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Abstract: In the present paper, the authors establish some fractional inte-
gral and fractional derivative formulas involving a generalized confluent type
hypergeometric function introduced by Parmer [6].
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1. Introduction

The special functions play important role in mathematics and its diverse fields.
In particular, the hypergeometric function is involved in solving numerous prob-
lem of mathematical physics, engineering and applied mathematics (see Ozergin
[5], Samko et al. [11], Kiryakova [3], [4], Kilbas et al. [2], Prajapati and Kach-
hia [8], Kachhia and Prajapati [1], etc.). This inspires the study of several
generalizations of the hypergeometric functions. Before starting and proving
our results, we present some notations, basic definitions and preliminary results
useful for the further discussions.
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We also recall the Pochhammer symbol ()),, defined (for A € C) as (Rainville
[9)

1, (n=0),

(A = AA+1D...A+n—-1) (neN) (1.1)
I'(A+n) _
YO (A e C/Zy),

where Z, denotes the set of non positive integers.
The classical Beta function is defined by (Rainville [9])

B(z,y) = /01 t*1(1 —t)¥" dt; Re(x) > 0, Re(y) > 0. (1.2)

Recently, a generalization of the beta function has been given by Parmar
[6] as follows:

1
BlaBin) _/ e=11 _ -1 . A - 1
0% (xvy) 0 13 ( t) 1471 | &5 Ba t”(l — t)” dt7 ( 3)

where R(p) > 0,R(x) > 0,R(y) > 0,R(a) > 0,98(8) > 0 and R(u) > 0.
It is interesting to observe that for p = 0, the generalized Beta function
(1.3) reduces to the classical gamma function (1.2).

The confluent hypergeometric function is defined by (Rainville [9])

A1y ..., Ap

g [ b, ..., by (1.4)
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withp<gorp=g¢g+1and |z| <.

The generalized confluent hypergeometric function qu(a’ﬁ ) [ Zl’ Y Zp 5 2; ’y]
15 -+ Ug

can be defined as (see Parmar [6])

(a,Bry) | Qlyees@p N S 2"
rFy [ by, ..., by 7277] : Zo@(n/p,q) ot (1.5)
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where 7 > 0 and the coefficient term © (n/p, q) is expressed by

( q Bga,ﬁ;*@)(

(al)n H

j=1
(p=q+ 1;R(bj) > R(aj+1) > 0;]z| < 1),

g Bs,a’ﬂ’n)(ajJrn,bjfaj)
©(n/p,q) = =1 B(aj,bj—aj) (1.6)
(p = q;R(bj) > RN(aj) > 0;2z € C),
r P (0, B;K)
1 B (aj+n,bryi—aj)
[4pt] 11;11 (bi)n .Hl . B(aj,l]),«—l—j—;;j) =,

aj414n.bj—aji1)
B(ajt1,b5—a;+1) ’

(r=q—p,p < R(ryj) > R(a;) > 0;2€C),

where the generalized Beta function Bj (o83 )(x y) is given by (1.3).
It is important to mention that for v = 0, equation (1.5) would reduce
immediately to (1.4).

Definition 1. (Pohlen [7]) Let f(z) := Z apz" and g(z) = Z by 2"

be two power series whose radii of convergence are denoted by Ry and Ry,
respectively. Then their Hadamard product is the power series defined by

(f *9)(z }:ad)z (1.7)

The radius of convergence R of the Hadamard product series (f * g)(z) satisfies
Rf.Rg < R.

In particular, if one of the power series defines an entire function, then the
Hadamard product series defines an entire function, too.

Let us consider the function ,F, ﬁf " “)[ ;p]. Its decomposition is illustrative
as
F(aﬁ’y) l: L1,y Ts 2 :|
st Yty -5 Ystr 7

1 . L1,y &
=F IR F(O"B”)[ Doots z| < 00).
L |: Yty - Yr :| e Yitrs -y Ystr 7 (‘ ’ )
(1.8)

We need to recall the following pair of the Saigo hypergeometric fractional
integral operators (see Saigo [10], Kiryakova [4]).
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For x > 0, u,v,n € C and o > 0, we have

x
rHTY

(I F (1) (@) = (= By (et ve—ms sl — = ) f(8) dt, (19)
IN0D) 0/ < x)

(JELNf () (x) = ﬁ / (t— ) VR (u +v =l — %) f(t) dt,

x
(1.10)
where 9 F} (+) is a special case of the Gauss hypergeometric function.
The operator I;,""(-) contains both the Riemann-Liouville Ry ,(-) and the
Erdélyi-Kober E& 7(+) fractional integral operators as particular cases, by means
of the relationships:

T

(R f(D)(@) = (" F(1) () = ﬁ / (@ — 0P @) de, (111)
0

xT

/(:1: — t)HT LN E(t) dt. (1.12)

0

THTT
L)

And also, note that the operator (1.10) incorporates the Weyl type and the
Erdélyi-Kober fractional operators as follows:

(BT F () (@) = (T2 f(1)(x) =

(WE £ (1)) () = (T <t>><x>=ﬁ / (t— o)y lf) d, (113)

xT

[e.9]
xn

(KELS0)(@) = (LRI )@) = 55 Je—ayeenpw a0

T
We also use the following image formulas which are well known facts and
easy consequences of the definitions of the operators (1.9) and (1.10) (see Saigo

10]):
PO —v+m) s

I (z) = 1.15
A>0,A—v+n>0),
(J:ﬁ,go,nt)\fl)(x) _ F(V — A+ 1)F(77 - A+ 1) x)\fufl (1.16)

T1—NC(v+pu—A+n+1)



FRACTIONAL CALCULUS OPERATORS OF... 193

(v—A+1>0,7—A+1>0).
Let p, ,u/, vV, v, € C, C being the set of complex numbers and > 0. Then
the generalized fractional derivative operators are defined as (Saigo [10])

(Dgf’" ) (z) = (17M77V7M+nf) (z) = <%) (Io—f-i-n,—u—mu-i-n—nf) (x), (1.17)
(R(p) > 0,m = [R(p)] + 1).

d n
[l — 7777+ — 7+7777+7
(1) (0) = (17708 @) = (=) (0 ) o),
(1.18)
(R(p) =2 0,n = [R(p)] + 1).
The operator (D{}"") (.) contains the Riemann-Liouville D, (.) and Weyl frac-
tional derivatives by means of the following relationships:

(D" f)() = (Dg, f) () = (%> ( : ) /o @f(f)flfnﬂ,

(>0, n=[R(p)]+1,peCR(K) =0).
(1.19)
and
g @) =000 = (- ) e [
(>0, n=[R(p)]+1,pneCR(K) =0).
(1.20)

It is noted that the operators (1.17), (1.18) include also the Erdélyi-Kober
fractional derivative operators (Kiryakova [3]) for v = 0 and p,n € C,R(u) > 0:

(D6 1)) = (D7 ) () = (%> (I ) @),

(1.21)
(6> 0, 1= [R(x)] +1,u € C).
(D" f)(@) = (Dypf)(a) = (‘i)n (T ) @)
0" N dr - ’ (1.22)

(x>0, n=[R(p)]+1,pue€C).
We also use the following image formulae which are easy consequences of
the operators’ definitions (Saigo [10]). Namely, for p,v,n € C and R(p) > 0,
x>0, A\ > —min[0, u + v + 1),

y _ NN+ p+v+n) _
DNv 5T A—1 — Atr—1 123
0%(x ) T+ ) DA +7) (1.23)
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and for p,v,n € C and x > 0, R(p) > 0, A <1+ min[( — v —n), (& +n)],

ol N T =A=0)(L = A4 p+n) sy
D (A1) = Al 1.24
0- (“" ) T1-NT(1-Atq—v) © (1:24)

2. Fractional Derivatives of Hypergeometric Function

The right-sided Saigo fractional differentiation of the generalized Gauss hyper-

A1,y ..y Ap

geometric type function , Fq(aﬁw) [ ;z;ry} is given by the following

bi,...,bq
result.

Theorem 1. Let x > 0, R(y) > 0, p,v,n,p,e € C be parameters such
that
R(w) >0, R(p) >0, R(p) > —min{0,R(n+v+n)},

Then, the following fractional derivative formula holds:

D J g1 F(aﬂv) 1yeees Op - et:y :xp+u—1F(P)F(P+V+77)
" by T(o+ v+ 1)

% F(aﬁ;v)[alﬁ“'vap; , } F [(p),(p-i—V—i-n); }}
{p ! by by T TR (o), (o) T

(2.1)

Proof. For convenience, we denote the left-hand side of the result (2.1) by s.
Using (1.5) and then changing the order of integration and summation, which
is valid under the conditions of Theorem 1, we find

¢ = (Dé‘f’" 1tpflie(n/p, q) (i?n])
n=0
Z (n/p,a) — [Dgf’”(t””‘l)]. (2.2)

Now, making use of the result (1.23), we obtain

(e)"T(p+n)L(p+n+v+n) -
= @ .q p+n+v—1
T Z N I ¥ P P o

which, by applying the Hadamard product series and using equation (1.7) yields
the desired result, equation (2.1). O
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The left-sided Saigo fractional differentiation of the generalized Gauss hy-

A1y, .5 0p

pergeometric type function qu(a’ﬁ ") [ b, % ’y] is given by the follow-
»Vq

b1, ...
ing result.

Theorem 2. Let x > 0, R(y) > 0, p,v,n,p,e € C be parameters such
that

R(pn) > 0,R(p) <1+ min[R(—5 —n),R(x+n)],n = R[p] + 1.

Then, the following fractional derivative formula holds:

pvm ) p=1 1o (eBy) | @l Gp €
Do~ {t rq [bl,...,bq e

_ v LA —p = )T —p+p+n)
FA=p)I1—p—v+n)
. s l—p—v),l—p+p+n) e
plafny) | s p € B (I—p R
X {p q |:b1,...,bq 73?77 * o l'9 (1—p),(1—P—V+"7) 73?
(2.3)

Proof. As in the proof of Theorem 2, taking the operator (1.18) and the

result (1.24) into account, one can easily prove (2.3). Therefore, we omit the
details of the proof. O

Setting v = 0 in Theorems 1 and 2 yield the results asserted by the following
corollaries.

Corollary 1. Let z > 0, R(p) > 0 and p,v,n,p,e € C be parameters
such that

R(w) >0, R(p) >0, R(p) > R(—n).

Then the right-hand side Erdélyi-Kober fractional derivative of the generalized
Gauss hypergeometric type functions is given by

R e A R dl
by, ..., b,

T )
21 (p+p+mn) {qu(aﬁﬁ) [ A1y Gp ;ex;’y} * 1 { (p+ptm) ;ex}}.
T(p+mn) 15 bg (p+m)
(2.4)
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Corollary 2. Let x > 0, R(p) > 0 and u,v,n,p,e € C be parameters
such that

R(p) >0, R(p) >0, R(p) <1+R(n).

Then the left-hand side of Erdélyi-Kober fractional derivative of the generalized
Gauss hypergeometric type functions is given by

m0m ) 4p—1 o (,Byy) | @15 lp €
Dy~ {t vy [bl,...,bq 3
_ ot PA—ptp+n)

Ll —p+n)

) | a0, € (I—p+pu+mn) e
X{qu(aM[ brvo by ’5”4 *1F1[ s

Further, if we replace v with —p in Theorems 1 and 2 and use the relations
(1.19) and (1.20), we obtain the Riemann-Liouville fractional derivative of the

A1y ey Qp :|

generalized Gauss hypergeometric type function qu(O‘ﬂW) [ b b, SEY
1545 0g

given by the following corollaries.

Corollary 3. Let x > 0,9(v) > 0 and pu € C be parameters such that
R(p) >0 and R(p) > 0.

Then the right-hand side Riemann-Liouville fractional derivative of the gener-
alized Gauss hypergeometric type function is given by

sy —1 ,5; A1yy-5Qp .

_ o-n—1_L@)(p+1)
- L(p—w)T(p+n) 20

% F(a,/y’;'y) |: A1y yeey Ap Cex; :| . |: (P)a(ﬂ+77) ,6.’E:|}
{p ‘ biyonbg T (0= ), (o4 0)
Corollary 4. Let x > 0,9R(y) > 0 and u € C be parameters such that

R(p) >0 and R(p) > 0.

Then the left-hand side Riemann-Liouville fractional derivative of the general-



FRACTIONAL CALCULUS OPERATORS OF... 197

ized Gauss hypergeometric type function is given by

DN | pp=1 g (afry) | Alosesp o
0" [t rFa brynby 17

— xp—l—u—lr(l —p+ /.L)
I'(1—p)

(a.Byy) | Qlss-slp € (I=p+p), e
X{qu |: bl""jbq 7xa’y:|*1F1|: (1_p)’ ’11? .

3. Fractional Integral Formulas involving Generalized
Hypergeometric Function

Now the Saigo fractional integrations of generalized hypergeometric type func-
tions are given by the following results.

Theorem 3. Let x > 0, R(y) > 0, p,v,n,p,e € C be parameters such
that

R(pn) > 0,R(p) > max|[0, R(—v — n)].

Then, the following fractional integral formula holds:

- . w1 T(p)T(p+v+n)
THvn ) 4p=1 pr (@,Bi) [ @155+ Ap et }} x) =PVt
O { pha broweby ) T(p—)L(p— i+ 1)

% F (o, B57) |: A1y, .5 0p cex; :| % o[ |: (p)7 (p —v+ 77) ;e:c] } )
{p a b1, ..., by TP (o —v)(p+ )
(3.1)

Proof. Using (1.9), we obtain

15" {tp—lqu(aﬂw) [ “bl”"”ap ;et;v] } (z)

1 oens b

_Z@ (n/p,q _IHVTI{thrp 1}
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Now, making use of (1.15), we get

_ : Alyyeeny @
I&;j’n {tp 1qu(a”B”Y) |: bll bqp §€t;7:|}(50)

OO n
e T'(n+plp—v+n+n e
nzzo nPn+p—v)I(n+p+p+mn)

The Hadamard product series and (1.5), give the desired result (3.1).

Theorem 4. Let x > 0, R(y) > 0, p,v,n,p,e € C be parameters such
that

R(p) > 0,%R(p) > max|[0, R(—v — n)].
Then, the following fractional integral formula holds:
pn ) pp=1 p (@,By) | Glys s Gp €
Jioc {t vfa [ br, s by ’t”V”(x)

p—rv—1 F(V_P+1)F(1_P+"7)
rl—pllv+p—p+n+1)

. —p+1),(n—p+1) e
F (a,ﬁ,'y) a,, 7ap . E F (V P ) L C )
X{pq |: bl,...,bq 7xa7 * 202 (1—p),(V—|—,u—p—|-77+1)’x
(3.4)
Proof. As in the proof of Theorem 3, taking the operator (1.10) and the
result (1.16) into account, one can easily prove result (3.4). O

Setting ¥ = 0 in Theorem 3 and Theorem 4 yield the results asserted by
the following corollaries.

Corollary 5. Let x > 0, R(y) > 0, u,v,n,p,e € C be parameters such
that

R(p) >0, R(p) >0, R(p) > R(—n).

Then, the left-side Erdélyi-Kober fractional integral of the extended generalized
hypergeometric type function is given by:

s — : at,,...,a B F(p+77)
sz f oo [ bt o) < g TO2D

oo [men ol [ 00
{pq Dby U T (o) T
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Corollary 6. Let z > 0, R(y) > 0, u,v,n,p,e € C be parameters such
that
R(p) >0, R(p) >0, R(p) <1+ R(n).

Then, the right-side Erdélyi-Kober fractional integral of the extended general-
ized hypergeometric type function is given by:

. I'(1—
Kf;’go {tplqu(a’Bﬁ) [ Ao Ap ; ;57} } (IL’) = xpflr ( Pt 77)

bi,...,b 14+pu—p—
150 bg . +() p=p=n) (3.6)
Fo(@B) | @y lp € F —pT €
X pla [ b, ..., by AR I—p+n+p) 't

Further, if we replace v with —u in Theorem 3 and Theorem 4, we obtain
the Riemann-Liouville fractional integrals of the generalized hypergeometric
type functions given by the corollaries.

Corollary 7. Let z > 0, R(y) >, p,v,n, p,e € C be parameters such that
R(w) >0, R(p) >0, R(p) > R(—n).

Then, the left-side Riemann-Liouville fractional integral of the extended gener-
alized hypergeometric type function is given by:

_ . 1 T(p)
R* P 1 r (a,B7) | A1ys--5Qp | ¢ — ptp—1
O,x{ ptq bl,...,bq ;€LY (.CU) X 7F(p—|—,u)
A1y y..e5Ap

.B; p)
X qu( B7) [ i, s by ;e:c;'y] * 1 Fy [ (p(+ ) ;ex} .

Corollary 8. Let x > 0, R(y) > 0, u € C be parameters such that

(3.7)

RA(p) >0, R(p) > 0.

Then, the right-side Riemann-Liouville fractional integral of the extended gen-
eralized hypergeometric type function is given by:

_ . T =p—p)
RE =1 p(aBiy) | Gloseenlp € _ ptp—1
ac,oo{ prq bl,...,bq 7t77 (x) X F(l—p—)

(1 ) (3.8)
(@B7) | @155 ap €, —p—H) €
X{qu |: bl,...,bq at77:|*1F1|: (1_p) ’CC:|}
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4. Concluding Remarks

The extended hypergeometric type functions defined by (1.5) have an advantage
that most of the known and widely-investigated special functions are expressible
in terms of the generalized Gauss hypergeometric functions. Therefore, we
conclude this paper by noting that the results can lead to other numerous
fractional calculus formulas for special functions, by suitable specializations of
the arbitrary parameters.
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