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Abstract: A four-parameter random walk model for the short rate of interest
is described in Wilmott et al. [15]. For pricing zero-coupon bonds from the
resulting partial differential equation based on this short rate model, a certain
form of solution requires the solution of two first-order nonlinear ordinary dif-
ferential equations. In the present paper we show the interesting result that,
for obtaining solutions of the bond pricing equation, neither of these two equa-
tions requires any differential equation solving techniques; in fact, both these
first-order nonlinear differential equations can be solved simply by elementary
integration. We include the corresponding yield curve and its asymptotic be-
havior. We identify our results obtained here for the general four-parameter
model in the two special cases of Vasicek [14] and Cox, Ingersoll and Ross [4]
with those given by these authors.

AMS Subject Classification: 91B24, 91B28, 91B30
Key Words: four-parameter short rate model, bond pricing equation, general
solution, yield curve, Vasicek model, Cox-Ingersoll-Ross model

1. Introduction

The first short rate model for the evolution of interest rates was proposed by
Vasicek [14], and since then various short rate models have been suggested with
various degrees of generalizations.
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Vasicek model [14] is a three constant-parameter short rate model described
by

dr = a (b− r) dt+ σdX, (1.1)

where a, b and σ are constants, σ is volatility of interest rate and dX is a
Wiener process drawn from a normal distribution with mean zero and variance
dt. While the drift term indicates Vasicek model incorporates mean reversion,
however under Vasicek model it is possible for interest rates to become negative.
To fix this shortcoming of Vasicek model, Cox, Ingersoll and Ross [4] extended
Vasicek model and proposed for the short rate the following stochastic differ-
ential equation:

dr = a (b− r) dt+ σ
√
rdX. (1.2)

While, like Vasicek model, Cox-Ingersoll-Ross model has mean reversion,
however σ

√
r in volatility term helps prevent interest rates becoming negative

or zero. A general treatment is given by Maghsoodi [12] and consistency of
the model with an input term structure of interest rates is given by Brigo and
Mercurio [2].

Another weakness of the Vasicek model is that while the model produces
a term structure as an output but it does not accept today’s term structure
as input. In the solution of initial-value problems for differential equations, of
the many solutions possible, the one that is relevant and useful is the one that
also satisfies the initial condition. Likewise in financial mathematics of interest
rates and bond pricing, the one solution of the bond pricing equation that is
relevant and useful is the one that incorporates today’s term structure into the
bond pricing model. The first such model was proposed by Ho and Lee [6] with
the short rate model:

dr = θ (t) dt+ σdX, (1.3)

with σ a constant and θ (t) is a time-dependent parameter which is utilized to
fit exactly today’s term structure into the Ho-Lee model of pricing zero-coupon
bonds. Later, Hull and White [9], by combining the ideas of Vasicek and Ho
and Lee, considered an extended Vasicek model with the short rate model:

dr = [θ (t)− ar] dt+ σdX. (1.4)

Again, as in the Ho-Lee model, the time dependent parameter θ (t) is uti-
lized to fit today’s term structure of interest rates in the bond pricing model.
For more discussion of interest rate models and pricing of interest rate deriva-
tive securities, see Black, Derman and Toy [1]. Duffie and Kan [5], Hughston
[7], Hull [8], Klugman [10] and Klugman and Wilmott [11].
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We consider a four-parameter random walk model for the short rate of in-
terest as described, for example, in Wilmott et al. [15]. For pricing zero-coupon
bonds from the resulting partial differential equation based on this short rate
model, a certain form of solution requires the solution of two first-order non-

linear ordinary differential equations. In the present paper we show the inter-
esting result that, for obtaining solutions of the bond pricing equation, neither
of these two equations requires any differential equation solving techniques; in
fact, both these first-order nonlinear differential equations can be solved sim-
ply by elementary integration. We include the corresponding yield curve and
its asymptotic behavior. We identify our results obtained here for the general
four-parameter model in the two special cases of Vasicek [14] and Cox, Ingersoll
and Ross [4] with those given by these authors.

2. The Four-Parameter Model

We consider the four-parameter random walk model for the short term rate of
interest described by the stochastic differential equation:

dr = u (r, t) dt+ w (r, t) dX, (2.1)

where
w (r, t) =

√

αr − β, u (r, t) = (η − γr) + λw (r, t) . (2.2)

We are concerned with the pricing of zero-coupon bonds with this four-
parameter short rate model. Let B (t, T ) denote the value of a zero-coupon
bond at time t with maturity T , t < T , and value on maturity B (T, T ) = Z.
Though interest rates are random, for a known interest rate,

B (t, T ) = B (T, T ) e−
∫ T

t
r(s)ds. (2.3)

As a measure of future interest rates, the yield curve is defined by

Y (t, T ) = − 1

T − t
ℓn

(

B (t, T )

B (T, T )

)

, (2.4)

and then the interest rate implied by the yield curve is given by

r (t, T ) =
d

dT
[Y (t, T ) (T − t)] . (2.5)

The bond pricing equation providing values of zero-coupon bonds B (t, T ),
at time t < T , is

∂B

∂t
+

1

2
(αr − β)

∂2B

∂r2
+ (η − γr)

∂B

∂r
− rB = 0. (2.6)
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Note that λ does not appear in the bond pricing equation (2.6). It will be
helpful to introduce time to expiry τ = T − t and set an f (t, T ) = f (T − t) =
f (τ). We seek a solution of the bond pricing equation (2.6) in the form:

B (t, T ) = ZeA(t,T )−rC(t,T ). (2.7)

This leads to two first-order nonlinear ordinary differential equations for
the determination of the functions A (τ) and B (τ):

dA (τ)

dτ
= −ηC (τ)− 1

2
βC2 (τ) , (2.8)

and
dC (τ)

dτ
= −1

2
αC2 (τ)− γC (τ) + 1, (2.9)

with now the initial conditions

A (0) = 0 and C (0) = 0.

We note here that Chawla [3] solved (2.9) by first homogenizing the equation
and then solving it as a Bernoulli equation with index two. Shreve [13], page
285, first transforms the first-order nonlinear equation (2.9), using an expo-
nential transformation, into a second order linear ordinary differential equation
from whose solution is recovered the solution of (2.9). Even though both (2.8)
and (2.9) are nonlinear differential equations, no special differential equation
solving techniques are needed; in fact, both these equations can be solved simply
by elementary integration as we show in the following.

3. Solution of the Bond Pricing Equation

We first consider solution of the nonlinear differential equation (2.9). For α > 0,
we can write (2.9) as

dC

C2 + 2γ
α C − 2

α

= −1

2
αdτ.

Factorizing the quadratic expression in the denominator, we get

dC

(C − a)C + b)
= −1

2
αdτ,

where we have set

ψ =
√

γ2 + 2α, a =
−γ + ψ

α
, b =

γ + ψ

α
.
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Partial fractioning gives
(

1

C − a
− 1

C + b

)

dC = −1

2
α (a+ b) dτ = −ψdτ,

since a+ b = 2ψ
α . Integrating we have

C − a

C + b
= k1e

−ψτ ,

for a constant k1. Applying the initial condition C (0) = 0 we have k1 = −a
b ,

therefore
C − a

C + b
=

(−a
b

)

e−ψτ .

Solving for C we have

C
(

b+ ae−ψτ
)

= ab
(

1− e−ψτ
)

.

Since ab = 2
α , we obtain the solution of (2.9) as

C (τ) =
2

α

1− e−ψτ

b+ ae−ψτ
. (3.1)

We next consider the solution of (2.8). With the initial condition A (0) = 0,
integrating (2.8) from 0 to τ we have

A (τ) = −ηI (C)− 1

2
βI
(

C2
)

, (3.2)

where we have set

I (C) =

∫ τ

0
C (u) du, I

(

C2
)

=

∫ τ

0
C2 (u) du.

First consider evaluation of I (C). With (3.1) this can be written as

I (C) =
2

α

∫ τ

0

1− e−ψu

b+ ae−ψu
du

=
2

α

∫ τ

0

eψu

beψu + a
du− 2

α

∫ τ

0

e−ψu

b+ ae−ψudu
.

Performing the two integrations we get

I (C) =
2

αbψ
ln

(

beψτ + a

b+ a

)

+
2

αaψ
ln

(

b+ ae−ψτ

b+ a

)

.
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This can be written as

I (C) =
2

αbψ

[

ψτ + ln

(

b+ ae−ψτ

b+ a

)]

+
2

αaψ
ln

(

b+ ae−ψτ

b+ a

)

=
2

αb
τ +

2

αψ

(

1

b
+

1

a

)

ln

(

b+ ae−ψτ

b+ a

)

.

Since

1

αb
=

1

ψ + γ
=
ψ − γ

2α
=
a

2
,

1

b
+

1

a
=

a+ b

ab
=

2ψ/α

2/α
= ψ,

therefore

I (C) = aτ +
2

α
ln

(

b+ ae−ψτ

b+ a

)

. (3.3)

For the evaluation of I
(

C2
)

, substituting for C2 (u) from the differential
equation in (2.9) we have

I
(

C2
)

= − 2

α

∫ τ

0

[

dC (u)

du
+ γC (u)− 1

]

.

With the initial condition C (0) = 0, we get

I
(

C2
)

= − 2

α
[C (τ) + γI (C)− τ ] . (3.4)

Substituting from (3.3) and (3.4) into (3.2) we have

A (τ) = −ηI (C) +
β

α
[C (τ) + γI (C)− τ ]

=

(

−η + βγ

α

)

I (C) +
β

α
(C (τ)− τ)

=

(

−η + βγ

α

)[

aτ +
2

α
ln

(

b+ ae−ψτ

b+ a

)]

+
β

α
(C (τ)− τ) ,

from which we finally obtain

A (τ) =

(

δa− β

α

)

τ +
β

α
C (τ) +

2δ

α2
ln

(

b+ ae−ψτ

b+ a

)

, (3.5)

δ = βγ − αη.
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Thus, for the four-parameter model price of a zero-coupon bond is given by
(2.7) with C (τ) and A (τ) given by (3.1) and (3.5).

With the values of A (τ) and C (τ) given by (3.5) and (3.1), from (2.4) the
yield curve for the four-parameter bond pricing model is given by

Y (t, T ) = −1

τ
[A (τ)− rC (τ)]

=

(

β − δa

α

)

− 1

τ

[(

β

α
− r

)

C (τ) +
2δ

α2
ln

(

b+ ae−ψτ

b+ a

)]

. (3.6)

Since

lim
τ→∞

C (τ) =
2

αb
and lim

τ→∞

ln

(

b+ ae−ψτ

b+ a

)

= ln

(

b

b+ a

)

,

it is clear that asymptotic (τ → ∞) behavior of the yield curve for the four-
parameter model is

Y (t, T ) ∼
(

β − δa

α

)

. (3.7)

This is positive if β > δa.

3.1. Solution for the Vasicek Case

We next consider the special case of Vasicek model [14] which corresponds to
random walk for the short rate (2.1)-(2.2) with α = 0. For α = 0 equation (2.9)
simplifies to

dC

γC − 1
= −dτ.

Integrating we get

γC − 1 = k2e
−γτ .

The initial condition C (0) = 0 gives k2 = −1, and the solution now called
CV (τ) is, for γ > 0,

CV (τ) =
1− e−γτ

γ
. (3.8)

Next, for the solution of (2.8) with the initial condition A (0) = 0, integrat-
ing from 0 to τ the solution now called AV (τ) is given as

AV (τ) = −ηI (CV )−
1

2
βI
(

C2
V

)

. (3.9)



60 M.M. Chawla

Note that with α = 0 from (2.9) we have

CV =
1

γ

(

1− dCV
dτ

)

. (3.10)

With (3.10) we immediately have

I (CV ) =

∫ τ

0
CV (u) du =

1

γ

∫ τ

0

(

1− dCV (u)

du

)

du

=
1

γ
(τ − CV (τ)) . (3.11)

Again, with (3.10) we obtain

I
(

C2
V

)

=

∫ τ

0
C2
V (u) du =

1

γ

∫ τ

0
CV (u)

(

1− dCV (u)

du

)

du

=
1

γ

[

I (CV )−
1

2
C2
V (τ)

]

. (3.12)

With (3.12) from (3.9) we get

AV (τ) = −ηI (CV )−
β

2γ

[

I (CV )−
1

2
C2
V (τ)

]

= −
(

η +
β

2γ

)

I (CV ) +
β

4γ
C2
V (τ) .

Substituting for I (CV ) from (3.11) we finally get

AV (τ) =
1

γ

(

η +
β

2γ

)

[CV (τ)− τ ] +
β

4γ
C2
V (τ) . (3.13)

Thus, for the Vasicek model the price of a zero-coupon bond is given by
(2.7) where CV (τ) and AV (τ) are given by (3.8) and (3.13). The yield curve
for the Vasicek model is

YV (t, T ) = −1

τ
[AV (τ)− rCV (τ)]

=
1

γ

(

η +
β

2γ

)[

1− CV (τ)

τ

]

− β

4γ

C2
V (τ)

τ
+
r

τ
CV (τ) . (3.14)

Since

lim
τ→∞

CV (τ) =
1

γ
,
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asymptotic behavior of the Vasicek yield curve is

YV (t, T ) ∼ 1

γ

(

η +
β

2γ

)

. (3.15)

If, in addition to α = 0, we set γ = 0 we have the Ho and Lee [6] model
of short rate (1.3) with a constant θ. We denote the corresponding results by
a subscript HL. Now, with α = γ = 0, integrating (2.9) from 0 to τ with the
initial condition C (0) = 0 we have

CHL (τ) =

∫ τ

0
du = τ,

while integration of (2.8) with the initial condition A (0) = 0 gives

AHL (τ) = −η
∫ τ

0
udu− 1

2
β

∫ τ

0
u2du

= −1

2
ητ2 − 1

6
βτ3,

and the yield curve for the Ho-Lee model is

YHL (t, T ) = −1

τ
[AHL (τ)− rCHL (τ)]

= r +
1

2
ητ +

1

6
βτ2.

In order that the yield remains finite for τ → ∞ we must have, in addition,
η = 0 and β = 0, implying an asymptotic yield with constant rate of interest:

YHL (t, T ) ∼ r.

3.2. Solution for the Cox-Ingersoll-Ross Case

The special case of Cox-Ingersoll-Ross model [4] corresponds to random walk
for the short rate (2.1)-(2.2) with β = 0. Now, we need not perform any new
calculations and the results for this case can simply be obtained by substituting
β = 0 in our general four-parameter model. We denote the corresponding
results by putting a subscript CIR. Note that solution of (2.9) remains the
same as obtained in (3.1), thus

CCIR (τ) =
2

α

1− e−ψτ

b+ ae−ψτ
. (3.16)
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With β = 0, from (3.5) we have

ACIR (τ) = −η
[

aτ +
2

α
ln

(

b+ ae−ψτ

b+ a

)]

. (3.17)

From (3.6), with β = 0, the yield curve for the Cox-Ingersoll-Ross model is

YCIR (t, T ) = ηa+
1

τ

[

rCCIR (τ) +
2η

α
ln

(

b+ ae−ψτ

b+ a

)]

, (3.18)

with asymptotic value
YCIR (t, T ) ∼ ηa. (3.19)

3.3. Behavior of the Price of a Zero-Coupon Bond

We show here analytically that the value of a zero-coupon bond B (t, T ) de-
creases steadily, subject to variation in the value of r (t), from its value Z at
maturity T down to a value at time t.

For α > 0, from (3.1) C (τ) > 0. If α = 0, from (3.8) CV (τ) > 0 for γ > 0;
if in addition γ = 0, then CHL (τ) > 0. So, C (τ) is always positive. Now,
from (2.8) for η > 0 and β ≥ 0, dA

dτ < 0. Since A (0) = 0 it follows that A (τ)
is negative for τ > 0 and that A (τ) monotonically increases negatively with τ
increasing.

As for C (τ), we may write (2.9), as in Section 3, as

dC (τ)

dτ
=

1

2
α (a− C) (C + b) .

For α > 0, clearly C + b > 0. For a− C, with (3.1) we can write it as

a− C = a− 2

α

1− e−ψτ

b+ ae−ψτ

=
Num

b+ ae−ψτ
,

where we have set

Num = ab+ a2e−ψτ − 2

α

(

1− e−ψτ
)

.

Since ab = 2
α ,

Num =

(

a2 +
2

α

)

e−ψτ .
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Now,

a2 =
1

α2

(

ψ2 + γ2 − 2γψ
)

,

and substituting for ψ2,

a2 =
2

α2
(α− γ (ψ − γ))

=
2

α
(1− γa) .

Therefore,

Num =
2

α
(2− γa) e−ψτ .

Again, since

2− γa =
2α − γ (ψ − γ)

α

=
ψ2 − γψ

α
= ψa,

we get

Num =
2

α
ψae−ψτ .

We thus obtain

a− C =
2

α
ψa

e−ψτ

b+ ae−ψτ
.

This shows that a − C > 0 for α > 0. So, for α > 0, dC
dτ > 0 implying

that C (τ) monotonically increases with τ increasing. For α = 0, for γ > 0
from (3.8) we have dCV /dτ = e−γτ ; if in addition γ = 0, then dCHL/dτ = 1,
implying that in both these cases also C (τ) ↑ with τ ↑.

We have thus shown that in all cases A (τ) steadily increases negatively
and C (τ) steadily increases positively with τ increasing. It follows that the
price of a zero-coupon bond B (t, T ) in the four-parameter model given by (2.7)
decreases steadily, subject to variation in the value of r (t), from its value Z at
maturity to a value at time t.

4. Identification of Results in Two Special Cases

For special cases of the four-parameter random walk (2.1)-(2.2), solutions of the
bond pricing equation have been given using different notations with different
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forms of solution. In this section we identify our results obtained here for the
general four-parameter model in the two special cases of Vasicek [14] and Cox-
Ingersoll-Ross [4] with those given by these authors. We note that alternatively
bond price is written as

P (t, T ) = A (t, T ) e−rB(t,T ).

So, in our notation, with Z = 1, this corresponds to our

B (t, T ) → P (t, T ) , A (t, T ) → lnA (t, T ) , C (t, T ) → B (t, T ) .

Now, the Vasicek short rate model (1.1), in our notation corresponds to

α = 0, β = −σ2, γ = a, η = ab.

From equation (3.8) with γ = a we have

CV (τ) =
1− e−aτ

a
.

Again, from (3.13), switching to the above notation, we get

AV (τ) =
1

a

(

ab− σ2

2a

)

[CV (τ)− τ ]− σ2

4a
C2
V (τ) .

These results agree with those given for the Vasicek model in Hull [8].
If in addition a = 0, then from the results following equation (3.15), with

η = ab = 0 we have

CHL (τ) = τ, AHL (τ) =
σ2

6
τ3,

which agree with the results given in Hull [8].
Next, the Cox-Ingersoll-Ross short rate model (1.2), in our notation corre-

sponds to

β = 0, α = σ2, η = ab, γ = a,

ψ → γ =
√

a2 + 2σ2, b =
γ + a

σ2
, a =

γ − a

σ2
.

Switching to the above notation, from (3.16) we have

CCIR (τ) =
2

σ2
1− e−γτ

b+ ae−γτ

=
2 (eγτ − 1)

(γ + a) (eγτ − 1) + 2γ
.



ON THE FOUR-PARAMETER BOND PRICING MODEL 65

From (3.17) we have

ACIR (τ) = −η
[

aτ +
2

α
ln

(

b+ ae−ψτ

b+ a

)]

.

Combining the two terms in square brackets, this can be written as

ACIR (τ) = −2η

α
ln

(

beψτ + a

(b+ a) e(ψ−αa/2)τ

)

.

Since ψ − αa
2 = ψ+γ

2 , and simplifying we get

ACIR (τ) = −2η

α
ln

(

(ψ + γ)
(

eψτ − 1
)

+ 2ψ

2ψe((ψ+γ)/2)τ

)

=

(

2ψe((ψ+γ)/2)τ

(ψ + γ) (eψτ − 1) + 2ψ

)
2η

α

.

Finally switching to the above notation we have

ACIR (τ) =

(

2γe(γ+a)τ/2

(γ + a) (eγτ − 1) + 2γ

)2ab/σ2

.

These results for the Cox-Ingersoll-Ross model agree with those given in
Hull [8].

4.1. The Case of Fitting Initial Yield

We also include identification of results obtained in Chawla [3] with those of
Ho and Lee model [6] and the extended Vasicek model of Hull and White [9]
in the case of fitting today’s yield to the four-parameter model with short rate
(2.1)-(2.2) for the case α = 0.

The idea is to treat η as a function of time and utilize it to fit today’s (at
t∗ = 0) term structure of interest rates into the bond pricing model. For the
purpose, write equation (3.2) as

A (t, T ) = −
∫ T

0
η (s)CV (s, T ) ds− 1

2
βI
(

C2
V

)

, (4.1)

where from (3.11) and (3.12),

I
(

C2
V

)

=
1

γ

[

1

γ
(τ − CV (τ))− 1

2
C2
V (τ)

]

.
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Fitting today’s yield from (2.4):

Y (0, T ) = − 1

T
(A (0, T )− r (0)C (0, T )) ,

to (4.1) we can write

∫ T

0
η (s)CV (s, T ) ds = F ∗ (T ) , (4.2)

where we have set

F ∗ (T ) = TY (0, T )− r (0)CV (0, T )− 1

2
βI
(

C2
V

)

.

We solve (4.2) for η∗ = η (T ) and get the corresponding A = A∗ (t, T ) from
(4.1).

From Chawla [3] we have (with minor correction):

CV (τ) =
1− e−γτ

γ
,

η∗ (t) =
d

dt
r (0, t) + γr (0, t)− 1

2
βCV (0, t)

(

1 + e−γt
)

, (4.3)

and, with the simplification:

C2
V (τ)− {CV (0, T )− CV (0, t)}2 = C2

V (τ)
(

1− e−2γτ
)

,

that

A∗ (t, T ) = −f (0, t, T ) τ + r (0, t)CV (τ) +
β

4γ
C2
V (τ)

(

1− e−2γτ
)

. (4.4)

Note that r (0, t) = F (0, t) is forward rate at time t and f (0, t, T ) is the
forward yield which with (2.4) can be written as

f (0, t, T ) =
Y (0, T ) T − Y (0, t) t

T − t

= −1

τ
ln

(

B (0, T )

B (0, t)

)

.

For the Ho and Lee model [4], since CHL (τ) = τ and

lim
γ→0

(

1− e−2γt

γ

)

= 2t,
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from (4.3) and (4.4) we get

θ∗ (t) =
d

dt
r (0, t) + σ2t,

and

A∗ (t, T ) = −f (0, t, T ) τ + r (0, t)CHL (τ)−
σ2

2
tτ2.

These results agree with those given for the Ho and Lee model in Hull [8].
For the extended Vasicek model of Hull and White [9], from (4.3) and (4.4),

with CV (τ) = 1−e−aτ

a , we have

θ∗ (t) =
d

dt
r (0, t) + ar (0, t) +

σ2

2
CV (0, t)

(

1 + e−at
)

,

and

A∗ (t, T ) = −f (0, t, T ) τ + r (0, t)CV (τ)− σ2

4a
C2
V (τ)

(

1− e−2at
)

.

These results agree with those given for the extended Vasicek model of Hull
and White in Hull [8].
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