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Abstract: We develop homogenization results of a degenerate semilinear PDE
with a Wentzell-type boundary condition. The second order operator is also
degenerate. Our approach is entirely probabilistic, and extends the result of
Diakhaby and Ouknine [3].

AMS Subject Classification: 60H15, 35K, 35B27
Key Words: homogenization, large deviations principle, viscosity solution,
stochastic differential equation, backward stochastic differential equation

1. Introduction

We study the solution of a semi-linear partial differential equation (PDE) in
the half-space D = {(21,22,...,24) € R? : z1 > 0} with additional boundary
condition on 0D. For each € > 0, we consider
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%(t x) = Leut(t,x) + f (E us(t :c)) + 16 (E us(t :c))
at ) g ) 57 ) € 57 ) )
re D, 0<t,
. L Y _ (1)
Pout(t,x) + h <€,u (t,:c)) + El (g,u (t,:c)) =0,
redD, 0<t,
( v*(0,2) = g(x), weD,
where

e ¢: R*x R — R is a measurable mapping, which is periodic, of period one

in each direction in the first argument, continuous in the second argument
uniformly with respect to the first, and satisfies:

/ e(z,y)m(dz) =0, Yy € R, (2)
Td

where m is the unique invariant measure on the torus 7%.

We suppose that e is twice continuously differentiable in y, uniformly with
respect to x, and there exists a constant K such that:

82

d
le(z,y)| + a—ye(x,y) + a—er(x,y) <K, VzeR! yeR (3)

l: R™! x R — R is a measurable mapping, which is periodic, of pe-
riod one in each direction in the first argument, continuous in the second
argument uniformly with respect to the first, and satisfies:

/Td_l l(x,y)mp(dx) = 0, Yy € R, (4)

where mg denotes the invariant measure on the torus 79!, We suppose
that [ is twice continuously differentiable in y, uniformly with respect to
x, and there exists a constant K such that:

2

) )
1)+ | gl y)| + | 5ol y)| < K, vee R, yeR (5

f:R'xXR— R, g: R" — Rand h: R* x R — R are sufficiently
smooth functions. Equivalently the coefficients can be seen as periodic
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functions with respect to the first variable with period one in each direc-
tion on R? and are such that for some ¢ > 0, p >0, u € R, 3 < 0, and all
r € R y,y €R:

l9(x)| < e(1+ |a]") (6)
)l <e(1+yP) (7)
W=y f(@y) = flay)] <ply—y (8)
(v~ ) hla,y) = hlw,y)] < Bly — o/ (9)
b, y)| < e (1+1yP). (10)

Assumptions and Definitions

Let (2, F, P) be a probability space on which two Brownian motions of (BZ)
and (NZ)1gigd
erator.

The differential operator L. inside D and I'; in 0D are given by:

d d
Lg—%Zaw( )8:@%4_%;@( )8xl+; ( )8961 (11)

Z?]

1<i<d
are defined (see [3]). Let E the corresponding expectation op-

=33 () gt 2 () (B e

2} =1
These operators are the generators of the reflected (L, I';)-diffusion (see Tanaka

[6]):
( X X X X
de:g( - >dBt+ b( - >dt+ (f)dHT(?t)dNt

+ ﬁ( )d —i—’y(XE)dtpt, 0<t,

1 . . . .
X, © >0, ¢ is continuous and increasing,

t
/ Xbedps =0, 0<t,
0

where X 1€ denotes the first component of the process X¢. We recall that
D =R} x R¥1 so that X¢ lives is D, that is, X remains non-negative and
©° increases when and only when X1€ is zero, just to keep it non-negative.
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The functions

ri 9D (= RIY) — ROV 5 gD (2 pIT) — g

and the function v : 9D (= R™!) — R? with v!(z) = 1, are smooth and
periodic of period one in each direction. The matrix o« = 77* is degenerate
and satisfies the hypo-elliptic Hormander condition.

We suppose that the functions

oc:R* — R™ p:. RT— R ¢: R" — R?

are smooth and periodic of period one in each direction. The novelty here
(in comparison with the work of Diakhaby and Ouknine [3]), is that assume
that the matrix @ = oo™* is degenerate and satisfies hypo-elliptic Homander
condition.

Definition 1.1 (Lie bracket). The Lie bracket between the vectors fields
Aj and Ay, is defined by:

[Aj, Ak] = A]vAk - AkvAj, (14)

.0
where A]VAk = Aé-alA}ga—xi.

Definition 1.2 (Strong Homander Condition (SHC)). Let H(n,x)
be the set of the Lie brackets of the vector field (m;(z)),.;, of order lower
than n at the point € X. We say that matrix m satisfies the (SHC) if for all
x € X, there exists ny € N such that H(ny,x) generates X.

- 1 1
Let us define X7 := EXEEQt and @f = ggozgt, then we get with two news stan-

dard d-dimensional Brownian motions {Bf : ¢ > 0}, and {Nf : ¢ > 0} which in
fact depends on &:

(X7 =0 (X7) dB; +b(X7) dt +ec (X7) de +  (X7) dng

+ 8 (X5) agf + ey (X7) dgi, o<,

X! >0, ¢ is continuous and increasing, (15)
¢
/ Xbedgs =0, 0<t,
0
Xg="2

€
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We set Ly and I'y the two operators defined as:

1
Lo:= = bi ( T4 1
0 22} amﬁz; o TeTY (16)
r 1 - a 4 - B g 741 17
0.—2%:(1173(:6)6%% Z} §(@) gy TeT (17)

Hypothesis (H): We suppose that o and « satisfies the SHC.

2. Weak Convergence (SDE and BSDE)

With (H) and the boundary condition I'gu = 0, according to Tanaka [6] (see

Pardoux and Diedhiou [2] in the case that 9D = (), the process X¢ is ergodic

and has a unique invariant measure whose density is strictly positive. There-

after, we set m the invariant measure associated of Ly on T% and we set mg the

invariant measure associated of the differential operator I'y on T4 1.
Throughout the paper, we suppose that

/ b(x)m(dx) = 0, (18)
Td

B(x)mg(dx) = 0. (19)
Td—1

Remark 2.1. 7 and § are regarded as d x d-matrix and d-vector-valued
functions respectively, with the convention that:

Pl gl

Let b be the solution of Poisson equation : Lol; = —bin D, and FOE =-0
in 0D let us introduce the process X; defined as:

N R
:x+t/0 (1+Vb)o <)i5>st+t/O (1+vb)e <)is>ds (20)
+/O (I+VB)T<X?§> st+/O (I+v13)yg <X§>d%.
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With (H) we know that the pair (Lo, o) is hypo-elliptic on D. Then there ex-
ists a bounded and smooth solution 7 of the PDE with Wentzell-type boundary
condition:

{Lon—() in D

Ton = (1+Vb) 7 = fras (1+V5) (@)1(x)mo(dz) on OD. (21)

Taking such a solution 7, we have by Ito:
X¢ t X¢€ t X¢€
£2 [17 (—t> -7 (E)] = 5/ Vno <—S> dBs + 5/ Vnr (—S> dN,
9 9 0 3 0 9
t X¢€ t X¢€
+ 5/ Vne (—S> ds + 5/ Vny (—S> dos (22)
0 € 0 €

v (1498) (£> agi -t [, (1+V8) @h(moda).

Putting (22) into (20) we have

Xf_x+/0t(1+v6)a()§>d35+/ot (I+V8)T(X?§>dNS

+/0t (I+vé)c<%> ds + S /le (I+v6) () mo(dz)
Lo () [ o () an
([or (o [or (D)o ()2

Before proceeding, we introduce some definitions:
ao — / (1+V8) @ala) (1+Vb)" (@)m(da)
Td
ap = / (I-l— VB) (x)a(x) (I + VB) (x)m(dx),
Td

d d
1 . . )
L= ‘Zl ald 0;0; + z; b0, with
)= 1=

co = /Td (I + VE) (x)e(z)mo(de),

d d
1 iy ‘ )
r=; ..22 al 0,0, + 2%@, with
)= =
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0= [ (1+9b) @rlamotis).

As in [3], we have the following theorem.

Theorem 2.2. Under (H) with conditions (17) and (18), the (L., I';)-
reflected diffusion process X¢ converges in law to the (L,T")-reflected diffusion
process X as € | 0. Moreover, on the space C ([0, T], R2d+1) equipped with the
sup-norm topology,

(X5 M7, %) — (X, M),
where:

o MX is the martingale part of X,

e ¢ (resp. ¢°) is the local time of X' (resp. X%¢).

Let X denote the unique diffusion process with values in the d-dimensional
torus 7%, whose generator is the operator L.
We now consider a type of BSDE which has been introduced in Pardoux

and Zhang [5]. For each fixed (t,z) € [0,T] x D, let { (YE,UZ);0< s < Td}
be the solution of the BSDE

t Xe¢ 1 t X¢€
YE :g(X§)+/ f(—r,y,f> dr+—/ e<—T,Y1f> dr
s g € Js g

t (24)
X 1 [t [Xe ! xe
v () L [ () ae - [ vz
S S S
For each fixed y € R, let set é be the solution of the Poisson equation:
Loé(z,y) +e(z,y) =0, z € T, y € R. (25)

More precisely by (2), é is centered with respect to the invariant measure m
and is given by the formula

é(x,y) = /OOO E%e (X4, y) dt. (26)

0 0?
Note that, see [4], é € C%? (Td, R) and é(.,y), a—yé(.,y), a—yQé(.,y) c Wp (Td) ,

for any p > 1 there exists K’ such that for all y € R

82

—é(. < K.
+||g,280v) <KL (27)

9,
a_ye('ay)

O p—

W2 (T) W2p(Td)
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For each fixed y € R?, let set [ be the solution of the Poisson equation which
satisfies (4) :

Dol(z,y) +1(z,y) =0, z €T yeR. (28)
2

04 .
I(.,y) € W2P (Td) )

- - 0 -
Note that, see [4], | € C%? (Td_l7 R) and [(.,y), 8—yl(.,y), a—yQ

for any p > 1 there exists K’ such that for all y € R

0 - 0% .

_l('vy) a—ygl('vy)

oy +

WQ»P(Td)

<K'. (29
WQ»P(Td)

lA(-vy)H

W2p(Td)
We introduce the notations:
t t
Mf_/ UsdMX"  and Mt—/ U.dMX, 0<t<T,
0 0

and we consider the quintuple (X, MX, .Y, M) (resp. (XE, MX" Ve, M5>)

as a random element of the space C ([O,t],R2d+1) x D ([O,t],RQ), where we
equip the first factor with the sup-norm topology, and the second factor with
the S-topology of Jakubowski (see [1]).

Considering the SDE and the BSDE satisfying respectively by X and Y:
t

t
Xt =+ cot + / b()(Ytg)dS + \/CL—OBt + / d()(Y;)ngt
0 0
+ Vao Nt + Yo, (30)
T T
Yi=g(tr)+ [ fal¥ods+ [ ho(Vde, + My~ Mr,
t t

where

0%é

(o) = [T+ Vha(e)z - (@ g)m(do)
co = /Td (I + VB) c(x)m(dz),

o) = [ l% (@)~ (o x ) + %a(x)(%)*] ) ymd).

+ [ fgmido)
o (1

ho=[ (y) +
do(y):/Td (I+v13)

<%('7y)7’7>> (z)mo(dx),
oz

2e
)3 () d).
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Then we have the following theorem.

Theorem 2.3. Under (H), (2), (4) and the conditions (6),..., (10), we
have
Y§ — Y, in R.

Proof. We adopt the same techniques as in [3]. O

3. Main Result

For each (t,z) € Ry x D, the solution of (1) is into the form
ut(t,x) ==Y, (31)

where Y denotes the solution of the BSDE considered in the previous section.
Now, let us consider the following homogenized system:

ou
315( ,x) = Lu(t, ) + fo(u(t,x)) + bo(u(t,z))Vu(t,z) , v € D,

L
Tu(t,z) + do(u(t, ©)) Vu(t, z) + ho(u(t,z)) =0, z € 0D, t >0,
u(0,z) = g(x) , xGD

We shall assume w.l.o.g. that the orthogonal basis of R? has been chosen
in such a way that the matrix ag is of the form

alh 0
%_<§0>’

where af) is a d’ x d’ positive definite matrix, with d’' < d.

We set R* = Egy @ E4_g, where Ey is the subspace of R? of dimension d’
generated by the vectors e;, i :=1,...,d" after a new arrangement of the basis
vectors of R? so we can obtain the wished form of ay.

_ 0},
oD

(32)

Define the space

H,, (D)= {v c L*(D): st. \ag-Vove (LQ(E))d and v

which will be associated to the norm:

1/2
Wl oy = (101225, + IVaoVelZay )
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By our assumptions, we have the a prior: estimates

1oz + No@)Voll ) < C (14 [0l ) -

Thus, we can show the following theorem.

Theorem 3.1. Under (H), (2), (4), (18), (19) and the conditions (6),...,(10);
the system (32) has a unique solution u in L* ([0, T], H} (D)), such that for all
1<k<d

<a0Vuk, Vuk> S L' ([O,T] X D) ,

0
<a0Vuk,Vuk> c! ([0,T) x 0D), with uy = 8—;

Moreover
u € C(R+ X E)

and we have for all t > 0 , for all x € R?
u®(t,x) — u(t,z) , when ¢ — 0,

where uf(t,z) is the solution of the PDE system (1).

Proof. We adopt similar tools as in [2].
x Step 1:
We first assume that the matrix ag is elliptic and we look for a solution

ue L2(((0,T); Hg(ﬁ)) ﬂc([o,T]; L2(5)>.

Let us prove the existence and uniqueness of the solution of the PDE. Set
F(D) = L2<(0,T); H} (5)) and consider the map:

U : F(D) —s F(D)

Let us show that ¥ is a contraction. For T € F, let T = W(T) where @ = u — '
and T = v — v'. Denote by v the ellipticity constant of ag. For any « > 0,

1 —at||= [|2 ! —as — 112
3¢ ||utHL2(D)+V/O e ||Vus||(L2(§))dds

t t
<-3 / €™ ||| 72 gy s + / ¢ (ho(vs) = ho(v4),Ws) 2 ) ds
0 0

t
e (afon) o) )y
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Remark that
(ho(v) —ho(v'))u < B 19l 2py I2ll 25y (as a reminder 8 < 0)
(fO(U) _fO( ))U<M”UHL2 Hu”]}(D
From this, we have
t
—ot Hut”L2(D) + V/O asHvusH(LQ(D )dds
t t
<o | e ml 2 pyds [ e Tl oy [Tl 2y ds
= 2/ @@ 1 | sli2(@) 1sllL2(D) 45-

By the fact that:

14
(VX —pY)? >0= XY < 2—X2 + 2ﬁy2,
14

I
we have
t
e R N Bl A
a t
- —as (|77 2
5 [ e T
v [t 5
<5 [ e (T + VTR, )
we add this term
:U’2 t
4 [ s
Thereby,

! —as Vi 2 d @ 'U’2 ! —Qas || 2 d
v [T s + (55 ) [ 06 s

< 2 [ (B + VTN )
=3, 12(D) (L2(D))4 )=

2
Choose a = 2v + 'u—, then we have
v

' t

/0 GQSIIVE(S)H?Lz(m)ddSJF/O eIz )
Lt —as v 2

< 5/ ()12 ) + IV 2 )
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There follows that U is a contraction on F'(D) with the norm:

t
— _ —as — 2
7l = ( [ e (o, + ||Vu<s>u(L2(D))d)ds>

* Step 2:

1
2

1
Consider the perturbed matrix A" = a9 + —I4, where ag can be degenerate.
n

Let u™ be the unique solution of (32) after substituting ag to A™. Multiply
equations of (32) by u" then,

th/ (¢, @)% d + = / (APt 2), V' (£ @) da
:/ bo (u"(t,:c))-V(u"(t,:c))u"(t,x)dx—i—/ fo(u"(t,z))u"(t,x)dx
D D
+ / T (u" (¢, 2)) u™(t, 2)ds + /8 o (@) (0.2}
9
+ %/D o 5 (u™(t,x)?) dx

+ / bo (u"(t,z)) - V (u"(t,z)) u" (¢, x)dz,
oD

where ¢ is the (d — 1)-dimensional volume element on 0D.
First we note that,

9 n 2
/DCO 8:0( (t,z)*)dz =0 t ae, and

/ YV (u"(t,z)) u™(t, z)ds = 0.
oD
26

0xdy’

‘/ bo (u"(t,x)) - V (u"(t,x)) u" (¢, x)dx
D

Second, by the boundedness of o, 7 and one can easy show that

<K / IV (t, 2)| [u"(t, z)| da
D

/ do (W (t,2)) - V (u™(t, 2)) u"(t, @)

oD

< K/ v aoVu" (t, z)|| [u"(t, x)| ds.
oD
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Thus,
th/ lu™(t, 2))* do + = / (A"Vu"(t,x), Vu" (t,x)) dz

+§/8D(a0Vu (t,x), Vu"(t,x)) ds

gu/Dyu"(t,x)FdHK/DH\/ﬁvun(t,x)u (¢, 2)| da

< K "(t,x)|*d
< (w+35) [ o a
)
+ = (/ (A"Vu", Vu") (t, x)dx —I—/ (apVu™, Vu") (t,x)dg) .
2 D oD

1
Choosing § = 5 e deduct by Gronwall’s lemma

/ W (t,2)|? do < K'e®'t,
D
and

/ ) / (AVu"(t, 2), Vu" (t, %)) ddt
0 D
T
+/0 /8D (aVu"(t,x), Vu"(t,x)) dsdpy < k(T).

a n
Now we differentiate equations of (32) for u" with respect to xj. Then u}! = o
L
satisfies:
Ouy, 1 & O%ul! ‘. Ouy,
“Eta) ==Y A% t 12k (¢
ot (7‘T) 21321 Zjaxiaxj(7x)+i21608xi(ax)

+ fo (u"(t, @) ui (t, ) + b (u" (¢, @) ui (, ) Vu" (¢, 2)
+ bo (u"(t,x)) Vui(t, x), reD (33)
k

U [up(t, o)) +dy (u™ (¢, x)) ul (t, 2)Vu" (t, 2) + do (u"(t, z)) Vup(t, )
+ ho (u"(t, x)) up(t,z) = 0, x € 0D
u}(0,2) =22 (2)

Note that

0
/ co - = (ul(t,x)*)dz=0, t a.e, and / YV (uj(t, z))uf(t, z)ds =0.
p Oz oD
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From this, multiplying equations of (33) by u}}, we have

th/ (¢, ) d + — / (AUt ), Val (1, 7)) da

+ —/ / (apVup(t, ), Vui(t,x)) ds

2/pJep
- / (b (1)) V™ (8, ) (g (1)) + b (" (8,2)) Va8, 2)eie ¢, )| o
D
/ [y (" (t,)) V(1) (uf (£, ) + do (u >>wz<t,x>uz<t,x>] dc

/fo (t,x)) (ug(t,z)) dx—i—/ h{ z)) (U (t, z))* ds.
oD

Remark 3.2.

o (b (u"(t,)), Vu" (t,2)) (uf(t,2))" = =bf (u" (t,2)) u" (t, ) (Vg u (¢, )
o hy (u"(t, 2)) (uf(t,2))* < Blu"(t,2)] |uf (t,2)]* < B Jug (t,2)]* (8" < 0)

) (i
o fo (w(t,x)) (ufp(t,2))* < pfu"(8,2)| uf (8, 2)* < p Jug (¢, )

Thereafter,
th/ (ko) d + = / (AP (@), Vi (£, @) da

<i [ it e+ K / |Vavup e, 2| juf ¢, 2)
D D

K2
< <//+2—5> | it da

o
+ - </ (A"Vup, Vup) (t,z)dx + /
2\Jp

(o Vug, Vug) (t, x)dg) .
oD

By an appropriate choice of §, we have using Gronwall’s lemma

/ lu?(t,z)|* de < KeXt,
D
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We have proved that u" is bounded in L ([0,7]; H} (D)), and also that each
u} is bounded L? ([0,T); Hy, (D).

* Step 3:
Let us show that u™ is a Cauchy sequence in L? ([0, T); H,, (D))

'82 (un o um)

— 1
—gr (0 =5 2 (@) (1)

d 2um d ) u — u™
LT o N ST S A i Y

1
+ fo(u"(t,z)) — fo (u™(t,x)) + b (u"(t,z)) Vu"(t, x)

t,x))
— b (u™(t,x)) Vu"(t,x) + T [(u" —u™) (¢, x)]
+ ho (u"(t,z)) — ho (u"(t,2)) + do (u™(t,x)) Vu™ (¢, x)
—do (u™(t,x)) Vu™(t, ).

Then by multiplying this equation by (u" — u"™), we get

Ld oy —ump? )+ %/D @6V (" — u™), ¥ (u" — u™) (¢, 2)da

%/D <<%Vu” _ %vw) V(" — um)> (t, 2)da

no_m 2
= %Lg%%(t,x)dx

+ [ ot = o) =) (ha)da
+ /D (bo (u™) Vu"™ — bg (u"™) Vu™, (u" —u™)) (t,x)dx
+/ (O (" = u™)] (" = u™) + (ho (u") = ho (u™) , (u" —w™)))(t, x)ds
oD
+ /aD (do (u™) Vu" —dp (u™) Vu™, (u" —u™)) (¢, x)ds.

Observe that

/ co - 5% {(u" - um)Q} dr =0 ta.e.,
D
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and
/ YV [(u" —u™)] (u" —u™) (t,z)ds = 0.
oD

And integrating with respect to ¢, we have

§”un u™ 1 ( // (apV (u™ —u™),V (u" —u™)) (s, z)dzds

t
+ / / (bo (u") Vu" — b (u™) Vu', (u™ — u™)) (s, x)dzds
o JD
t
+ / / (do (u™) Vu"™ —doy (u"™) Vu™, (u" —u™)) (s, x)dsdes
0 JOD
t
[ o @) = ho ) — am) (s, )dsdp
0 JoD
Since Vu™ and Vu™ are bounded in LQ([O, T];E)d,

%/()T/D<<%Wn_ %vw) ,v(un_um)> (t, x)dxdt

tends to zero whenever n and m tend to infinity.
For € > 0, there exists N, € N such that for n,m > Ng, all 6 > 0:

// {ag (VU™ — Vu™), (Vu" — Vu™)) (s, z)dzds
0,t[x
‘||“ u™|? (1)

_5 ot

_/0 /8D<040(Vu —Vu"), (Vu™ — Vu™)) (s,x)dsdps

<€+< )/ / | — u™||? (s, z)dxds.
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1
Hence choosing § = 3 and exploiting Gronwall’s lemma, we have

1
§|]u”— u™||? ( // ag (Vu" — Vu'™) , (Vu" — Vu'™)) (s, z)dxds
// (ap (Vu" — Vu'™) , (Vu" — Vu™)) (s, z)dsdps
oD
ee® Yn,m>N., tel0,T)]

There follows that u™ is a Cauchy sequence in L? ([0, T]; Hy, (D)), and there
exists u € L? ([0,T]; Hy, (D)) such that

u" —u in  L?([0,T]; Hy, (D)).

Moreover, since
T
/ / (fo(u") — fo(u), (u" —u)) (t,x)dxdt
/ / (bo (u™) Vu"™ — by (u) Vu, (u" —u)) (¢, x)dxdt
<K [ Il 0, + a0 (V0 F), a9 () bt

and

T
Lt = ho ). = )l ded
oD
/ / (do (u"™) Vu"™ —do (u) Vu, (u" —u)) (t, z)dsdps
oD

< K'/ / |u™ — ul]* + (o (Vu™ — V), (Vu" — Vu)) (t,x)}dgdgot.
0o Jop
Then,

fo (™) + by (u") Vu" — fo (u) +bo (u) Vu  in LQ([O T); Hq, (D))
ho (u™) + do (u™) Vu™ — ho (u) +do (u) Vu  in L*([0,T];0D).

Moreover the sequence {u”} is bounded in F' (D), hence v is in F' (D)
By similar arguments, one can easy show the uniqueness of the solution u

in F(D). O
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Remark 3.3. We can drop the hypothesis that the matrix «q is degenerate

without changing the conclusions.

1]

2]
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