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Abstract: This is a survey on a part of author’s recent results on the subject.
It is devoted to different systems of the Mittag-Leffler functions and their 3-
parametric generalizations. First, asymptotic formulae necessary for obtaining
the main results, are provided. Series defined by means of these systems are
further studied. Starting with their domains of convergence, the behaviours of
such series on the peripheries of their convergence domains are investigated and
analogues of the classical results for the power series are proposed.
This serves as Part II, of our previous paper [16].
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1. Introduction

The special function E 8 defined in the whole complex plane C by the power
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series

k

E] 5(2) =) %% o, B, v€C, Re(a)>0, (1)
k=0 ’

where () is the Pochhammer symbol ([1], Section 2.1.1)
(o=1, Mr=70v+1)...(v+k-1),

arises as a natural generalization of the Mittag-Leffler functions E, and E, g.
It was introduced by Prabhakar in 1971 in his paper [17]. For v = g =1
and v = 1 this function coincides respectively with the classical Mittag-Leffler
functions F, and E, 3. The first was introduced by Mittag-Leffler (1902-1905)
who investigated some of its properties, while the other first appeared in a
paper of Wiman (1905).

In the previous papers [9, 10], the author considered series in systems of
Mittag-Leffler type functions and, resp. in [13], series in the multi-index (2m-
indices) analogues of the Mittag-Leffler functions and some of their special
cases, as representatives of the Special Functions of Fractional Calculus [4].
Their convergence in the complex plane C is studied and Cauchy-Hadamard,
Abel and Tauberian type theorems are provided. Recently, these results have
been surveyed and discussed in the paper [16]. In the present paper, series in
Mittag-Leffler functions and their three-parametric Prabhakar generalizations
are also studied and other results for them are discussed.

Practically, this survey paper is a natural continuation of the paper [16]
and it contains propositions of Fatou type theorem and about their overcon-
vergence as well. Finding such a kind of results is provoked by the fact that
the solutions of some fractional order differential and integral equations can be
written in terms of series (or series of integrals) of Mittag-Leffler type functions
(as for example, in Kiryakova [3]). The functions (1) and series in them have
recently been used to express solutions of the generalized Langevin equation
by Sandev, Tomovski and Dubbeldam [19]. Other investigations, connected to
various anomalous diffusion and relaxation processes, generalized diffusion and
Fokker-Planck-Smoluchowski equations with the corresponding memory ker-
nels, can be seen in the survey paper by Sandev, Chechkin, Kantz and Metzler
[18].

2. Preliminary Results

Consider now the functions E, with positive indices @« = n € N and also
generalized Mittag-Leffler functions (1) with integer indices of the kind § = n;
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n=20,1,2,..., namely:

N.
kg nk +1 ne
(2)

E ()—i () z—ka €C, Re(a) >0, neN
a,n T(ak + )kj v ) 0-

Since the generalized Mittag-Lefler functions reduce to two-parametric
Mittag-Leffler functions for v = 1, all the results connected with the three-
parametric generalizations, discussed in this survey paper, hold true for the
corresponding two-parametric Mittag-Leffler functions.

As it has been noted in [16], the coefficients in F,, are all different from
zero, but the situation in E&n is not the same. More detailed observation
shows that some coefficients there can be zero, depending on v and n. Namely,
the following remark can be written.

Remark 1. Given a number v, suppose that some coefficients in Eg ,,
defined by (2), equal zero. That is, there exists a number p € Ny, such that the
second representation in (2) can be written as follows:

kp

_sz ak—i—n k! 8)

More precisely, as it is given in [10, 16], if « is different from zero, then p = 0
for each positive integer n and p = 1 for n = 0. If v = 0, the second functions

1
in (2) take the simplest form E°  (z) = ) for n € N, and E? () = 0.
: n :

Further, let us specify the families of Mittag-Lefller type functions

{En(z)}oo , {onn(z)}oo ; a,v € C, Re(a) >0, (4)

n=0 n=0

as follows below (Eq(z) = E’&O(z) = 1, just for completeness), namely:

Eo(2) =1, En(2) = 2" En(2), neN,
EQ o(2) =1, E) () =T(n) 2" B3 ,(2); n €N,
I'(ap+n)

ELa2) ==

2P E] L(2), v#0, neN.
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In this section we recall some results related to the asymptotic formula for
‘large’ values of indices n for z,a,y € C,v # 0, and Re(a) > 0, applied in
proving the main results. Namely (see e.g. in [16] and also [9, 10]) there exist
entire functions 6,, and 6}, , such that the functions (2), have the following
asymptotic formulae:

En(z) = 2"(1+0,(2)) (neN),
2)=2"(1+60] ,(2)) (neNy), (5)
=0, 03 ,(2) =0 as n— oo;

Egal
and 6,(2)

with the corresponding p, depending on + and n. Moreover, on the compact
subsets of the complex plane C, the convergence is uniform and

0,() = O <l> . 0.(2)=0 <ﬁ> (n €N). (6)

n!

Remark 2. According to the asymptotic formulae (5) and (6), it follows
there exists a positive integer M such that the functions E,,, E, ,, have no zeros
for n > M, possibly except for the origin.

3. Series in Mittag-Leffler Type Functions and Previous Results
about Them

Let us consider series in the functions of the families (4), namely:

ZanEn(Z)v Zanﬁgm(z), (7)
n=0 n=0

with complex coefficients a,, (n =0,1,2,...).

While studying the convergence of the series (7) in the complex plane,
theorems corresponding to the classical results for the power series have been
proposed. In this section we briefly recall the results given in the survey paper
[16]. Let us start with the domain of convergence of the series (7), that it is
the open disk D(0; R) = {z: |z] < R,z € C} with a radius of convergence

R <nm sup (|an| W")l . (8)

n—oo
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Both series are absolutely convergent in the disk D(0; R) and they are di-
vergent in the domain |z| > R. The cases R = 0 and R = oo fall in the
general case. Farther, analogously to the classical Abel lemma, if any of the
series (7) converges at the point zy # 0, then it is absolutely convergent in
the disk D(0;|z9|). Moreover, inside the disk D(0; R), i.e. on each closed disk
|z| <r < R (R defined by (8)), the series is uniformly convergent. Further, let
zp € C, 0 < |z| = R < o0, and g, be an arbitrary angular domain with size of
2¢p < 7 and with a vertex at the point z = 2y, which is symmetric with respect
to the straight line passing through the origin and 2. Let d, be the part of the
angular domain g, situated between the angle arms and the arc of the circle
centred at the point 0 and touching the arms of the angle. Another interesting
result is the Abel type theorem, analogical to the classical Abel theorem for
the power series. It refers to the uniform convergence of the series (7) in the
set d, and the existence of the limits of their sums at the point zp from the
boundary C'(0; R), provided z € D(0; R) N gy, i.e. the limit of the sum of any
of these series, convergent at the point zg, is equal to the corresponding series
sum at the point zy. In general, the inverse proposition is not valid, i.e. the
existence of the limit of the series at the point zy does not necessarily imply the
convergence of the series at this point. However, as it is discussed e.g. in [16],

under additional conditions, i.e. if lim na, = 0, even more if a, = O(1/n),
n—oo

such a result holds true.

4. Behaviour on the Boundary of the Domains of Convergence

Let {a,}5%, be a sequence of complex numbers with

limsup (|a,)'/" = R™Y, 0< R < oo,
n— oo
o0
and f(z) be the sum of the power series > a,2" in the open disk D(0; R), i.e.
n=0
o0
f(z) =) anz", z€ D(O;R). (9)
n=0

Definition 3. A point zy € 9D(0; R) is called regular for the function f,
if there exist a neighbourhood U(zp; p) and a function f} € H(U(z0;p)) (the
space of complex-valued functions, holomorphic in the set U(zp; p)), such that
¥ (2) = f(z) for z € U(zo;p) N D(0; R).

20
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By this definition it follows that the set of regular points of the power series
is an open subset of the circle C(0; R) = 0D(0; R) with respect to the relative
topology on 0D(0; R), i.e. the topology induced by that of C.

In general, there is no relation between the convergence (divergence) of a
power series at points on the boundary of its disk of convergence and the reg-
ularity (singularity) of its sum at such points. But under additional conditions
on the sequence {ay}22 ), such a relation does exist (see for details [6], Vol.1,
Ch. 3, 87, 7.3, p. 357), namely, if the coefficients of the power series with the
unit disk of convergence tend to the zero, i.e. lim a, = 0, then the power

series converges, even uniformly, on each arc ofnt_lr>10eo unit circle, all points of
which (including the ends of the arc) are regular for the sum of the series.

A result, giving relation between the convergence (divergence) of the series
(7) at points on the boundary of its disk of convergence and the regularity (sin-
gularity) of its sum at such points is formulated below. Analogical propositions
have also been established for series in the Laguerre and Hermite polynomials
by Rusev, as well as in Bessel type systems (see e.g. [11, 12]). Here we give
such a type of theorem for the Mittag-Leffler type systems (for the line of proof,
see [13]) as follows.

Theorem 4 (of Fatou type). Let {a,} >, be a sequence of complex
numbers satisfying the conditions

lim a, =0, limsup(|a,|)/" =1,
n—00 n—o0

and F'(z) be the sum of any of the series (7) in the unit disk D(0;1). Let o
be an arbitrary arc of the unit circle C(0;1) with all its points (including the
ends) regular to the function F. Then the corresponding series (7) converges,
even uniformly, on the arc o.

5. Overconvergence Theorem

Let {an}22, be a sequence of complex numbers with
limsup (Jap))/" = R}, 0< R < oo,
n—oo

[e.°]

and f(z) be given by (9), i.e. f(z) be the sum of the power series > a,z" in
n=0
the open disk D(0; R).
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In order to introduce the next definition ([6, Vol. 2, p. 500]) and to expose
the results in this section, we first set

sp(z) = Zakzk, Sp(z) = Z ar Ey(2),
k=0 k=0

p
or resp. Sp(z) = Zak £, (2),
k=0

for all the values p =0,1,2,....

Definition 5. A power series with a finite radius of convergence 0 < R <
oo is said to be overconvergent, if there exist a subsequence {s,, };- , of the
partial-sums sequence {Sp};o:() and a region G, containing the open disk D(0; R)
as a regular part (G N 0D(0;R) # @), such that {sp, } uniformly converges
inside G. We say that the function f (or the series (9)), possesses Hadamard
gaps, if there exist two sequences {p,}°> and {g,}°>, having the properties
-1 <pn < qn/(140) (0 >0) and ap =0 for p, <k < g, (n=0,1,2,...).

Remark 6. To introduce the corresponding notions ’‘overconvergence’
and ‘gaps’ for the series (7), the expression 2" has to be replaced by En(z),
respectively EQ . (z), and the sequence {s, } by the corresponding sequence

{Spi}-

Thus, starting with the domain of convergence and series behaviour near
its boundary, passing through the possible uniform convergence on an arbitrary
closed arc of the boundary, we come to the natural question: “What type of
conditions should be tmposed on the power series that ensure the existence of
subsequence {sp, }, convergent outside the disk of convergence?”. The answer
to this question is given in the early 20th century by Ostrowski [7, 8], see also
[5]. Namely, one of his classical results states that a given power series with
Hadamard gaps and existing regular points on the boundary of convergence disk
is overconvergent. We draw the attention to the fact that merely the existence
of Hadamard gaps does not imply overconvergence. For example, the power
series i ag, 2 with knyq > (14 0)k, (0 > 0) and limsup ( |ag,| )Y =1

n=0 n—00
possesses Hadamard gaps but nevertheless it is not overconvergent. Its natural

boundary of analyticity is the unit circle |z| = 1 and that is nothing but the
theorem about the gaps, belonging to Hadamard [2]. These assertions have
recently been extended by the author for series in Bessel type functions (see
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e.g. [14]). Overconvergence of the series (7) is discussed below. For example,
the following statement holds true.

Theorem 7 (of overconvergence). Let {a,}>2, be a sequence of complex

numbers satisfying the condition limsup ( |a,| )™ = 1, F(z) be the sum of any
n—oo

of the series (7) in the unit disk D(0;1), F(z) have at least one regular point,
belonging to the circle C(0;1), and let F(z) possess Hadamard gaps. Then the
corresponding series (7) is overconvergent.

Proof. Here we expose the proof for the first of the series (7) and we only
note that the other goes analogously (the details are in [15]). Without loss the
generality we suppose that the point zg = 1 is regular to the function F. That
means that F' is analytically continuable in a neighbourhood U of the point 1.
Denoting U=UU D(0;1), we define the function 1 in the region U by the
equality

¥(z) = F(z), ze€D(0;1),

i.e. 1 is a single valued analytical continuation of F' in the domain U.

Letting # > 0 and taking {p,}°°,, {gn}>, with the properties ¢, > (1 +
O)p, and ar = 0 for p, < k < ¢, (n = 0,1,2,...), we define the auxiliary
function

on(2) = 0(2) — Sp = V() — 3 arFul2). (1)
k=0

In order to prove that the sequence {5y, } is uniformly convergent inside the
region U , we are going to apply the Hadamard theorem for the three disks [6,
Vol. 2].

To this end, taking 0 < § < 1/2 and 0 < w < d, we consider the three circles
Cy,Cq,C3, centered at the point 1/2 and having respectively radii 1/2 — 9,
1/2 +w, 1/2 + 6, such that C5 C U and after that set

M, ; :gg%s;\%(Z)\ Jj=1,23; M = gggg\zb( z)|.

Before evaluating |y, (z)| we come back to (6). Just mention that since lim (1/n!)
n—o0

= 0, there exists a number B such that |1 + 6,,(z)] < B for all the values of
n € N on an arbitrary compact subset of C. Now, letting 0 < n < 4/2 implies
the existence of A = A(n) such that |ax| < AB~'(1 —n)~*. To find an upper
estimation of |¢,,(2)| we intend to consider three different cases.
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1. First, let z € Cy € D(0;1). In the unit disk, according to (11), we have

z) = Z arEy(2)

k=qn
Therefore,
lon () < Y larEr(2)] = Y lagll1 + 0(2)]|2"|
k=qn k=qn
<Ai(1— ks a1 LT (=)
< n = - =)
k=qn
whence

w-o(()-0((2)")

2. Now, let z € Cs. In this case,

o (2)] = [1(2) = Sp| = [4(2) ZakEk

Pn
< [¥(2)] +Z|%Ek W< M+ Jagl[1+ 01(2)]|2F]

k=0

cuaf () o (2))
o) o

3. At last, let z € Cy. Then, in view of (12) and (13) and according to the
Hadamard theorem for the three disks (for details see [6, Vol. 2, formula
(3.2:2)]), we can write

and therefore,

1426

1-56 (1+6) In 3555 146 L2\ Pn
M“_O(((ﬂ) (F=)77) )
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Note that the limit of the inner part of (14) is equal to
a= (1 - 5)(1—}—6) 1n(1+25)(1 + 5)—111(1—26) (15)

when w and 7 tend to 0. Moreover, if ¢ also tends to 0 then a < 1. Indeed,
taking the logarithm of a, we have

Ina = (1+0)In(1+26)In(l —9) —In(1 —25)In(1 + 9)

=(14+0)(2+ 0(62))(—5 + 0(62)) — (=20 + 0(52))(5 + 0(52))
= (1 4+ 6)(—26% + O(8°)) + 26 + O(8%) = =205 + O(5°).
Therefore Ina < 0 when 6 — 0 and for this reason a < 1 if § tends to 0.

9]
n=0

That is why, lim M, » = 0. Additionally, the sequence {5, }
n—oo

converges inside the disk D(0;1) (see Section 3). For these two reasons the
sequence {S), } is uniformly convergent inside the whole region U. O

uniformly

After proving the Ostrowski type theorem we formulate the following result
of Hadamard type, proved in [15].

Theorem 8 (of Hadamard about the gaps). Let {a;}?2, be a sequence
of complex numbers satisfying the condition

lim sup ( |a, | )5 =1,
n— oo
for kyy1 > (14 0)k, (6 > 0) and a, = 0 for k, < k < kp4+1. Let F(z) be the
sum of any of the series (7) in the unit disk D(0;1). Then all the points of
the unit circle C'(0;1) are singular for the function F, i.e. the unit circle is a
natural boundary of analyticity for the corresponding series.

6. Special Cases

In particular, as it has been mentioned in Introduction and Section 2, for v = 1
the 3-parametric function £ 5 defined by (1) coincides with the Mittag-Leffler

function E, g, i.e. E&n = FEq n. So, in this case the second of the series (7)
takes the form

Zanﬁa,n(fz)a (16)
n=0
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with the same complex coefficients. Thus, all the results, discussed in this
survey and in [16], hold true for the family {£, ,} and the series (16).

7. Conclusion

As a conclusion of this survey, all the discussed results can be briefly summa-
rized in the following way. The basic properties of the series, objects of both
surveys (this one and [16]), are sufficiently ‘close’ to the corresponding classical
results for the power series with the same coefficients, i.e. their behaviour are
quite similar to the one of the widely used power series.
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