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Abstract: In this paper, we consider the following initial-boundary value
problem











ut = ε∆u+ b(t)f(u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

where b ∈ C1(R+), b(t) ≥ b0 > 0, b
′

(t) ≥ 0 for t ≥ 0, ε is a positive parameter,
Ω is a bounded domain in R

N with smooth boundary ∂Ω, f(s) is positive,
nondecreasing, convex function for positive values of s and

∫∞ ds
f(s) < ∞. We

show that if ε is small enough, the solution u of the above problem blows up
in a finite time and its blow-up time tends to the one of the solution of the
following differential equation

{

α
′

(t) = b(t)f(α(t)),

α(0) =M ,

as ε goes to zero, where M = supx∈Ω u0(x).
Finally, we give some numerical results to illustrate our analysis.
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1. Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. Consider the

following initial-boundary value problem for a nonlinear parabolic equation of
the form

ut = ε∆u+ b(t)f(u) in Ω× (0, T ), (1)

u = 0 on ∂Ω × (0, T ), (2)

u(x, 0) = u0(x) in Ω, (3)

which models the temperature distribution of a large number of physical phe-
nomena from physics, chemistry and biology. The term b(t)f(u) represents the
nonlinear heat generation and f(s) is a positive, increasing, convex function for
the positive values of s,

∫ +∞ ds
f(s) < +∞, b ∈ C1(R+), b(t) ≥ b0 > 0, b

′

(t) ≥ 0
for t ≥ 0.

The initial data u0 ∈ C1(Ω), u0(x) = 0 on Ω. Here (0, T ) is the maximal
time interval on which the solution u exists. The time T may be finite or
infinite. When T is infinite, we say that the solution u exists globally. When
T is finite the solution u develops a singularity in a finite time, namely

lim
t→T

‖u(., t)‖∞ = +∞

where ‖u(., t)‖∞ = supx∈Ω |u(x, t)|. In this last case, we say that the solution
u blows up in a finite time and the time T is called the blow-up time of the
solution u. Using standard methods based on the maximum principle, it is
not hard to prove the local existence and the uniqueness of the solution (see
for instance [11]). Solutions of nonlinear parabolic equations which blow up in
a finite time have been the subject of investigations of many authors (see [4],
[6]–[10], [12], [13], [15], [17]–[21] and the references cited therein). In particular
in [8], Friedman and Lacey have considered the problem (1)–(3) in the case
where b(t) = 1 and f(0) > 0. Under some additional conditions on the initial
data, they have shown that the solution u of (1)–(3) blows up in a finite time
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and its blow-up time goes to the one of the solution of the following differential
equation

α
′

(t) = f(α(t)), α(0) =M, (4)

as ε tends to zero, where M = supx∈Ω u0(x).
Let us notice that when u0(x) = 0, the result in [8] is not valid. On the other

hand, the case where f(0) = 0 has not been treated but Friedman and Lacey
have noticed that it is possible to extend their result if the solution is increasing
in t. The proof developed in [8] are based on the construction of upper and lower
solutions. In this paper, we obtain the same result using both a modification of
Kaplan’s method (see [10]) and a method based on the construction of upper
solutions. These methods are simple and may be generalized to other classes of
parabolic equations. We have also handled the case where u0(x) = 0 and the
one where f(0) = 0.

Our paper is written in the following manner. In the next Section 2, we
show that when ε is sufficiently small, the solution u of (1)–(3) blows up in a
finite time and its blow-up time goes to the one of the solution of the differential
equation in (4) when ε tends to zero. Finally, in the last Section 3 we give some
numerical results to illustrate our analysis.

2. Blow-up solutions

In this section, under some assumptions, we show that the solution u of the
problem (1)–(3) blows up in a finite time for ε sufficiently small. In addition,
we prove that its blow-up time tends to the one of the solution of a certain
differential equation as ε goes to zero.

Before starting, let us recall a well known result.
Consider the eigenvalue problem

−∆ϕ(x) = λϕ(x) in Ω, (5)

ϕ(x) = 0 on ∂Ω, (6)

ϕ(x) > 0 in Ω. (7)

We know that the above problem has a solution (ϕ, λ) such that λ > 0. Without
loss of generality, we may suppose that

∫

Ω ϕ(x)dx = 1.
Our first result on blow-up is the following.
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Theorem 1. Assume that u0(x) = 0 and f(0) > 0. Suppose that ε < 1
A ,

where A = λ
b0

∫∞
0

ds
f(s) . Then the solution u of (1)–(3) blows up in a finite time

and its blow-up time T satisfies the following estimates

0 ≤ T − T0 ≤ εAT0 + o(ε),

where T0 =
∫∞
0

ds
f(s) is the blow-up time of the solution α(t) of the differential

equation defined as follows

{

α
′

(t) = b(t)f(α(t)), t > 0,
α(0) = 0.

Proof. Since (0, T ) is the maximal time interval on which ‖u(., t)‖∞ is finite.
Our aim is to show that T is finite and satisfies the above estimates. Since the
initial data u0(x) is nonnegative in Ω. From the maximum principle, u is also
nonnegative in Ω× (0, T ). Introduce the function v(t) defined as follows

v(t) =

∫

Ω
u(x, t)ϕ(x)dx for t ∈ (0, T ).

Differentiating v in t and using (1), we have

v
′

(t) = ε

∫

Ω
ϕ(x)∆u(x, t)dx + b(t)

∫

Ω
f(u(x, t))ϕ(x)dx.

Apply Green’s formula to obtain

v
′

(t) = ε

∫

Ω
u(x, t)∆ϕ(x)dx + b(t)

∫

Ω
f(u(x, t))ϕ(x)dx.

It follows from (5) and Jensen’s inequality that

v
′

(t) ≥ −λεv(t) + b(t)f(v(t)),

which implies that

v
′

(t) ≥ b(t)f(v(t))(1 −
λεv(t)

b(t)f(v(t))
).

We observe that b(t) ≥ b0 > 0 and

∫ ∞

0

dt

f(t)
≥ sup

s≥0

∫ s

0

dt

f(t)
≥ sup

t≥0

t

f(t)
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because f(s) is a nondecreasing function for s ≥ 0. We deduce that

v
′

(t) ≥ b(t)f(v(t))(1 −Aε) for t ∈ (0, T ).

Set

w(t) = v(
t

1−Aε
) for t ∈ (0, (1 −Aε)T ).

A straightforward computation reveals that

w
′

(t) ≥ b(
t

1−Aε
)f(w(t)) for t ∈ (0, (1 −Aε)T ),

w(0) = 0.

Since b(s) is nondecreasing for s ≥ 0, we arrive at

w
′

(t) ≥ b(t)f(w(t)) for t ∈ (0, (1 −Aε)T ),

w(0) = 0.

Apply the maximum principle to obtain

w(t) ≥ α(t) for t ∈ (0, T∗)

where T∗ = min{T0, (1 − εA)T}. We deduce that

T ≤
T0

1− εA
. (8)

Indeed, suppose that T > T0
1−Aε ≥ T

′

. We get

‖u(., T
′

)‖∞ ≥ v(T
′

) = w(T0) = α(T0) = +∞

which contradicts the fact that (0, T ) is the maximal time interval of existence
of the solution u. On the other hand, consider the function z(x, t) defined as
follows

z(x, t) = α(t) in Ω× (0, T0).

It is easy to check that

zt(x, t) = ε∆z(x, t) + b(t)f(z(x, t)) ≥ 0 in Ω× (0, T0),



36 D. Nabongo, N. Koffi, T.K. Augustin

z(x, t) ≥ 0 on ∂Ω× (0, T0),

z(x, 0) ≥ u(x, 0) in Ω.

We deduce from the maximum principle that

0 ≤ u(x, t) ≤ z(x, t) = α(t) in Ω× (0, T 0),

where T 0 = min{T, T0}. It follows that

T ≥ T0. (9)

Indeed, suppose that T < T0. We obtain ‖u(., T )‖∞ ≤ α(T ) < +∞. But this
contradicts the fact that (0, T ) is the maximal time interval of existence of α(t).
We conclude

T0 ≤ T ≤
T0

1− εA
. (10)

Apply Taylor’s expansion to obtain

1

1− εA
= 1 + εA+ o(ε).

Use (10) and the above relation to complete the rest of the proof.

Now, let us consider the case where the initial data is not null. Let a ∈ Ω be
such that u0(x) =M > 0 and consider the following eigenvalue value problem

−∆ψ(x) = λδψ(x) in B(a, δ), (11)

ψ(x) = 0 on ∂B(a, δ), (12)

ψ(x) > 0 in B(a, δ), (13)

where δ > 0, such that, B(a, δ) = {x ∈ R
N ; ‖ x − a ‖ < δ} ⊂ Ω. It is well

known that the above eigenvalue problem admits a solution (ψ, λδ) such that
λδ =

λ1
δ2 , where λ1 is the eigenvalue for the above eigenvalue problem for δ = 1.

Theorem 2. Suppose that f(0) = 0 and supx∈Ω u0(x) = M > 0. Let

K be an upper bound of the first derivative of u0 and let A = λ1K2M
2b0f(

M
2
)
. If
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ε < min{(M2 )
3, (2A)−3} then the solution u of (1)–(3) blows up in a finite time

and its blow-up time obeys the following estimates

0 ≤ T − T0 ≤ (T0A+ C)ε1/3 + o(ε1/3),

where C = 2
b0f(

M
2
)
and T0 is the blow-up time of the solution α(t) of the

differential equation defined as follows

{

α
′

(t) = b(t)f(α(t)), t > 0,
α(0) =M .

Proof. Since u0 ∈ C1(Ω), using the mean value theorem, we get

u0(x) ≥ u0(a)− ε1/3 for x ∈ B(a, δ) ⊂ Ω,

where δ = ε1/3

K . Due to the fact that the initial data u0 is nonnegative in Ω,
from the maximum principle, u is also nonnegative in Ω× (0, T ). Introduce the
function v(t) defined as follows

v(t) =

∫

B(a,δ)
u(x, t)ϕ(x)dx.

Differentiating v in t and using (1), we have

v
′

(t) = ε

∫

B(a,δ)
ψ(x)∆u(x, t)dx + b(t)

∫

B(a,δ)
ψ(x)f(u(x, t))dx.

Apply Green’s formula to obtain

v
′

(t) = ε

∫

B(a,δ)
u(x, t)∆ψ(x)dx + ε

∫

∂B(a,δ)
ψ(x)

∂u(x, t)

∂ν
ds

−ε

∫

∂B(a,δ)
u(x, t)

∂ψ(x)

∂ν
ds+ b(t)

∫

B(a,δ)
ψ(x)f(u(x, t))dx.

We know that ∂ψ(x)
∂ν ≤ 0 on ∂B(a, δ). Taking into account (11), we arrive at

v
′

(t) ≥ −ελδv(t) + b(t)

∫

B(a,δ)
ψ(x)f(u(x, t))dx.

It follows from Jensen’s inequality that

v
′

(t) ≥ −ελδv(t) + b(t)f(v(t))
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which implies that

v
′

(t) ≥ b(t)f(v(t))(1 −
ελδv(t)

b(t)f(v(t))
).

Since λδ =
λ1
δ2

= λ1K2

ε2/3
and b(t) ≥ b0, we discover that

v
′

(t) ≥ b(t)f(v(t))(1 − ε1/3
λ1K

2

b0

v(t)

f(v(t))
).

We observe that v
′

(0) ≥ b0f(v(0))(1−
ε1/3λ1K2v(0)
b0f(v(0))

). Since f(0) = 0, we see that
f(s)
s is an increasing function for the positive values of s. Due to the fact that

v(0) ≥M − ε1/3 ≥M/2, we see that

1−
ε1/3λ1K

2v(0)

b0f(v(0))
≥ 1−

ε1/3λ1K
2M

2b0f(
M
2 )

> 0

which implies that v
′

(0) > 0. We deduce that v
′

(t) > 0 for t ∈ (0, T ). Indeed,
let t0 be the first t > 0 such that v

′

(t) > 0 for t ∈ [0, T0) but v
′

(t0) = 0. Since
f(s)
s is an increasing function for the positive values of s, we get f(v(t0))

v(t0)
≥ f(v(0))

v(0)

because v(t0) ≥ v(0). Therefore, we have

0 = v
′

(t0) ≥ b(t0)f(v(t0))(1 − ε1/3
λ1K

2

b0

v(0)

f(v(0))
) > 0

which is a contradiction. Consequently, we have

v
′

(t) ≥ b(t)f(v(t))(1 − ε1/3
λ1K

2

b0

v(0)

f(v(0))
).

Since v(0) ≥M − ε1/3 ≥ M
2 , we find that

v
′

(t) ≥ b(t)f(v(t))(1 − ε1/3
λ1K

2

b0

M

2f(M2 )
) for t ∈ (0, T ),

v(0) ≥M − ε1/3.

Hence, it is not hard to see that

{

v
′

(t) ≥ b(t)f(v(t))(1 − ε1/3A),

v(0) ≥M − ε1/3.
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We have v
′

(t) ≥ 1
2b0f(

M
2 ) for t ∈ (0, T ). Use the mean value theorem to obtain

v(Cε1/3) = v(0) + Cε1/3v
′

(ξ),

where ξ ∈ (0, Cε1/3), which implies that

v(Cε1/3) ≥ v(0) + ε1/3 ≥M.

Set

w(t) = v(
t

1− ε1/3A
+ Cε1/3) for t ∈ (0, (1 − ε1/3A)(T − ε1/3)).

A straightforward computation reveals that

w(t) ≥ b(
t

1− ε1/3A
+ Cε1/3)f(w(t))

w(0) ≥M,

which implies that

{

w
′

(t) ≥ b(t)f(v(t)) for t ∈ (0, (1 − ε1/3A)(T − ε1/3)) ,
w(0) ≥M ,

because b(t) is a nondecreasing function for the nonnegative values of t.

The maximum principle implies that

w(t) ≥ α(t) for t ∈ (0, T∗),

where T∗ = min{T0, (1 − ε1/3A)(T − ε1/3)}. We deduce that

T <
T0

1− ε1/3A
+ Cε1/3. (14)

Indeed, suppose that

T >
T0

1− ε1/3A
+ Cε1/3 = T

′

.

We get ‖u(., T
′

)‖∞ ≥ v(T
′

) = w(T0) ≥ α(T0) = +∞ which contradicts the fact
that (0, T ) is the maximal time interval of existence of the solution u. On the
other hand, setting

z(x, t) = α(t) in Ω× (0, T0),
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a direct calculation yields

zt(x, t) = ε∆z(x, t) + b(t)f(z(x, t)) in Ω× (0, T0),

z(x, t) = 0 on ∂Ω× (0, T0),

z(x, 0) = u0(x) in Ω.

The maximum principle implies that

z(x, t) ≥ u(x, t) in Ω× (0, T 0
∗ ),

where T 0
∗ = min{T, T0}. Reasoning as in the proof of Theorem 1, we get

T ≥ T0. (15)

Apply Taylor’s expansion to obtain

1

1− ε1/3A
= 1 + ε1/3A+ o(ε1/3A).

Use (14), (15) and the above relation to complete the rest of the proof.

3. Numerical results

In this section, we consider the radial symmetric solution of the following initial-
boundary value problem:

ut = ε∆u+ eteu in B × (0, T ),

u(x, t) = 0 on S × (0, T ),

u(x, 0) = u0(x) in B,

where B = {x ∈ R
N ; ‖x‖ < 1}, S = {x ∈ R

N ; ‖x‖ = 1}. The above problem
may be rewritten in the following form:

ut = ε(urr +
N − 1

r
ur) + eteu, r ∈ (0, 1), t ∈ (0, T ), (16)
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ur(0, t) = 0, u(1, t) = 0, t ∈ (0, T ), (17)

u(r, 0) = ϕ(r), r ∈ (0, 1). (18)

Here, we take ϕ(r) = a sin(πr) with a ≥ 0.
Let I be a positive integer and let h = 1/I. Define the grid xi = ih,

0 ≤ i ≤ I and approximate the solution u of (16)–(18) by the solution U
(n)
h =

(U
(n)
0 , U

(n)
1 , ..., U

(n)
I )T of the following explicit scheme

U
(n+1)
0 − U

(n)
0

∆tn
= εN

2U
(n)
1 − 2U

(n)
0

h2
+ etneU

(n)
0 ,

U
(n+1)
i − U

(n)
i

∆tn
= ε(

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h
)

+ etneU
(n)
i , 1 ≤ i ≤ I − 1,

U
(n)
I = 0,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

and also by the solution U
(n)
h of the implicit scheme below

U
(n+1)
0 − U

(n)
0

∆tn
= εN

2U
(n+1)
1 − 2U

(n+1)
0

h2
+ etneU

(n)
0 ,

U
(n+1)
i − U

(n)
i

∆tn
= ε(

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2

+
(N − 1)

ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h
) + etneU

(n)
i , 1 ≤ i ≤ I − 1,

U
(n+1)
I = 0,

U
(0)
i = ϕi, 0 ≤ i ≤ I,



42 D. Nabongo, N. Koffi, T.K. Augustin

where tn =
∑n−1

j=0 ∆tj.

We take ∆tn = min{ h2

2Nε , h
2e−‖U

(n)
h ‖∞} for the explicit scheme and ∆tn =

h2e−‖U
(n)
h ‖∞ for the implicit scheme where ‖U

(n)
h ‖∞ = sup0≤i≤I |U

(n)
i |. Let us

notice that in the case of the explicit scheme, the restriction on the time step
ensures the nonnegativity of the discrete solution. For the implicit scheme,
the existence and the nonnegativity of the discrete solution is also guaranteed
using standard method (see for instance [3]). We remark that limr→0

ur
r (r, t) =

urr(0, t) which implies that ut(0, t) = εNurr(0, t) + eteu(0,t). This remark has
been taken into account in the construction of the schemes for i = 0. We need
the following definition.

Definition 3. We say that the discrete solution U
(n)
h of the explicit scheme

or the implicit scheme blows up in a finite time if limn→+∞ ‖U
(n)
h ‖∞ = +∞ and

the series
∑+∞

n=0∆tn converges. The quantity
∑+∞

n=0∆tn is called the numerical

blow-up time of the solution U
(n)
h .

In the following tables, in rows, we present the numerical blow-up times,
the numbers of iterations, CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128, 256, 512. We take for the numerical
blow-up time T n =

∑n−1
j=0 ∆tj which is computed at the first time when

|T n+1 − T n| ≤ 10−16.

The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.
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Numerical experiments for a = 0, N = 2.

First case: ε = 1
100 .

I T n n CPU time s

16 0.694125 4166 - -

32 0.693391 15966 - -

64 0.693208 61038 1 2.00

128 0.693162 232803 5 2.00

256 0.693151 885790 36 2.00

512 0.693148 3361464 268 2.00

Table 1: Numerical blow-up times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit
Euler method

I T n n CPU time s

16 0.694125 4166 - -

32 0.693391 15966 1 -

64 0.693208 61038 1 2.00

128 0.693162 232803 6 2.00

256 0.693151 885790 42 2.00

512 0.693148 3361464 315 2.00

Table 2: Numerical blow-up times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the im-
plicit Euler method
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Second case: ε = 1
1000 .

I T n n CPU time s

16 0.694125 4166 - -

32 0.693391 15966 - -

64 0.693208 61038 1 2.00

128 0.693162 232803 5 2.00

256 0.693151 885790 36 2.00

512 0.693148 3361464 269 2.00

Table 3: Numerical blow-up times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit
Euler method

I T n n CPU time s

16 0.694125 4166 - -

32 0.693391 15966 - -

64 0.693208 61038 1 2.00

128 0.693162 232803 5 2.00

256 0.693151 885790 41 2.00

512 0.693148 3361464 313 2.00

Table 4: Numerical blow-up times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the im-
plicit Euler method
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Third case: ε = 1
10000 .

I T n n CPU time s

16 0.694125 4166 - -

32 0.693391 15966 - -

64 0.693208 61038 1 2.00

128 0.693162 232803 5 2.00

256 0.693151 885790 36 2.00

512 0.693148 3361464 264 2.00

Table 5: Numerical blow-up times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit
Euler method

I T n n CPU time s

16 0.694125 4166 - -

32 0.693391 15966 - -

64 0.693208 61038 0 2.00

128 0.693162 232803 5 2.00

256 0.693151 885790 40 2.00

512 0.693148 3361464 308 2.00

Table 6: Numerical blow-up times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the im-
plicit Euler method

Numerical experiments for a = 20 , N = 2 when the reaction

term e
tne

U
(n)
h is replaced by e

tn(U
(n)
h

)2.

In this case we take ∆tn = min{ h2

2Nε ,
h2

‖U
(n)
h ‖∞

} for the explicit scheme and

∆tn = h2

‖U
(n)
h ‖∞

for the implicit scheme.
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First case: ε = 1
100 .

I T n n CPU time s

16 0.049193 6927 - -

32 0.049061 26321 - -

64 0.049029 99862 1 2.04

128 0.049021 377874 8 2.04

256 0.049019 1425289 61 2.03

512 0.049019 5355953 461 2.00

Table 7: Numerical blow-up times, numbers of iterations, CPU times
(seconds), and orders of the approximations obtained with the ex-
plicit Euler method

I T n n CPU time s

16 0.049195 6927 - -

32 0.049062 26321 - -

64 0.049029 99862 2 2.04

128 0.049021 377874 13 2.04

256 0.049019 1425289 101 2.03

512 0.049019 5355953 758 2.00

Table 8: Numerical blow-up times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the im-
plicit Euler method
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Second case: ε = 1
1000 .

I T n n CPU time s

16 0.049000 6924 - -

32 0.048860 26304 - -

64 0.048825 99772 1 2.00

128 0.048816 377430 8 2.00

256 0.048814 1423199 61 2.00

512 0.048813 5346822 457 2.00

Table 9: Numerical blow-up times, numbers of iterations, CPU times
(seconds), and orders of the approximations obtained with the ex-
plicit Euler method

I T n n CPU time s

16 0.049000 6924 - -

32 0.048860 26304 1 -

64 0.048825 99772 2 2.00

128 0.048816 377430 14 2.00

256 0.048814 1423199 100 2.00

512 0.048813 5346822 747 2.00

Table 10: Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method
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Third case: ε = 1
10000 .

I T n n CPU time s

16 0.048981 6924 - -

32 0.048839 26302 1 -

64 0.048804 99763 2 2.00

128 0.048795 377383 9 2.00

256 0.048793 1422975 61 2.00

512 0.048793 5345776 459 2.00

Table 11: Numerical blow-up times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the
explicit Euler method

I T n n CPU time s

16 0.048981 6924 - -

32 0.048839 26302 - -

64 0.048804 99763 2 2.00

128 0.048795 377383 13 2.00

256 0.048793 1422975 101 2.00

512 0.048793 5345776 759 2.00

Table 12: Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method

Remark 4. If we consider the problem (16)–(18) in the case where the
initial data is null and the reaction term is eteu, it is not hard to see that the
blow-up time of the solution of the differential equation defined in Theorem
1 equals ln(2) ≃ 0.693. We observe from Tables 1-6 that when ε diminishes,
the numerical blow-up time decays to ln(2). This result has been proved in
Theorem 1. When the initial data ϕ(r) = 20 sin(xπ) and the reaction term is
etu2, we find that the blow-up time of the solution of the differential equation
defined in Theorem 2 equals ln(1.05) ≃ 0.04879. We discover from Tables 7-12
that when ε diminishes, the numerical blow-up time decays to ln(1.05) which
is a result proved in Theorem 2.

In the following, we also give some plots to illustrate our analysis. For the
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different plots, we used both explicit and implicit schemes in the case where
I = 16.

Figure 1: Evolution of the discrete
solution for ε = 10−3 with a reac-
tion term etneU

(n)
h (Explicit scheme).

Figure 2: Evolution of the discrete
solution for ε = 10−3 with a reac-
tion term etneU

(n)
h (Implicit scheme).
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