International Journal of Applied Mathematics

Volume 29 No. 1 2016, 19-30

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v29i1.3

GENERALIZATION OF THE WIMAN-VALIRON METHOD FOR FRACTIONAL DERIVATIVES

Igor Chyzhykov¹ §, Nadiya Semochko²

1,2 Faculty of Mechanics and Mathematics
Ivan Franko National University of Lviv
Universytets'ka Str. 1
Lviv, 79000, UKRAINE

Abstract: We generalize the Wiman-Valiron method for fractional derivatives proving that

$$|z|^q D^q f(z) \sim (\nu(r,f))^q f(z)$$

holds in a neighborhood of a maximum modulus point outside an exceptional set of values of |z| as $|z| \to \infty$, where D^q is the Riemann-Liouville fractional derivative of order q > 0, $\nu(r, f)$ is the central index of the Taylor representation of f. We use this result to find the precise value for the order of growth of solutions of a fractional differential equation.

AMS Subject Classification: 30E15, 26A33, 34A08

Key Words: transcendental entire function, Wiman-Valiron method, Riemann-Liouville fractional derivative, Riemann-Liouville fractional integral, fractional differential equation

1. Introduction

Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z = re^{i\theta}$$
 (1)

be a transcendental entire function. For $r \in [0, +\infty)$ we denote M(r, f) =

Received: October 16, 2015

© 2016 Academic Publications

[§]Correspondence author

 $\max\{|f(z)|:|z|=r\}$, and let $\mu(r,f)=\max\{|a_n|r^n:n\geq 0\}$ be the maximum term and $\nu(r,f)=\max\{n\geq 0:|a_n|r^n=\mu(r,f)\}$ be the central index of the series (1).

The theory, initiated by A. Wiman ([14, 15]) and developed by many other mathematicians such as G. Valiron, J. Clunie, T. Kővari, describes the local behavior of f near a point z_r , $|z_r| = r$, satisfying $|f(z_r)| = M(r, f)$ in terms of the power series (1). A nice exposition is due to W.K. Hayman [4], where bibliographical references are given. The seminal result of the theory states that given $q \in \mathbf{N}$ in a neighborhood of z_r one has

$$f(z) \sim \left(\frac{z}{z_r}\right)^{\nu(r,f)} f(z_r), \quad f^{(q)}(z) \sim \left(\frac{\nu(r,f)}{z}\right)^q f(z)$$
 (2)

for $r \in [1, \infty) \setminus E$ where E is a set of finite logarithmic measure, i.e. $\int_{E \cap [1, \infty)} \frac{dx}{x} < \infty$. Another elegant approach not involving power series was proposed by A. Macintyre ([7]), who used $K(r, f) := z_r f'(z_r)/f(z_r) = r(\log M(r, f))'$ instead of the central index. This approach was developed by Sh. Strelitz in his book [13], who proved counterparts of (2) with K(r, f) instead of $\nu(r, f)$ for functions analytic in a strip or in the unit disc, and for Dirichlet series. On the other hand, the theory has been developed for Dirichlet series by M. Sheremeta and O. Skaskiv (see e.g. [9, 10, 12]). Recently, W. Bergweiler and others developed Macintyre's approach for meromorphic functions having a direct tract in \mathbb{C} ([1]). Correlations (2) are very useful in studying differential equations. They allow to obtain sharp asymptotic estimates for the growth of solutions (see [16, 6, 1]). Counterparts of (2) for fractional values of q is unknown.

The aim of the paper is to obtain an analogue of the second relation of (2) for the Riemann-Liouville fractional derivatives.

2. Generalization of the Wiman-Valiron Method for Fractional Derivatives

We start with the settings of the Wiman-Valiron theory.

Let $(\alpha_n)_{n=0}^{\infty}$ be a sequence of positive numbers such that α_{n+1}/α_n decreases with increasing n. Let (ϱ_n) be a sequence of numbers such that

$$0 < \varrho_0 < \frac{\alpha_0}{\alpha_1}, \quad \frac{\alpha_{n-1}}{\alpha_n} < \varrho_n < \frac{\alpha_n}{\alpha_{n+1}} \quad (n \ge 1),$$

so that (ϱ_n) increases with increasing n. We shall say that a value r is normal

(for the sequence (a_n) , (α_n) and (ϱ_n)), if we have for some ν

$$|a_n|r^n \le |a_\nu|r^\nu \frac{\alpha_n \varrho_\nu^n}{\alpha_\nu \varrho_\nu^\nu} \quad (n \ge 0).$$

Let V be the class of positive continuous nondecreasing functions v on $[0,+\infty)$ such that $\frac{x^2}{v(x)\ln v(x)}$ increases to $+\infty$ on $x\in[x_0;+\infty)$, $x_0>0$, and $\int_0^{+\infty}\frac{dx}{v(x)}<+\infty$. For example, the functions $v(x)=x\ln^{\alpha+1}x$, $(x\geq e)$, $\alpha>0$, and $v(x)=x^{\delta+1}$, $(x\geq 1)$, $\delta\in(0,1)$ belong to V.

The main result of the Wiman-Valiron theory is formulated as follows.

Theorem 1. Let $v \in V$ and $\kappa(t) = 4\sqrt{v(t) \ln v(t)}$. Suppose that f is an entire function, a value r is normal and large enough, $|z_0| = r$,

$$|f(z_0)| \ge \eta M(r, f), \quad v^{-2}(\nu(r, f)) \le \eta \le 1,$$

holds, and

$$r\left(1 - \frac{1}{40\kappa(\nu)}\right) < \rho < r\left(1 + \frac{1}{40\kappa(\nu)}\right), \quad \nu = \nu(r, f).$$

Then if $q \in \mathbf{Z}_+$ we have for $|z| = \rho$

$$\left(\frac{z}{\nu}\right)^q f^{(q)}(z) = f(z) + O\left(\frac{\kappa(\nu)}{\nu}\right) M(\rho, f).$$

In particular, if $\ln \rho - \ln r = o\left(\frac{1}{\kappa(\nu)}\right)$, then

$$M(\rho, f^{(q)}) = \left(\frac{\nu}{\rho}\right)^q \left\{1 + O\left(\frac{\kappa(\nu)}{\nu}\right)\right\} M(\rho, f)$$
$$= (1 + o(1)) \left(\frac{\nu}{r}\right)^q M(r, f)$$

as $r \to +\infty$ outside a set of finite logarithmic measure.

We generalize the Wiman-Valiron method for fractional derivatives.

Let $f \in L(0, a), a > 0$. The Riemann-Liouville fractional derivative of order $\alpha > 0$ for f is defined as

$$D^{\alpha}f(x) = \frac{d^n}{dx^n} \{ I^{n-\alpha}f(x) \}, \quad \alpha \in (n-1, n], \quad n \in \mathbf{N},$$

where

$$I^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} \frac{f(t)dt}{(x-t)^{1-\alpha}}$$

is the Riemann-Liouville fractional integral of order $\alpha > 0$ for f, $\Gamma(\alpha)$ is the Gamma function. In particular, if $0 < \alpha < 1$, then

$$D^{\alpha}f(x) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dx} \int_{0}^{x} \frac{f(t)dt}{(x-t)^{\alpha}}.$$

The fractional derivative has the following property ([8]):

$$D^{\alpha}x^{\beta-1} = \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)}x^{\beta-\alpha-1}, \quad \alpha, \beta > 0.$$
 (3)

It follows from (3) that the fractional derivative for the entire function (1) is defined as

$$|z|^{\alpha}D^{\alpha}f(z) = \sum_{n=0}^{\infty} a_n \frac{\Gamma(n+1)}{\Gamma(n+1-\alpha)} z^n.$$

Theorem 2. Let $v \in V$ and $\kappa(t) = 4\sqrt{v(t) \ln v(t)}$. Suppose that f is an entire function, a value r is normal and large enough, $|z_0| = r$,

$$|f(z_0)| \ge \eta M(r, f), \quad v^{-2}(\nu(r, f)) \le \eta \le 1$$

holds, and

$$r\left(1 - \frac{1}{40\kappa(\nu)}\right) < \rho < r\left(1 + \frac{1}{40\kappa(\nu)}\right), \quad \nu = \nu(r, f).$$

Then if q > 0 we have for $|z| = \rho$:

$$\frac{\rho^q D^q f(z)}{\nu^q} = f(z) + O\left(\frac{\kappa(\nu)}{\nu}\right) M(\rho, f). \tag{4}$$

In particular, if $\ln \rho - \ln r = o\left(\frac{1}{\kappa(\nu)}\right)$, then

$$M(\rho, D^q f(z)) = \left(\frac{\nu}{\rho}\right)^q \left\{1 + O\left(\frac{\kappa(\nu)}{\nu}\right)\right\} M(\rho, f)$$
$$= (1 + o(1)) \left(\frac{\nu}{r}\right)^q M(r, f) \tag{5}$$

as $r \to +\infty$ outside a set of finite logarithmic measure.

For $\rho \in [0; +\infty)$ we set $\mu(r, \rho, f) = |a_{\nu(r, f)}| \rho^{\nu(r, f)}$. To prove Theorem 2, we need the following statements.

Lemma 1. [11, Lemma 3.4], cf. [4, Lemma 2] Let $v \in V$ and $\kappa(t) = 4\sqrt{v(t)\ln v(t)}$. Then we have for any fixed positive q and for all ρ , $|\ln \rho - \ln r| \le \frac{1}{\kappa(\nu)}$,

$$\sum_{|n-\nu|>\kappa(\nu)} n^q |a_n| \rho^n = o\left(\frac{\nu^q \mu(r,\rho,f)}{v(\nu)^3}\right), \quad \nu = \nu(r,f), \tag{6}$$

as $r \to +\infty$ outside a set of finite logarithmic measure.

Lemma 2. [11, Lemma 3.5], cf. [4, Lemma 7] Suppose that P is a polynomial of degree m and $|P(z)| \le M$ for $|z| \le r$. Then for $R \ge r$ we have

$$|P'(z)| \le \frac{eMmR^{m-1}}{r^m}, \quad |z| < R.$$

Theorem 3. [11, Lemma 3.7], cf. [4, Theorem 10] Let $v \in V$ and $\kappa(t) = 4\sqrt{v(t)\ln v(t)}$. Suppose that f is an entire function, a value r is normal and enough large, $|z_0| = r$,

$$|f(z_0)| \ge \eta M(r, f), \quad v^{-2}(\nu(r, f)) \le \eta \le 1.$$

Then, if $z = z_0 e^{\tau}$, $|\tau| \leq \frac{\eta}{18\kappa(\nu)}$, $\nu = \nu(r, f)$, we have

$$\ln \frac{f(z)}{f(z_0)} = (\nu(r, f) + \varphi_1)\tau + \varphi_2\tau^2 + \delta(\tau),$$

where

$$|\varphi_j| \le 2, 2\left(\frac{18\kappa(\nu)}{\eta}\right)^j, \quad (j=1,2), \quad |\delta(\tau)| \le 8, 8\left(\frac{18\kappa(\nu)\tau}{\eta}\right)^3.$$

Proof. Let

$$\nu_1 = \min\{n : |n - \nu| \le \kappa(\nu)\}, \quad \nu_2 = \max\{n : |n - \nu| \le \kappa(\nu)\}.$$

We write

$$f(z) = P(z)z^{\nu_1} + R(z), \tag{7}$$

where

$$P(z) = \sum_{|n-\nu| \le \kappa(\nu)} |a_n| z^{n-\nu_1}. \tag{8}$$

Since $\mu(r, \rho, f) \leq M(\rho, f)$, from Lemma 1 with q = 0 for all ρ , $|\ln \rho - \ln r| \leq \frac{1}{\kappa(\nu)}$, we obtain for $|z| = \rho$

$$f(z) = P(z)z^{\nu_1} + o\left(\frac{\mu(r,\rho,f)}{v(\nu)^3}\right) = P(z)z^{\nu_1} + o\left(\frac{M(\rho,f)}{v(\nu)^3}\right),\tag{9}$$

as $r \to +\infty$ outside a set E of finite logarithmic measure.

In particular, from (9) with $\rho = r$ we have $|P(z)|r^{\nu_1} \leq (1 + o(1))M(r, f)$, i.e. for all sufficiently large $r \notin E$

$$|P(z)| \le \frac{1,01 M(r,f)}{r^{\nu_1}} =: M^*(r), \quad |z| = r.$$
 (10)

We need the asymptotic representation for Gamma functions ([5])

$$\frac{\Gamma(t+a)}{\Gamma(t+b)} = t^{a-b} \left(1 + O\left(\frac{1}{t}\right) \right), \quad t \to +\infty, \quad b, a \in \mathbf{R}.$$
 (11)

First we estimate the fractional derivative of order q for R(z). From (3) and Lemma 1 we deduce

$$|\rho^q D^q R(z)| = \left| \rho^q \sum_{|n-\nu| > \kappa(\nu)} \frac{\Gamma(1+n)}{\Gamma(1+n-q)} a_n \rho^{n-q} e^{in\theta} \right|$$

$$\leq C \sum_{|n-\nu| > \kappa(\nu)} n^q |a_n| \rho^n = o\left(\frac{\nu^q \mu(r,\rho,f)}{v(\nu)^3}\right), \tag{12}$$

where $\nu = \nu(r, f), r \to +\infty, r \notin E$, and $C = \sup_{n} \{2, \frac{\Gamma(n+1)}{\Gamma(n+1-q)} n^{-q} \}$.

Repeated application of Lemma 2 shows that for any $q \in \mathbf{Z}_+$ and $|z| = \rho$

$$|P^{(q)}(z)| \le \left(\frac{6\kappa(\nu)}{r}\right)^q M^*(r). \tag{13}$$

In fact,

$$|P'(z)| \le \frac{eM^*(r)2\kappa(\nu)\rho^{\nu_2-\nu_1-1}}{r^{\nu_2-\nu_1}}$$

$$\le \frac{2eM^*(r)\kappa(\nu)}{\varrho} \left(1 + \frac{1}{40\kappa(\nu)}\right)^{2\kappa(\nu)} \le \frac{6\kappa(\nu)}{r}M^*(r), \quad r \to +\infty$$

and, similarly,

$$|P^{(j)}(z)| \le \frac{e \max\{|P^{(j-1)}(z)| : |z| \le \rho\}(2\kappa(\nu) - j + 1)\rho^{\nu_2 - \nu_1 - j}}{r^{\nu_2 - \nu_1 - j + 1}}$$

$$\leq \left(\frac{6\kappa(\nu)}{r}\right)^j M^*(r).$$

We need generalized Leibniz's formula for fractional derivatives to estimate the first summand in (7). Let f(x) and g(x) be analytic functions on [a, b], then ([8, p. 278])

$$D^{\alpha}(f \cdot g) = \sum_{k=0}^{+\infty} {\alpha \choose k} (D^{\alpha-k} f) g^{(k)}, \tag{14}$$

where
$$\binom{\alpha}{k} = \frac{(-1)^k \alpha \Gamma(k-\alpha)}{\Gamma(1-\alpha)\Gamma(k+1)}$$
.

It follows from (3) and (14) that

$$\begin{split} \rho^q D^q(z^{\nu_1} P(z)) &= \rho^q \sum_{m=0}^{+\infty} \binom{q}{m} D^{q-m} z^{\nu_1} P^{(m)}(z) \\ &= \sum_{m=0}^{\nu_2 - \nu_1} \binom{q}{m} \frac{\Gamma(\nu_1 + 1)}{\Gamma(\nu_1 + 1 - q + m)} z^{\nu_1} \rho^m P^{(m)}(z) \\ &= \frac{\Gamma(\nu_1 + 1)}{\Gamma(\nu_1 + 1 - q)} z^{\nu_1} \left(P(z) + \sum_{m=1}^{\nu_2 - \nu_1} \binom{q}{m} \frac{\Gamma(\nu_1 + 1 - q)}{\Gamma(\nu_1 + 1 - q + m)} \rho^m P^{(m)}(z) \right). \end{split}$$

We now estimate the second term in parentheses taking into account (13) and (11)

$$\begin{vmatrix} \sum_{m=1}^{2\kappa(\nu)} \binom{q}{m} \frac{\Gamma(\nu_1 + 1 - q)}{\Gamma(\nu_1 + 1 - q + m)} \rho^m P^{(m)}(z) \end{vmatrix}$$

$$\leq \sum_{m=1}^{2\kappa(\nu)} \frac{q\Gamma(m-q)\Gamma(\nu_1 + 1 - q)}{\Gamma(1-q)\Gamma(m+1)\Gamma(\nu_1 + 1 - q + m)} \left(\frac{6\rho\kappa(\nu)}{r}\right)^m M^*(r)$$

$$\leq C(q) \sum_{m=1}^{2\kappa} \frac{1}{m^{1+q}} \nu_1^{-m} C^m \kappa(\nu)^m M^*(r)$$

$$\leq C(q) \frac{\kappa(\nu)}{\nu} M^*(r) \sum_{m=1}^{2\kappa(\nu)} \frac{1}{m^{1+q}} = O\left(\frac{\kappa(\nu)}{\nu}\right) M^*(r).$$

Therefore, in view of (9) and the previous estimate we have

$$\rho^{q} D^{q}(P(z)z^{\nu_{1}}) = \frac{\Gamma(\nu_{1}+1)}{\Gamma(\nu_{1}+1-q)} z^{\nu_{1}} \left(P(z) + O\left(\frac{\kappa(\nu)}{\nu}\right) M^{*}(r)\right)$$

$$= \frac{\Gamma(\nu_{1}+1)}{\Gamma(\nu_{1}+1-q)} \left(f(z) + O\left(\frac{\mu(r,\rho,f)}{\nu(\nu)^{3}}\right) + O\left(\frac{\kappa(\nu)}{\nu} M^{*}(r)\rho^{\nu_{1}}\right)\right). \tag{15}$$

Since $\frac{1}{v(t)^3} = o\left(\frac{\kappa(t)}{t}\right)$, $t \to +\infty$, using (15) and (12) we have for $|z| = \rho$:

$$\rho^{q} D^{q} f(z) = \frac{\Gamma(\nu_{1} + 1)}{\Gamma(\nu_{1} + 1 - q)} \left(f(z) + O\left(\frac{\mu(r, \rho, f)}{\nu(\nu)^{3}}\right) + O\left(\frac{\kappa(\nu)}{\nu} M^{*}(r) \rho^{\nu_{1}}\right) \right) = \frac{\Gamma(\nu_{1} + 1)}{\Gamma(\nu_{1} + 1 - q)} \left(f(z) + O\left(\frac{\kappa(\nu)}{\nu} M(\rho, f)\right) + O\left(\frac{\kappa(\nu)}{\nu} M(r, f) \left(\frac{\rho}{r}\right)^{\nu_{1}}\right) \right),$$

$$(16)$$

as $r \to +\infty$ outside a set of finite logarithmic measure.

Next we choose z_0 so that $|f(z_0)| = M(r, f)$ and take $\eta = 1$, $\tau = \ln(\rho/r)$. Then Theorem 3 gives

$$\ln \left| f\left(\frac{\rho}{r}z_0\right) \right| = \ln |f(z_0)| + \nu\tau + O(1), \quad |\tau| \le \frac{1}{18\kappa(\nu)},$$

so that

$$\ln M(\rho, f) \ge \ln M(r, f) + \nu \ln(\rho/r) + O(1).$$

Since $(\rho/r)^{\nu_1-\nu} = \exp\{\tau(\nu_1-\nu)\} = O(1)$, we have

$$\left(\frac{\rho}{r}\right)^{\nu_1} M(r,f) = \left(\frac{\rho}{r}\right)^{\nu} \left(\frac{\rho}{r}\right)^{\nu_1 - \nu} M(r,f)$$

$$= O\left(\left(\frac{\rho}{r}\right)^{\nu} M(r,f)\right) = O(M(\rho,f)).$$

Thus, (16) yields

$$\rho^q D^q f(z) = \frac{\Gamma(\nu_1 + 1)}{\Gamma(\nu_1 + 1 - q)} \left(f(z) + O\left(\frac{\kappa(\nu)}{\nu} M(\rho, f)\right) \right). \tag{17}$$

According to (11) we have

$$\frac{\Gamma(\nu_1 + 1)}{\Gamma(\nu_1 + 1 - q)} = (1 + o(1))\nu^q \left(1 + O\left(\frac{1}{\nu}\right)\right), \quad \nu \to +\infty$$
 (18)

Hence

$$\rho^{q} D^{q} f(z) = \nu^{q} \left(1 + O\left(\frac{1}{\nu}\right) \right) \left(f(z) + O\left(\frac{\kappa(\nu)}{\nu} M(\rho, f)\right) \right)$$
$$= \nu^{q} \left(f(z) + O\left(\frac{\kappa(\nu)}{\nu} M(\rho, f)\right) \right)$$

when $r \to +\infty$ outside a set of finite logarithmic measure, that is (4).

We choose z in (4) in turn so as to make |f(z)| and $|D^q f(z)|$ maximal and deduce that

$$M(\rho, D^q f) \le \left(1 + O\left(\frac{\kappa(\nu)}{\nu}\right)\right) \left(\frac{\nu}{\rho}\right)^q M(\rho, f)$$

and

$$M(\rho, D^q f) \ge \left(1 + O\left(\frac{\kappa(\nu)}{\nu}\right)\right) \left(\frac{\nu}{\rho}\right)^q M(\rho, f)$$

so that

$$M(\rho, D^q f) = \left(1 + O\left(\frac{\kappa(\nu)}{\nu}\right)\right) \left(\frac{\nu}{\rho}\right)^q M(\rho, f).$$

To complete the proof of (5) it remains to show that

$$\ln M(\rho, f) = \ln M(r, f) + \nu \ln(\rho/r) + o(1).$$

To see this we note that (7) and (12) yield for our range of ρ

$$\ln M(\rho, f) = \nu_1 \ln \rho + \ln M(\rho, P) + o(1).$$

On the other hand it follows from Lemma 2 that

$$M(\rho, P) = M(r, P) \left(1 + O\left(\frac{(\rho - r)\kappa(\nu)}{r}\right)\right) \sim M(r, P)$$

if $\kappa(\nu) \ln(\rho/r) = o(1)$, and now the second equality of (5) also follows and the proof of Theorem 2 is complete.

Remark 1. $D^q(\rho^q f(z))$ has the same asymptotic estimate as $\rho^q D^q f(z)$, thus under the conditions of Theorem 2 for $|z| = \rho$ we have

$$D^{q}(\rho^{q}f(z)) = \nu^{q}\left(f(z) + O\left(\frac{\kappa(\nu)}{\nu}M(\rho, f)\right)\right),\tag{19}$$

as $r \to +\infty$ outside a set of finite logarithmic measure. Note that the operator $D^q(\rho^q f(\rho e^{i\varphi}))$ keeps analyticity and have other nice properties (see [3, Ch. IX]).

3. An Application to Fractional Differential Equations

It is known [16, 6, 2] that every nontrivial solution of the equation

$$f^{(q)}(z) + a(z)f(z) = 0, (20)$$

where a(z) is a polynomial of degree m, is an entire function of order $\rho[f] = 1 + \frac{m}{a}$, where

$$\rho[f] = \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r}.$$

On the other hand, for fractional values of $q \in (0,1)$ equation (20) with $a(t) = A(t^q)$, where A is a polynomial of degree m, admits a solution of the form $f(t) = v(t^q)$, $t \ge 0$, where v is entire with $\rho[v] \le \frac{1+m}{q}$ ([5]).

It is not possible to estimate the growth of solutions of (20) using Theorem 2, because it would require an asymptotics for the Gelfond-Leontiev differential operators (see [5]), which is more general than D^q . Nevertheless we can obtain an asymptotic of solutions for some class of fractional equations.

We consider the fractional differential equation in the form

$$\frac{\widetilde{D}^q(r^q f(z))}{z} + a(z)f(z) = 0, \tag{21}$$

where the coefficient a(z) is an entire function, q > 0, and

$$\widetilde{D}^q f(z) = D^q f(z) - \Gamma(q+1)f(0). \tag{22}$$

Remark 2. The analog of the operator (22) can be found in ([3, Chap.9]). This definition provides that $\tilde{D}(r^q f(re^{i\varphi}))\Big|_{r=0} = 0$.

The proofs of the following theorems are standard ([6]).

Theorem 4. The equation (21) with the initial condition $f(0) = f_0$ has an entire solution.

Theorem 5. Let a(z) be a polynomial of degree $m \geq 0$. Then all not-trivial solutions f of the equation (21) have the order of growth $\varrho = \frac{m+1}{q}$.

References

- [1] W. Bergweiler, Ph.J. Rippon, G.M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, *Proc. London Math. Soc.*, **97**, No 3 (2008), 368-400.
- [2] I. Chyzhykov, G.G. Gundersen, J. Heittokangas, Linear differential equations and logarithmic derivative estimates, *Proc. London Math. Soc.*, 86, No 3 (2003), 735-754.
- [3] M.M. Djrbashian, Integral Transformations and Representations in a Complex Domain, Nauka, Moscow (1966), in Russian.
- [4] W.K. Hayman, The local growth of power series: A survey of the Wiman-Valiron method, *Canad. Math. Bull.*, **17**, No 3 (1974), 317-358.
- [5] A.N. Kochubei, Fractional differential equations: α-entire solutions, regular and irregular singularities, Fract. Calc. Appl. Anal., 12, No 2 (2009), 135-158.
- [6] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin (1993).
- [7] A.J. Macintyre, Wiman's method and the 'flat regions' of integral functions, Quart. J. Math., Oxford Ser., 9, (1938), 81-88.
- [8] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993).
- [9] M.N. Sheremeta, Asymptotic properties of entire functions defined by Dirichlet series and of their derivatives, *Ukrainian Math. J.*, **31**, No 6 (1979), 558–564.
- [10] M.N. Sheremeta, On the derivative of an entire Dirichlet series, *Mat. Sb.*, **137(179)**, No 1(9) (1988), 128-139.
- [11] M.M. Sheremeta, Analytic Functions of Bounded l-Index, Mathematical Studies: Monograph Series, Lviv (1999).
- [12] O.B. Skaskiv, On the minimum of the absolute value of the sum for a Dirichlet series with bounded sequence of exponents, *Math. Notes*, **56**, No 5 (1994), 1177-1184.

- [13] Sh. Strelitz, Asymptotic Properties of Analytical Solutions of Differential Equations, Mintis, Vilnius (1972), in Russian.
- [14] A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem groössten Gliede der zugerhörigen Taylorschen Reihe, *Acta Math.*, **37** (1914), 305-326.
- [15] A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem groössten Betrage bei gegebenem Argumente der Funktion, Acta Math., 41 (1916), 1-28.
- [16] H.Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, 2nd Ed., Springer, Berlin (1968).