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Abstract: We generalize the Wiman-Valiron method for fractional derivatives
proving that

|z|qDqf(z) ∼ (ν(r, f))qf(z)

holds in a neighborhood of a maximum modulus point outside an exceptional
set of values of |z| as |z| → ∞, where Dq is the Riemann-Liouville fractional
derivative of order q > 0, ν(r, f) is the central index of the Taylor representation
of f . We use this result to find the precise value for the order of growth of
solutions of a fractional differential equation.
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1. Introduction

Let

f(z) =

∞∑

n=0

anz
n, z = reiθ (1)

be a transcendental entire function. For r ∈ [0,+∞) we denote M(r, f) =

Received: October 16, 2015 c© 2016 Academic Publications
§Correspondence author



20 I. Chyzhykov, N. Semochko

max{|f(z)| : |z| = r}, and let µ(r, f) = max{|an|r
n : n ≥ 0} be the maximum

term and ν(r, f) = max{n ≥ 0 : |an|r
n = µ(r, f)} be the central index of the

series (1).

The theory, initiated by A. Wiman ([14, 15]) and developed by many other
mathematicians such as G. Valiron, J. Clunie, T. Kővari, describes the local
behavior of f near a point zr, |zr| = r, satisfying |f(zr)| = M(r, f) in terms
of the power series (1). A nice exposition is due to W.K. Hayman [4], where
bibliographical references are given. The seminal result of the theory states
that given q ∈ N in a neighborhood of zr one has

f(z) ∼
( z

zr

)ν(r,f)
f(zr), f (q)(z) ∼

(ν(r, f)
z

)q
f(z) (2)

for r ∈ [1,∞)\E whereE is a set of finite logarithmic measure, i.e.
∫
E∩[1,∞)

dx
x

<
∞. Another elegant approach not involving power series was proposed by A.
Macintyre ([7]), who used K(r, f) := zrf

′(zr)/f(zr) = r(logM(r, f))′ instead
of the central index. This approach was developed by Sh. Strelitz in his book
[13], who proved counterparts of (2) with K(r, f) instead of ν(r, f) for func-
tions analytic in a strip or in the unit disc, and for Dirichlet series. On the
other hand, the theory has been developed for Dirichlet series by M. Sheremeta
and O. Skaskiv (see e.g. [9, 10, 12]). Recently, W. Bergweiler and others de-
veloped Macintyre’s approach for meromorphic functions having a direct tract
in C ([1]). Correlations (2) are very useful in studying differential equations.
They allow to obtain sharp asymptotic estimates for the growth of solutions
(see [16, 6, 1]). Counterparts of (2) for fractional values of q is unknown.

The aim of the paper is to obtain an analogue of the second relation of (2)
for the Riemann-Liouville fractional derivatives.

2. Generalization of the Wiman-Valiron Method
for Fractional Derivatives

We start with the settings of the Wiman-Valiron theory.

Let (αn)
∞
n=0 be a sequence of positive numbers such that αn+1/αn decreases

with increasing n. Let (̺n) be a sequence of numbers such that

0 < ̺0 <
α0

α1
,

αn−1

αn
< ̺n <

αn

αn+1
(n ≥ 1),

so that (̺n) increases with increasing n. We shall say that a value r is normal
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(for the sequence (an),(αn) and (̺n)), if we have for some ν

|an|r
n ≤ |aν |r

ν αn̺
n
ν

αν̺νν
(n ≥ 0).

Let V be the class of positive continuous nondecreasing functions v on
[0,+∞) such that x2

v(x) ln v(x) increases to +∞ on x ∈ [x0; +∞), x0 > 0, and
+∞∫
0

dx
v(x) < +∞. For example, the functions v(x) = x lnα+1 x, (x ≥ e), α > 0,

and v(x) = xδ+1, (x ≥ 1), δ ∈ (0, 1) belong to V .
The main result of the Wiman-Valiron theory is formulated as follows.

Theorem 1. Let v ∈ V and κ(t) = 4
√

v(t) ln v(t). Suppose that f is an
entire function, a value r is normal and large enough, |z0| = r,

|f(z0)| ≥ ηM(r, f), v−2(ν(r, f)) ≤ η ≤ 1,

holds, and

r

(
1−

1

40κ(ν)

)
< ρ < r

(
1 +

1

40κ(ν)

)
, ν = ν(r, f).

Then if q ∈ Z+ we have for |z| = ρ

( z
ν

)q
f (q)(z) = f(z) +O

(
κ(ν)

ν

)
M(ρ, f).

In particular, if ln ρ− ln r = o
(

1
κ(ν)

)
, then

M(ρ, f (q)) =

(
ν

ρ

)q {
1 +O

(
κ(ν)

ν

)}
M(ρ, f)

= (1 + o(1))
(ν
r

)q
M(r, f)

as r → +∞ outside a set of finite logarithmic measure.

We generalize the Wiman-Valiron method for fractional derivatives.
Let f ∈ L(0, a), a > 0. The Riemann-Liouville fractional derivative of order

α > 0 for f is defined as

Dαf(x) =
dn

dxn
{In−αf(x)}, α ∈ (n− 1, n], n ∈ N,
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where

Iαf(x) =
1

Γ(α)

x∫

0

f(t)dt

(x− t)1−α

is the Riemann-Liouville fractional integral of order α > 0 for f , Γ(α) is the
Gamma function. In particular, if 0 < α < 1, then

Dαf(x) =
1

Γ(1− α)

d

dx

x∫

0

f(t)dt

(x− t)α
.

The fractional derivative has the following property ([8]):

Dαxβ−1 =
Γ(β)

Γ(β − α)
xβ−α−1, α, β > 0. (3)

It follows from (3) that the fractional derivative for the entire function (1)
is defined as

|z|αDαf(z) =
∞∑

n=0

an
Γ(n+ 1)

Γ(n+ 1− α)
zn.

Theorem 2. Let v ∈ V and κ(t) = 4
√

v(t) ln v(t). Suppose that f is an
entire function, a value r is normal and large enough, |z0| = r,

|f(z0)| ≥ ηM(r, f), v−2(ν(r, f)) ≤ η ≤ 1

holds, and

r

(
1−

1

40κ(ν)

)
< ρ < r

(
1 +

1

40κ(ν)

)
, ν = ν(r, f).

Then if q > 0 we have for |z| = ρ:

ρqDqf(z)

νq
= f(z) +O

(
κ(ν)

ν

)
M(ρ, f). (4)

In particular, if ln ρ− ln r = o
(

1
κ(ν)

)
, then

M(ρ,Dqf(z)) =

(
ν

ρ

)q {
1 +O

(
κ(ν)

ν

)}
M(ρ, f)

= (1 + o(1))
(ν
r

)q
M(r, f) (5)

as r → +∞ outside a set of finite logarithmic measure.
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For ρ ∈ [0;+∞) we set µ(r, ρ, f) = |aν(r,f)|ρ
ν(r,f).

To prove Theorem 2, we need the following statements.

Lemma 1. [11, Lemma 3.4], cf. [4, Lemma 2] Let v ∈ V and κ(t) =
4
√

v(t) ln v(t). Then we have for any fixed positive q and for all ρ, | ln ρ−ln r| ≤
1

κ(ν) ,
∑

|n−ν|>κ(ν)

nq|an|ρ
n = o

(
νqµ(r, ρ, f)

v(ν)3

)
, ν = ν(r, f), (6)

as r → +∞ outside a set of finite logarithmic measure.

Lemma 2. [11, Lemma 3.5], cf. [4, Lemma 7] Suppose that P is a
polynomial of degree m and |P (z)| ≤ M for |z| ≤ r. Then for R ≥ r we have

|P ′(z)| ≤
eMmRm−1

rm
, |z| < R.

Theorem 3. [11, Lemma 3.7], cf. [4, Theorem 10] Let v ∈ V and κ(t) =
4
√

v(t) ln v(t). Suppose that f is an entire function, a value r is normal and
enough large, |z0| = r,

|f(z0)| ≥ ηM(r, f), v−2(ν(r, f)) ≤ η ≤ 1.

Then, if z = z0e
τ , |τ | ≤ η

18κ(ν) , ν = ν(r, f), we have

ln
f(z)

f(z0)
= (ν(r, f) + ϕ1)τ + ϕ2τ

2 + δ(τ),

where

|ϕj | ≤ 2, 2

(
18κ(ν)

η

)j

, (j = 1, 2), |δ(τ)| ≤ 8, 8

(
18κ(ν)τ

η

)3

.

Proof. Let

ν1 = min{n : |n− ν| ≤ κ(ν)}, ν2 = max{n : |n− ν| ≤ κ(ν)}.

We write
f(z) = P (z)zν1 +R(z), (7)

where
P (z) =

∑

|n−ν|≤κ(ν)

|an|z
n−ν1 . (8)
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Since µ(r, ρ, f) ≤ M(ρ, f), from Lemma 1 with q = 0 for all ρ, | ln ρ− ln r| ≤
1

κ(ν) , we obtain for |z| = ρ

f(z) = P (z)zν1 + o

(
µ(r, ρ, f)

v(ν)3

)
= P (z)zν1 + o

(
M(ρ, f)

v(ν)3

)
, (9)

as r → +∞ outside a set E of finite logarithmic measure.
In particular, from (9) with ρ = r we have |P (z)|rν1 ≤ (1 + o(1))M(r, f),

i.e. for all sufficiently large r 6∈ E

|P (z)| ≤
1, 01M(r, f)

rν1
=: M∗(r), |z| = r. (10)

We need the asymptotic representation for Gamma functions ([5])

Γ(t+ a)

Γ(t+ b)
= ta−b

(
1 +O

(
1

t

))
, t → +∞, b, a ∈ R. (11)

First we estimate the fractional derivative of order q for R(z). From (3)
and Lemma 1 we deduce

|ρqDqR(z)| =

∣∣∣∣∣∣
ρq

∑

|n−ν|>κ(ν)

Γ(1 + n)

Γ(1 + n− q)
anρ

n−qeinθ

∣∣∣∣∣∣

≤ C
∑

|n−ν|>κ(ν)

nq|an|ρ
n = o

(
νqµ(r, ρ, f)

v(ν)3

)
, (12)

where ν = ν(r, f), r → +∞, r 6∈ E, and C = sup
n
{2, Γ(n+1)

Γ(n+1−q)n
−q}.

Repeated application of Lemma 2 shows that for any q ∈ Z+ and |z| = ρ

|P (q)(z)| ≤

(
6κ(ν)

r

)q

M∗(r). (13)

In fact,

|P ′(z)| ≤
eM∗(r)2κ(ν)ρν2−ν1−1

rν2−ν1

≤
2eM∗(r)κ(ν)

̺

(
1 +

1

40κ(ν)

)2κ(ν)

≤
6κ(ν)

r
M∗(r), r → +∞

and, similarly,

|P (j)(z)| ≤
e max{|P (j−1)(z)| : |z| ≤ ρ}(2κ(ν) − j + 1)ρν2−ν1−j

rν2−ν1−j+1
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≤

(
6κ(ν)

r

)j

M∗(r).

We need generalized Leibniz’s formula for fractional derivatives to estimate
the first summand in (7). Let f(x) and g(x) be analytic functions on [a, b], then
([8, p. 278])

Dα(f · g) =
+∞∑

k=0

(
α

k

)
(Dα−kf)g(k), (14)

where

(
α

k

)
=

(−1)kαΓ(k − α)

Γ(1− α)Γ(k + 1)
.

It follows from (3) and (14) that

ρqDq(zν1P (z)) = ρq
+∞∑

m=0

(
q

m

)
Dq−mzν1P (m)(z)

=

ν2−ν1∑

m=0

(
q

m

)
Γ(ν1 + 1)

Γ(ν1 + 1− q +m)
zν1ρmP (m)(z)

=
Γ(ν1 + 1)

Γ(ν1 + 1− q)
zν1

(
P (z) +

ν2−ν1∑

m=1

(
q

m

)
Γ(ν1 + 1− q)

Γ(ν1 + 1− q +m)
ρmP (m)(z)

)
.

We now estimate the second term in parentheses taking into account (13)
and (11) ∣∣∣∣∣∣

2κ(ν)∑

m=1

(
q

m

)
Γ(ν1 + 1− q)

Γ(ν1 + 1− q +m)
ρmP (m)(z)

∣∣∣∣∣∣

≤

2κ(ν)∑

m=1

qΓ(m− q)Γ(ν1 + 1− q)

Γ(1− q)Γ(m+ 1)Γ(ν1 + 1− q +m)

(
6ρκ(ν)

r

)m

M∗(r)

≤ C(q)

2κ∑

m=1

1

m1+q
ν−m
1 Cmκ(ν)mM∗(r)

≤ C(q)
κ(ν)

ν
M∗(r)

2κ(ν)∑

m=1

1

m1+q
= O

(
κ(ν)

ν

)
M∗(r).
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Therefore, in view of (9) and the previous estimate we have

ρqDq(P (z)zν1) =
Γ(ν1 + 1)

Γ(ν1 + 1− q)
zν1
(
P (z) +O

(
κ(ν)

ν

)
M∗(r)

)

=
Γ(ν1 + 1)

Γ(ν1 + 1− q)

(
f(z) + o

(
µ(r, ρ, f)

v(ν)3

)
+O

(
κ(ν)

ν
M∗(r)ρν1

))
. (15)

Since
1

v(t)3
= o

(
κ(t)

t

)
, t → +∞, using (15) and (12) we have for |z| = ρ:

ρqDqf(z) =
Γ(ν1 + 1)

Γ(ν1 + 1− q)

(
f(z) +O

(
µ(r, ρ, f)

v(ν)3

)

+O

(
κ(ν)

ν
M∗(r)ρν1

))
=

Γ(ν1 + 1)

Γ(ν1 + 1− q)

(
f(z) + o

(
κ(ν)

ν
M(ρ, f)

)

+O

(
κ(ν)

ν
M(r, f)

(ρ
r

)ν1))
, (16)

as r → +∞ outside a set of finite logarithmic measure.
Next we choose z0 so that |f(z0)| = M(r, f) and take η = 1, τ = ln(ρ/r).

Then Theorem 3 gives

ln
∣∣∣f
(ρ
r
z0

)∣∣∣ = ln |f(z0)|+ ντ +O(1), |τ | ≤
1

18κ(ν)
,

so that
lnM(ρ, f) ≥ lnM(r, f) + ν ln(ρ/r) +O(1).

Since (ρ/r)ν1−ν = exp{τ(ν1 − ν)} = O(1), we have

(ρ
r

)ν1
M(r, f) =

(ρ
r

)ν (ρ
r

)ν1−ν

M(r, f)

= O
((ρ

r

)ν
M(r, f)

)
= O(M(ρ, f)).

Thus, (16) yields

ρqDqf(z) =
Γ(ν1 + 1)

Γ(ν1 + 1− q)

(
f(z) +O

(
κ(ν)

ν
M(ρ, f)

))
. (17)

According to (11) we have

Γ(ν1 + 1)

Γ(ν1 + 1− q)
= (1 + o(1))νq

(
1 +O

(
1

ν

))
, ν → +∞ (18)
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Hence

ρqDqf(z) = νq
(
1 +O

(
1

ν

))(
f(z) +O

(
κ(ν)

ν
M(ρ, f)

))

= νq
(
f(z) +O

(
κ(ν)

ν
M(ρ, f)

))

when r → +∞ outside a set of finite logarithmic measure, that is (4).
We choose z in (4) in turn so as to make |f(z)| and |Dqf(z)| maximal and

deduce that

M(ρ,Dqf) ≤

(
1 +O

(
κ(ν)

ν

))(
ν

ρ

)q

M(ρ, f)

and

M(ρ,Dqf) ≥

(
1 +O

(
κ(ν)

ν

))(
ν

ρ

)q

M(ρ, f)

so that

M(ρ,Dqf) =

(
1 +O

(
κ(ν)

ν

))(
ν

ρ

)q

M(ρ, f).

To complete the proof of (5) it remains to show that

lnM(ρ, f) = lnM(r, f) + ν ln(ρ/r) + o(1).

To see this we note that (7) and (12) yield for our range of ρ

lnM(ρ, f) = ν1 ln ρ+ lnM(ρ, P ) + o(1).

On the other hand it follows from Lemma 2 that

M(ρ, P ) = M(r, P )

(
1 +O

(
(ρ− r)κ(ν)

r

))
∼ M(r, P )

if κ(ν) ln(ρ/r) = o(1), and now the second equality of (5) also follows and the
proof of Theorem 2 is complete.

Remark 1. Dq(ρqf(z)) has the same asymptotic estimate as ρqDqf(z),
thus under the conditions of Theorem 2 for |z| = ρ we have

Dq(ρqf(z)) = νq
(
f(z) +O

(
κ(ν)

ν
M(ρ, f)

))
, (19)

as r → +∞ outside a set of finite logarithmic measure. Note that the operator
Dq(ρqf(ρeiϕ)) keeps analyticity and have other nice properties (see [3, Ch. IX]).
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3. An Application to Fractional Differential Equations

It is known [16, 6, 2] that every nontrivial solution of the equation

f (q)(z) + a(z)f(z) = 0, (20)

where a(z) is a polynomial of degree m, is an entire function of order ρ[f ] =
1 + m

q
, where

ρ[f ] = lim sup
r→∞

log logM(r, f)

log r
.

On the other hand, for fractional values of q ∈ (0, 1) equation (20) with
a(t) = A(tq), where A is a polynomial of degree m, admits a solution of the
form f(t) = v(tq), t ≥ 0, where v is entire with ρ[v] ≤ 1+m

q
([5]).

It is not possible to estimate the growth of solutions of (20) using Theorem
2, because it would require an asymptotics for the Gelfond-Leontiev differential
operators (see [5]), which is more general than Dq. Nevertheless we can obtain
an asymptotic of solutions for some class of fractional equations.

We consider the fractional differential equation in the form

D̃q(rqf(z))

z
+ a(z)f(z) = 0, (21)

where the coefficient a(z) is an entire function, q > 0, and

D̃qf(z) = Dqf(z)− Γ(q + 1)f(0). (22)

Remark 2. The analog of the operator (22) can be found in ([3, Chap.9]).

This definition provides that D̃(rqf(reiϕ))
∣∣∣
r=0

= 0.

The proofs of the following theorems are standard ([6]).

Theorem 4. The equation (21) with the initial condition f(0) = f0 has
an entire solution.

Theorem 5. Let a(z) be a polynomial of degree m ≥ 0. Then all not-
trivial solutions f of the equation (21) have the order of growth ̺ = m+1

q
.
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