
International Journal of Applied Mathematics
————————————————————–
Volume 29 No. 6 2016, 673-685
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v29i6.3

L
2 AND L

1 CONTROL THEORETIC SMOOTHING SPLINES

Alaeddin Malek1 §, Mohammad Asadollahi2

1,2Department of Applied Mathematics
Faculty of Mathematical Sciences

Tarbiat Modares University
P.O. Box 14115-134, Tehran, IRAN

Abstract: L1 and L2 control theoretic splines are effective for Gaussian noise
in data since estimations are based on L1 and L2 optimization. Here, it is shown
that the result is not robust against outliers for L2 control theoretic splines.
Numerical simulations for both y(t) and dy/dt under Gaussian and Laplacian
noise are given. It is shown that for meaningful sampling data (number of data
more than 75) the L1 control theoretic spline has better performance than L2

control theoretic spline. Numerical results and graphs for minimum, maximum
and mean errors are given.
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1. Introduction

In the recent years in order to approximate noisy data values, researchers
in mathematics and statistics have used smoothing splines. They establish
a method of fitting smooth curves determined by noisy data values, usually
Gaussian or Laplacian assumption for noise. The smoothing spline minimized
residual (sum of squared errors) plus an effort:
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J(u) := λ

∫ T

0
u2(t) dt +

m
∑

i=1

wi (y(ti)− yi)
2 , (∗)

where the data yi are noisy data, wi and y(ti) are weights and exact data values
at time ti , i = 1 , 2, ..., m, for u(t) ∈ L1[0, T ] or u(t) ∈ L2[0, T ] one might
calculate the output yL1(t), yL2(t) from the input to a linear single input single
output (SISO) system. Comparing these two different output curves based on
the L1[0, T ] and L2[0, T ] norms is the motivation of this paper. In this paper,
authors compared both yL1(t), yL2(t) and dyL1(t)/dt, dyL2(t)/dt in order to
recognize the effectuality of the L2 and L1 control theoretic smoothing splines
when one face by Gaussian or Laplacian noise. In the year 1964 Schoenberg
[16] used smoothing splines for the approximation of noisy data values. Re-
formulating this problem to an optimal control problem (∗) for SISO systems
was introduced by Egerstedt and Martin in year 2001 [3]. L1 control theoretic
smoothing spline was introduced by Nagahara and Martin [7].

The control theoretic splines are useful in the study of trajectory planning,
mobile robots in, contour modeling of images and image processing [2]. The
reminder of this article is organized as follows: In Section 2 we give the problem
formulation, in Section 3 – L2 control theoretic smoothing splines, in Section 4
– L1 control theoretic smoothing splines, and numerical examples are included
in Section 5, and Section 6 draws conclusions.

2. Problem Formulation

Consider a linear time-invariant, single-input or single-output system

ẋ(t) = Ax(t) + bu(t) , x(0) = x0 , x0 ∈ R
n,

y(t) = cTx(t),
(1)

where x ∈ R
n is the state vector, u ∈ R is the control input, y ∈ R is the plant

output, A ∈ R
n×n and b, c ∈ R

n. Let us define (t1, y1), (t2, y2), ..., (tm, ym),
where y1, y2, · · · , ym ∈ R are noisy sample data on the time instants 0 < t1 <
t2 < · · · < tm = T .

Assumption 1: (A, b) is controllable and (cT , A) is observable.
We now formulate a cost function of the form

J(u) := λ

∫ T

0
u2(t) dt +

m
∑

i=1

wi (y(ti)− yi)
2 , (2)
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where λ > 0 is the regularization parameter that specifies the tradeoff between
the smoothness of control u(t) and the minimization of the squared empirical
risk in the second term of (2), in which wi > 0 is a weight for i -th squared loss
(y(ti)− yi)

2.

Our goal is to minimize the quadratic functional J over the Hilbert space of
square integrable functions on the interval [0, T ] subject to the affine constraint

y(t) = cT eAtx0 +

∫ t

0
cT eA(t−s)bu(s) ds. (3)

Let βi = cT eAtix0, βi − yi = γi and

gti(t) =

{

cT eA(ti−t)b t ≤ ti
0 t > ti

, (4)

where the ti’s are the interpolation times.
We define a set of linear functionals as

Lti(u) =

∫ T

0
gti(t)u(t) dt. (5)

Now, (3)-(5) yield

y(ti) = βi +

∫ T

0
gti(t)u(t) dt = βi + Lti(u).

Thus (2) can be rewritten as:

J(u) = λ

∫ T

0
u2(t) dt +

m
∑

i=1

wi (Lti(u) + γi)
2 . (6)

For ε ∈ R and h as an arbitrarily function in L2[0, T ], we calculate the Frechet
derivative in the form

lim
ε→0

1

ε
(J(u+ εh)− J(u))

=

m
∑

i=1

2wiLti(h) (Lti(u) + γi) + 2λ

∫ T

0
h(t)u(t)dt

= 2

∫ T

0

[

m
∑

i=1

wigti(t) (Lti(u) + γi) + λu(t)

]

h(t)d(t). (7)

To ensure that u is a minimum, a necessary condition requires that (7) vanishes,
i.e.
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K(u) =

m
∑

i=1

wigti(t) (Lti(u) + γi) + λu(t) = 0. (8)

In the following rewritten operator

K(u) =

∫ T

0

(

m
∑

i=1

wigti(t)gti(s)

)

u(s)ds + λu(t), (9)

we show that K is one-to-one and onto- operator.

Lemma 1. The set of functions { gti(t) : i = 1, 2, ...,m } in (4) are linearly
independent.

Proof. The proof is obvious and relies on the fact that the different gti ’s
vanish at instants times t1, t2, · · · , tm.

Lemma 2. ([6]) The operator K is one-to-one for all choices of wi > 0
and λ > 0.

Proof. Suppose K(u0) = 0, which would imply that
m
∑

i=1

wigti(t)Lti(u0) + λu0(t) = 0,

hence for Lti(u0) = ai we have
m
∑

i=1

wigti(t)ai + λu0(t) = 0.

This implies that any solution u0 of K(u0) = 0 is in the span of the set
{gti(t) : i = 1, 2, ...,m} . Now consider a solution of the form

u0(t) =

m
∑

i=1

θigti(t) (10)

and from (9) evaluate K(u0) to derive

K(u0) =
m
∑

i=1

wigti(t)Lti(u)





m
∑

j=1

θjgj(t)



 + λ
m
∑

i=1

θigi(t) = 0.
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Thus for each i,

wi

m
∑

j=1

Lti(gj)θj + λθi = 0.

The coefficient θ is then the solution of a set of linear equations of the form

(WG+ λI)θ = 0,

whereW is the diagonal matrix of the weights wi and G = [gij ] is the Grammian
with gij = Lti(gj). Now consider the matrix WG + λI and multiply it on the
left by W−1, and consider the scalar

xT (G+ λW−1)x = xTGx+ λxTW−1x > 0

since both terms are positive. Thus for positive weights and positive λ the only
solution is θ = 0.

Remark 1. The matrix G = [gij ] ∈ R
m×m is the Grammian defined by

gij = 〈g(ti − ·), g(tj − ·)〉

=

∫ T

0
g(ti − t)g(tj − t)dt , i, j = 1, 2, ...,m.

(11)

Lemma 3. ([6]) For wi > 0 and λ > 0 the operator K is onto.

Proof. SupposeK is not onto. Then, for all u there exists a nonzero function
f such that

∫ T

0 f(t)K(u)(t)dt = 0. We have, after some manipulations, that

∫ T

0
f(t)K(u)(t)dt

=

∫ T

0

[

∫ T

0

m
∑

i=0

wigti(t)gti(s)f(t)dt + λ f(s)

]

u(s)ds = 0,

and hence
∫ T

0

m
∑

i=0

wigti(t)gti(s)f(t)dt + λ f(s) = 0.

The only solution of this equation is f = 0 and hence K is onto.

Lemma 4. ([6]) J(u) is convex in u.



678 A. Malek, M. Asadollahi

Proof. Since J is closed, quadratic function in u, convexity follows imme-
diately since λ > 0, W > 0.

From the convexity, the results on existence and uniqueness now follow from
standard infinite dimensional optimization.

We have thus proved the following proposition.

Proposition 1. The following functional has a unique minimum

J(u) =

m
∑

i=1

wi (Lti(u) + γi)
2 + λ

∫ T

0
u2(t) dt.

3. L2 Control Theoretic Smoothing Splines

Problem 1. The problem of L2 control theoretic smoothing spline is formu-
lated as follows:

Find control u(t) that minimize the cost J(u) in (2) subject to the state-
space equation in (1). The Optimal control u = u∗ that minimizes J(u) is given
by (10) of the form

u∗(t) =

m
∑

i=1

θigti(t), (12)

where gti(t) is defined by (4).

The optimal coefficients θ∗1, θ
∗
2, ..., θ

∗
N are as:

θ∗ = [θ∗1, θ∗2, ..., θ∗m]T = (WG+ λI)−1y, (13)

where

y := [y1, y2, ..., ym]T . (14)

An advantage of the L2 control theoretic smoothing spline is that the optimal
control can be computed offline via equation (13). However, the formula in-
dicates that if the data size N is large, so is the number of base functions in
u∗(t), as it is shown in (12). This becomes a drawback if we have only a small
memory or simple actuator for drawing a curve with the optimal control u∗(t).

Another drawback is that the L2 spline is not robust at all against outliers,
as reported in [7], since the squared empirical risk in (2) is measured by L2 norm.
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This is based on the assumption that the additive noise is Gaussian. However,
there may exist outliers in data, which may be ignored under the Gaussian
assumption of noise, the regression may be very sensitive. For overcome to
these drawbacks we adopt L1 optimality for the design of spline.

4. L1 Control Theoretic Smoothing Splines

Before formulating the design problem of L1 spline, we prove the following
lemma:

Lemma 5. ([6]) Assume that control u(t) is given by

u(t) =
m
∑

i=1

θigti(t) (15)

for some θi ∈ R, i = 1, 2, ..., m. Then we have

y(t) =

m
∑

i=1

θi 〈g(t− ·), g(ti − ·)〉 , t ∈ [0, T ]. (16)

In particular, for j = 1, 2, ...,m, we have

y(tj) =

m
∑

i=1

θiGij . (17)

Proof. If u(t) = 0 for t < 0, then the solution of (1) is given by

y(tj) =

∫ t

0
cT eA(t−s)bu(s) ds =

∫ T

0
gti(s)u(s) ds = 〈g(t− ·), u〉 .

Substituting (15) into the above equation, gives (16). Then, from the definition
of Gij in (11), we immediately have (17).

By Lemma 5, the error y(ti)− yi is given by

y(ti)− yi =

m
∑

i=1

θiGij − yi , j = 1, 2, ...,m,

or equivalently,







y(t1)− y1
...

y(tm)− ym






=











G11 G12 · · · G1m

G21 G22 · · · G2m
...

...
...

Gm1 Gm2 · · · Gmm





















θ1
θ2
...
θm











−











y1
y2
...
ym











. (18)
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Based on this, we consider the following optimization problem:

Problem 2. (The problem of L1 control theoretic smoothing spline: L1-
optimal spline coefficients):

Find θ ∈ R
m where θ := [θ1, θ2, ..., θm]T that minimizes

Jp(θ) = η ‖θ‖1 + ‖W (Gθ − y)‖pp , (19)

where η > 0 and p ∈ {1, 2}, [11].

The regularization term, ‖θ‖1, is for sparsity of coefficients θ1, θ2, ..., θm,
as used in regression LASSO [12]. Also, small ‖θ‖1 leads to small L1 norm of
control u since from (15) we have

∫ T

0
|u(t)|dt ≤ C ‖θ‖1 ,

for some constant C > 0. On the other hand, the empirical risk term,
‖W (Gθ − y)‖pp, is for the fidelity to the data. For p = 1, additive noise is
assumed to be Laplacian, a heavy tailed distribution, to take outliers into ac-
count, while p = 2 is related to Gaussian noise. In each case, cost function Jp(θ)
is convex in θ. Unlike L2 spline, the solution to the optimization in Problem
2 cannot be represented in a closed form. However, by using a numerical opti-
mization algorithm we can obtain an approximated solution within a reasonable
time. For example for p = 1, there is no algorithm achieving such a rate, but
the optimization is still convex and we can use an efficient convex optimization
software, such as cvx on MATLAB [13].

5. Numerical Example

In this section, by some numerical simulations we show the effectiveness of the
proposed L1 control theoretic smoothing spline against L2 control theoretic
smoothing spline. In what follows let us assume that the dynamical system
P (s) is given by transfer function P (s) = 1/s3, state-space matrices for P (s)
are given by

A =





0 0 0
1 0 0
0 1 0



 , b =





1
0
0



 , c =
[

0 0 1
]

.

Mean and variance of the Laplacian noise and the original curve are given in
Table 1 for four different examples.
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Example yorig(t)
Noise Figures

Mean Variance

1 1 + cos(3t) 0 1 1&2

2 1 + cos(3t) 0 1 3&4

3 1 + cos(3t) 0 2 5&6

4 sin(2t) 0 1 7&8

Table 1

This table shows that for t1 = 0.1 in Example 1 data are sampled at rate 10
[Hz] (ti = 0.1 + 0.1 (i − 1)), while in Examples 2, 3 and 4, data samples are at
rate 100 [Hz] (ti = 0.1+0.01 (i− 1)). In Example 1, (ti, yi), i = 1, 2, ..., 51, are
the noisy sample data, while in Examples 2, 3 and 4, (ti, yi), i = 1, 2, ..., 501,
are the noisy sample data. Note that noisy sample data are given by additive
Laplacian noise with mean 0 and variance 1 or 2.

In this paper, the optimal coefficients θi for L
1 control theoretic smoothing

spline with p = 1 (see (19)) is computed using convex optimization code. Note
that p = 1 corresponds to the Laplacian noise, that is used in this paper. The
design parameters is given by η = 0.01 and the weights are all equal and are
fixed to 1.

First, for y(t), L2 control theoretic smoothing splines are compared with L1

control theoretic smoothing splines (see Table 2 and Figures 1a–2d). Second,
for dy/dt, L1 and L2 control theoretic smoothing splines are compared (see
Table 3 and Figures 3a–4d).
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Figure 1: (a) Sampled data (circles), original curve (solid line), fitted
curve by L2 (dash-dotted line), fitted curve by L1 (dashed line), (b)
Error between fitted curve by L2 spline and fitted curve by L1 spline,
(c) Sampled data (circles), original curve (solid line), fitted curve by
L2 (dash-dotted line), fitted curve by L1 (dashed line), (d) Error
between fitted curve by L2 spline and fitted curve by L1 spline.
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Figure 2: (a) Sampled data (circles), original curve (solid line), fitted
curve by L2 (dash-dotted line), fitted curve by L1 (dashed line), (b)
Error between fitted curve by L2 spline and fitted curve by L1 spline,
(c) Sampled data (circles), original curve (solid line), fitted curve by
L2 (dash-dotted line), fitted curve by L1 (dashed line), (d) Error
between fitted curve by L2 spline and fitted curve by L1 spline.

Figures 1a, 1c, 2a and 2c illustrate the original curves yorig and their fitted
curves by L1 and L2 control smoothing splines for Examples 1, 2, 3 and 4,
respectively. Figures 1b, 1d, 2b and 2d show the error between L1 and L2

control smoothing splines for Examples 1, 2, 3 and 4, respectively.
In Fig. 1a, it is shown that even for small number of sampling data 51,

the reconstructed curves based on L1 and L2 control smoothing splines fits
the original curves. Fig. 1b shows the error between original curve 1 + cos(3t)
and the fitted curves. In Table 2 one can observe that the fitted curves by L1

control smoothing spline has less mean error in all of the cases however for small
number of sampling data (less than 75) minimum error L2 control smoothing
spline is less than the minimum error for L1 control smoothing spline, as it was
expected.

In Figs. 1c and 1d for Example 2 in comparing with Figs. 2c and 2d for
Example 4, show that the mean error of L1 control smoothing spline is less
than L2 control smoothing spline, ever if the original curves are different, i.e.,
they are chosen to be 1+cos(3t) and sin(2t), respectively (see Table 2). Several
original functions are examined and to the knowledge of authors, the L1 control
smoothing spline gives better performance than L2 control smoothing spline.

In Table 3, it is shown that for dy/dt, L1 control smoothing spline gives bet-
ter performance than L2 control smoothing spline for large number of sampling
data while Laplacian noise is used (see Figures 3 and 4).
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L1 Errors L2 Errors
Min Mean Max Min Mean Max
Error Error Error Error Error Error

Ex 1 3.9267e-04 0.3759 1.9397 1.7250e-04 0.3760 2.0620

Ex 2 5.7627e-05 0.1252 1.0928 5.6152e-05 0.1394 2.1278

Ex 3 4.2735e-05 0.2012 1.6819 1.5821e-06 0.4693 4.5782

Ex 4 7.2212e-06 0.0849 0.4538 3.8729e-05 0.1231 1.9036

Table 2: L1 and L2 Errors for different Examples 1, 2, 3 and 4 for
y(t).

L1 Errors L2 Errors
Min Mean Max Min Mean Max
Error Error Error Error Error Error

Ex 1 3.7560e-04 0.8175 2.7660 2.9793e-04 0.7453 3.5864

Ex 2 1.3737e-05 0.0828 0.2453 3.3330e-05 0.1218 2.2062

Ex 3 1.7462e-05 0.1620 0.5202 6.0957e-07 0.2811 4.2969

Ex 4 8.0341e-06 0.0828 0.8083 9.6813e-06 0.1223 1.9350

Table 3: L1 and L2 Errors for different Examples 1, 2, 3 and 4 for
dy/dt.
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Figure 3: (a) Sampled data (circles), original curve (solid line), fitted
curve by L2 (dash-dotted line), fitted curve by L1 (dashed line), (b)
Error between fitted curve by L2 spline and fitted curve by L1 spline,
(c) Sampled data (circles), original curve (solid line), fitted curve by
L2 (dash-dotted line), fitted curve by L1 (dashed line), (d) Error
between fitted curve by L2 spline and fitted curve by L1 spline.
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Figure 4: (a) Sampled data (circles), original curve (solid line), fitted
curve by L2 (dash-dotted line), fitted curve by L1 (dashed line), (b)
Error between fitted curve by L2 spline and fitted curve by L1 spline,
(c) Sampled data (circles), original curve (solid line), fitted curve by
L2 (dash-dotted line), fitted curve by L1 (dashed line), (d) Error
between fitted curve by L2 spline and fitted curve by L1 spline.
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