0
(
u(t, x)

)
∇u(t, x) + h0

(
u(t, x)

)
= 0 , x ∈ ∂D, t ≥ 0,

u(0, x) = g(x) , x ∈ D.

(32)

We shall assume w.l.o.g. that the orthogonal basis of Rd has been chosen
in such a way that the matrix a0 is of the form

a0 =

(
a′0 0
0 0

)

,

where a′0 is a d′ × d′ positive definite matrix, with d′ ≤ d.
We set Rd = Ed′ ⊕ Ed−d′ , where Ed′ is the subspace of Rd of dimension d′

generated by the vectors ei, i := 1, . . . , d′ after a new arrangement of the basis
vectors of Rd so we can obtain the wished form of a0.

Define the space

Ha0(D) =

{

v ∈ L2(D) : s.t.
√
a0 · ∇v ∈

(
L2(D)

)d
and v

∣
∣
∣
∂D

= 0

}

,

which will be associated to the norm:

‖v‖Ha0
(D) =

(

‖v‖2L2(D) + ‖√a0∇v‖2(L2(D))d

)1/2
.
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By our assumptions, we have the a priori estimates

‖f0(v)‖L2(D) + ‖b0(v)∇v‖L2(D) ≤ C
(

1 + ‖v‖Ha0
(D)

)

.

Thus, we can show the following theorem.

Theorem 3.1. Under (H), (2), (4), (18), (19) and the conditions (6),...,(10);
the system (32) has a unique solution u in L2

(
[0, T ],H1

0 (D)
)
, such that for all

1 ≤ k ≤ d 〈

a0∇uk,∇uk

〉

∈ L1 ([0, T ]×D) ,

〈

α0∇uk,∇uk

〉

∈ L1 ([0, T ]× ∂D) , with uk =
∂u

∂xk
.

Moreover
u ∈ C

(
R+ ×D

)

and we have for all t ≥ 0 , for all x ∈ Rd

uε(t, x) → u(t, x) , when ε → 0,

where uε(t, x) is the solution of the PDE system (1).

Proof. We adopt similar tools as in [2].
∗ Step 1 :

We first assume that the matrix a0 is elliptic and we look for a solution

u ∈ L2
((

(0, T );H1
0 (D)

)⋂

C
(

[0, T ];L2(D)
)

.

Let us prove the existence and uniqueness of the solution of the PDE. Set

F (D) = L2
(

(0, T );H1
0 (D)

)

and consider the map:

Ψ : F (D) −→ F (D)

Let us show that Ψ is a contraction. For v ∈ F , let u = Ψ(v) where u = u− u
′

and v = v − v
′

. Denote by ν the ellipticity constant of a0. For any α > 0,

1

2
e−αt‖ut‖2L2(D)

+ ν

∫ t

0
e−αs‖∇us‖2(L2(D))

dds

≤ −α

2

∫ t

0
e−αs‖us‖2L2(D)

ds+

∫ t

0
e−αs

〈
h0
(
vs
)
− h0

(
v′s
)
, us

〉

L2(D)
dϕs

+

∫ t

0
e−αs

〈
f0
(
vs
)
− f0

(
v′s
)
, us

〉

L2(D)
ds.
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Remark that

(h0
(
v
)
− h0

(
v′
)
)u ≤ β ‖v‖L2(D) ‖u‖L2(D) (as a reminder β < 0)

(f0
(
v
)
− f0

(
v′
)
)u ≤ µ ‖v‖L2(D) ‖u‖L2(D) .

From this, we have

1

2
e−αt‖ut‖2L2(D)

+ ν

∫ t

0
e−αs‖∇us‖2(L2(D))

dds

≤ −α

2

∫ t

0
e−αs‖us‖2L2(D)

ds+ µ

∫ t

0
e−αs ‖vs‖L2(D) ‖us‖L2(D) ds.

By the fact that:

(νX − µY )2 ≥ 0 ⇒ XY ≤ ν

2µ
X2 +

µ

2ν
Y 2,

we have

1

2
e−αt‖ut‖2L2(D)

+ ν

∫ t

0
e−αs‖∇u(s)‖2

(L2(D))d
ds

+
α

2

∫ t

0
e−αs‖u(s)‖2

L2(D)
ds

≤ ν

2

∫ t

0
e−αs

(

‖v(s)‖2
L2(D)

+ ‖∇v(s)‖2
(L2(D))d

︸ ︷︷ ︸

we add this term

)

ds

+
µ2

2ν

∫ t

0
e−αs‖u(s)‖2

L2(D)
ds.

Thereby,

ν

∫ t

0
e−αs‖∇u(s)‖2

(L2(D)d
ds+

(

α

2
− µ2

2ν

)
∫ t

0
e−αs‖u(s)‖2

L2(D)
ds

≤ ν

2

∫ t

0
e−αs

(

‖v(s)‖2
L2(D)

+ ‖∇v(s)‖2
(L2(D))d

)

ds.

Choose α = 2ν +
µ2

ν
, then we have

∫ t

0
e−αs‖∇u(s)‖2

(L2(D))d
ds+

∫ t

0
e−αs‖u(s)‖2

L2(D)
ds

≤ 1

2

∫ t

0
e−αs

(

‖v(s)‖2
L2(D)

+ ‖∇v(s)‖2
(L2(D))d

)

ds.
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There follows that Ψ is a contraction on F (D) with the norm:

‖u‖α =

(
∫ t

0
e−αs

(

‖u(s)‖2
L2(D)

+ ‖∇u(s)‖2
(L2(D))d

)

ds

) 1

2

.

∗ Step 2 :

Consider the perturbed matrix An = a0 +
1

n
Id, where a0 can be degenerate.

Let un be the unique solution of (32) after substituting a0 to An. Multiply
equations of (32) by un then,

1

2

d

dt

∫

D

|un(t, x)|2 dx+
1

2

∫

D

〈An∇un(t, x),∇un(t, x)〉 dx

=

∫

D

b0 (u
n(t, x)) · ∇ (un(t, x)) un(t, x)dx +

∫

D

f0 (u
n(t, x)) un(t, x)dx

+

∫

∂D
Γ (un(t, x)) un(t, x)dς +

∫

∂D
h0 (u

n(t, x)) un(t, x)dς

+
1

2

∫

D

c0 ·
∂

∂x

(
un(t, x)2

)
dx

+

∫

∂D

b0 (u
n(t, x)) · ∇ (un(t, x)) un(t, x)dx,

where ς is the (d− 1)-dimensional volume element on ∂D.
First we note that,

∫

D

c0 ·
∂

∂x

(
un(t, x)2

)
dx = 0 t a.e., and

∫

∂D
γ0∇ (un(t, x)) un(t, x)dς = 0.

Second, by the boundedness of σ, τ and
∂2ê

∂x∂y
, one can easy show that

∣
∣
∣
∣

∫

D

b0 (u
n(t, x)) · ∇ (un(t, x)) un(t, x)dx

∣
∣
∣
∣

≤ K

∫

D

‖√a0∇un(t, x)‖ |un(t, x)| dx
∣
∣
∣
∣

∫

∂D

d0 (u
n(t, x)) · ∇ (un(t, x)) un(t, x)dx

∣
∣
∣
∣

≤ K

∫

∂D

‖√α0∇un(t, x)‖ |un(t, x)| dς.
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Thus,

1

2

d

dt

∫

D

|un(t, x)|2 dx+
1

2

∫

D

〈An∇un(t, x),∇un(t, x)〉 dx

+
1

2

∫

∂D
〈α0∇un(t, x),∇un(t, x)〉 dς

≤ µ

∫

D

|un(t, x)|2 dx+K

∫

D

∥
∥
∥

√
An∇un(t, x)

∥
∥
∥ |un(t, x)| dx

≤
(

µ+
K2

2δ

)
∫

D

|un(t, x)|2 dx

+
δ

2

(∫

D

〈An∇un,∇un〉 (t, x)dx+

∫

∂D

〈α0∇un,∇un〉 (t, x)dς
)

.

Choosing δ =
1

2
, we deduct by Gronwall’s lemma

∫

D

|un(t, x)|2 dx ≤ K ′eK
′t,

and ∫ T

0

∫

D

〈A∇un(t, x),∇un(t, x)〉 dxdt

+

∫ T

0

∫

∂D
〈α∇un(t, x),∇un(t, x)〉 dςdϕt ≤ k(T ).

Now we differentiate equations of (32) for un with respect to xk. Then unk =
∂un

∂xk
satisfies:






∂unk
∂t

(t, x) =
1

2

d∑

i,j=1

An
ij

∂2unk
∂xi∂xj

(t, x) +

d∑

i=1

ci0
∂unk
∂xi

(t, x)

+ f ′
0 (u

n(t, x)) unk(t, x) + b′0 (u
n(t, x)) unk(t, x)∇un(t, x)

+ b0 (u
n(t, x))∇unk(t, x), x ∈ D

Γ [unk(t, x)] +d′0 (u
n(t, x)) unk(t, x)∇un(t, x) + d0 (u

n(t, x))∇unk(t, x)

+ h′0 (u
n(t, x)) unk(t, x) = 0, x ∈ ∂D

unk(0, x) =
∂g

∂x
(x).

(33)

Note that
∫

D

c0 ·
∂

∂x
(unk(t, x)

2)dx=0, t a.e, and

∫

∂D
γ0∇

(
unk(t, x)

)
unk(t, x)dς=0.
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From this, multiplying equations of (33) by unk , we have

1

2

d

dt

∫

D

|unk(t, x)|2 dx+
1

2

∫

D

〈An∇unk(t, x),∇unk (t, x)〉 dx

+
1

2

∫

D

∫

∂D

〈α0∇unk(t, x),∇unk (t, x)〉 dς

=

∫

D

[

b′0 (u
n(t, x))∇un(t, x) (unk(t, x))

2 + b0 (u
n(t, x))∇unk(t, x)u

n
k (t, x)

]

dx

∫

D

[

d′0 (u
n(t, x))∇un(t, x) (unk (t, x))

2 + d0 (u
n(t, x))∇unk(t, x)u

n
k (t, x)

]

dς

+

∫

D

f ′
0 (u

n(t, x)) (unk(t, x))
2 dx+

∫

∂D
h′0 (u

n(t, x)) (unk(t, x))
2 dς.

Remark 3.2.

•
〈
b′0 (u

n(t, x)) ,∇un(t, x)
〉
(unk(t, x))

2 = −b′0 (u
n(t, x)) un(t, x)(∇unk )u

n
k(t, x)

• h′0 (un(t, x)) (unk(t, x))2 ≤ β |un(t, x)| |unk(t, x)|2 ≤ β′ |unk(t, x)|2
(
β′ < 0

)

• f ′
0 (u

n(t, x)) (unk(t, x))
2 ≤ µ |un(t, x)| |unk(t, x)|2 ≤ µ′ |unk(t, x)|2 .

Thereafter,

1

2

d

dt

∫

D

|unk(t, x)|2 dx+
1

2

∫

D

〈An∇unk(t, x),∇unk (t, x)〉 dx

+
1

2

∫

∂D
〈α0∇unk(t, x),∇unk (t, x)〉 dς

≤ µ′

∫

D

|unk(t, x)|2 dx+K

∫

D

∥
∥
∥

√
An∇unk(t, x)

∥
∥
∥ |unk(t, x)| dx

≤
(

µ′ +
K2

2δ

)
∫

D

|unk(t, x)|2 dx

+
δ

2

(∫

D

〈An∇unk ,∇unk〉 (t, x)dx+

∫

∂D

〈α0∇unk ,∇unk〉 (t, x)dς
)

.

By an appropriate choice of δ, we have using Gronwall’s lemma

∫

D

|unk(t, x)|2 dx ≤ KeKt.
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We have proved that un is bounded in L∞
(
[0, T ];H1

0 (D)
)
, and also that each

unk is bounded L2 ([0, T ];Ha0(D)).
∗ Step 3 :

Let us show that un is a Cauchy sequence in L2 ([0, T ];Ha0(D))

∂ (un − um)

∂t
(t, x) =

1

2

d∑

i,j=1

(a0)ij
∂2 (un − um)

∂xi∂xj
(t, x)

+
1

2n

d∑

i,j=1

∂2un

∂xi∂xj
(t, x)

− 1

2m

d∑

i,j=1

∂2um

∂xi∂xj
(t, x) +

d∑

i=1

ci0
∂ (un − um)

∂xi
(t, x)

+ f0 (u
n(t, x)) − f0 (u

m(t, x)) + b0 (u
n(t, x))∇un(t, x)

− b0 (u
m(t, x))∇um(t, x) + Γ [(un − um) (t, x)]

+ h0 (u
n(t, x))− h0 (u

m(t, x)) + d0 (u
m(t, x))∇um(t, x)

− d0 (u
m(t, x))∇um(t, x).

Then by multiplying this equation by (un − um), we get

1

2

d

dt
‖un − um‖2 (t) + 1

2

∫

D

〈a0∇ (un − um) ,∇ (un − um)〉 (t, x)dx

1

2

∫

D

〈(
1

n
∇un − 1

m
∇um

)

,∇ (un − um)

〉

(t, x)dx

=
1

2

∫

D

d∑

i=1

ci0

∂
[

(un − um)2
]

∂xi
(t, x)dx

+

∫

D

〈f0 (un)− f0 (u
m) , (un − um)〉 (t, x)dx

+

∫

D

〈b0 (un)∇un − b0 (u
m)∇um, (un − um)〉 (t, x)dx

+

∫

∂D
(Γ [(un − um)] (un − um) + 〈h0 (un)− h0 (u

m) , (un − um)〉)(t, x)dς

+

∫

∂D
〈d0 (un)∇un − d0 (u

m)∇um, (un − um)〉 (t, x)dς.

Observe that
∫

D

c0 ·
∂

∂x

[

(un − um)2
]

dx = 0 t a.e.,
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and ∫

∂D
γ0∇ [(un − um)] (un − um) (t, x)dς = 0.

And integrating with respect to t, we have

1

2
‖un − um‖2 (t) + 1

2

∫ t

0

∫

D

〈a0∇ (un − um) ,∇ (un − um)〉 (s, x)dxds

+
1

2

∫ t

0

∫

D

〈α0∇ (un − um) ,∇ (un − um)〉 (s, x)dςdϕs

+
1

2

∫ t

0

∫

D

〈(
1

n
∇un − 1

m
∇um

)

,∇ (un − um)

〉

(s, x)dxds

=

∫ t

0

∫

D

〈f0 (un)− f0 (u
m) , (un − um)〉 (s, x)dxds

+

∫ t

0

∫

D

〈b0 (un)∇un − b0 (u
m)∇um, (un − um)〉 (s, x)dxds

+

∫ t

0

∫

∂D

〈d0 (un)∇un − d0 (u
m)∇um, (un − um)〉 (s, x)dςdϕs

+

∫ t

0

∫

∂D
〈h0 (un)− h0 (u

m) , (un − um)〉 (s, x)dςdϕs.

Since ∇un and ∇um are bounded in L2
(
[0, T ];D

)d
,

1

2

∫ T

0

∫

D

〈(
1

n
∇un − 1

m
∇um

)

,∇ (un − um)

〉

(t, x)dxdt

tends to zero whenever n and m tend to infinity.

For ε > 0, there exists Nε ∈ N such that for n,m ≥ Nε, all δ > 0:

1− δ

2

∫ t

0

∫

]0,t[×D

〈a0 (∇un −∇um) , (∇un −∇um)〉 (s, x)dxds

+
1

2
‖un − um‖2 (t)

+
1− δ

2

∫ t

0

∫

∂D
〈α0 (∇un −∇um) , (∇un −∇um)〉 (s, x)dςdϕs

≤ ε+

(

µ′ +
K2

2δ

)
∫ t

0

∫

D

‖un − um‖2 (s, x)dxds.



HOMOGENIZATION OF A DEGENERATE PDE WITH... 51

Hence choosing δ =
1

2
and exploiting Gronwall’s lemma, we have

1

2
‖un − um‖2 (t) + 1

4

∫ t

0

∫

D

〈a0 (∇un −∇um) , (∇un −∇um)〉 (s, x)dxds

+
1

4

∫ t

0

∫

∂D
〈α0 (∇un −∇um) , (∇un −∇um)〉 (s, x)dςdϕs

≤ εeKt, ∀n,m ≥ Nε, t ∈ [0, T ].

There follows that un is a Cauchy sequence in L2 ([0, T ];Ha0 (D)), and there
exists u ∈ L2 ([0, T ];Ha0 (D)) such that

un −→ u in L2 ([0, T ];Ha0 (D)) .

Moreover, since

∫ T

0

∫

D

〈f0 (un)− f0 (u) , (u
n − u)〉 (t, x)dxdt

+

∫ T

0

∫

D

〈b0 (un)∇un − b0 (u)∇u, (un − u)〉 (t, x)dxdt

≤ K

∫ T

0

∫

D

{

‖un − u‖2 (t, x) + 〈a0 (∇un −∇u) ,∇un −∇u〉 (s, x)
}

dxdt

and

∫ T

0

∫

∂D
|〈h0 (un)− h0 (u) , (u

n − u)〉| dςdϕt

+

∫ T

0

∫

∂D
〈d0 (un)∇un − d0 (u)∇u, (un − u)〉 (t, x)dςdϕt

≤ K ′

∫ T

0

∫

∂D

{

‖un − u‖2 + 〈α0 (∇un −∇u) , (∇un −∇u)〉 (t, x)
}

dςdϕt.

Then,

f0 (u
n) + b0 (u

n)∇un −→ f0 (u) + b0 (u)∇u in L2
(
[0, T ];Ha0 (D)

)

h0 (u
n) + d0 (u

n)∇un −→ h0 (u) + d0 (u)∇u in L2
(
[0, T ]; ∂D

)
.

Moreover the sequence
{
un
}
is bounded in F

(
D
)
, hence u is in F

(
D
)
.

By similar arguments, one can easy show the uniqueness of the solution u

in F
(
D
)
.
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Remark 3.3. We can drop the hypothesis that the matrix α0 is degenerate
without changing the conclusions.
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