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Abstract: We generalize the Wiman-Valiron method for fractional derivatives
proving that
21D (2) ~ (v(r, £))f(2)

holds in a neighborhood of a maximum modulus point outside an exceptional
set of values of |z| as |z| — oo, where D? is the Riemann-Liouville fractional
derivative of order ¢ > 0, v(r, f) is the central index of the Taylor representation
of f. We use this result to find the precise value for the order of growth of
solutions of a fractional differential equation.
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1. Introduction

Let -
f(z) = Zanz”, z=ret (1)
n=0

be a transcendental entire function. For r € [0,+00) we denote M(r, f) =
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max{|f(z)| : |z| = r}, and let u(r, f) = max{|a,|r" : n > 0} be the maximum
term and v(r, f) = max{n > 0 : |a,|r" = u(r, f)} be the central index of the
series (1).

The theory, initiated by A. Wiman ([14, 15]) and developed by many other
mathematicians such as G. Valiron, J. Clunie, T. Ko6vari, describes the local
behavior of f near a point z,, |z,| = r, satisfying |f(z,)| = M(r, f) in terms
of the power series (1). A nice exposition is due to W.K. Hayman [4], where
bibliographical references are given. The seminal result of the theory states
that given ¢ € N in a neighborhood of z, one has

F(2) ~ (i)u(r,f)f(Zr), FD(2) ~ (@

Zr

) 1) (2)

for r € [1,00)\ E where E is a set of finite logarithmic measure, i.e. fEm[l 00) d;’c

oo. Another elegant approach not involving power series was proposed by A.
Macintyre ([7]), who used K(r, f) := z.f'(2)/f(2r) = r(log M (r, f))’ instead
of the central index. This approach was developed by Sh. Strelitz in his book
[13], who proved counterparts of (2) with K (r, f) instead of v(r, f) for func-
tions analytic in a strip or in the unit disc, and for Dirichlet series. On the
other hand, the theory has been developed for Dirichlet series by M. Sheremeta
and O. Skaskiv (see e.g. [9, 10, 12]). Recently, W. Bergweiler and others de-
veloped Macintyre’s approach for meromorphic functions having a direct tract
in C ([1]). Correlations (2) are very useful in studying differential equations.
They allow to obtain sharp asymptotic estimates for the growth of solutions
(see [16, 6, 1]). Counterparts of (2) for fractional values of ¢ is unknown.

The aim of the paper is to obtain an analogue of the second relation of (2)
for the Riemann-Liouville fractional derivatives.

2. Generalization of the Wiman-Valiron Method
for Fractional Derivatives

We start with the settings of the Wiman-Valiron theory.
Let (ay,)52 o be a sequence of positive numbers such that a1/, decreases
with increasing n. Let (0,) be a sequence of numbers such that

o Qp_1 o
0<oo<—, —L<p,<—" (n>1),
aq (679 Ap41

so that (g,) increases with increasing n. We shall say that a value r is normal
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(for the sequence (ay,),(ay,) and (o)), if we have for some v

n
v AnQy
o, 0}

(n>0).

|lan|r™ < ay|r

Let V be the class of positive continuous nondecreasing functions v on
2
[0,4+00) such that m increases to +00 on = € [zg;+00), 9 > 0, and
“+o00o
i % < 400. For example, the functions v(z) = zIn®™ z, (z > €), a > 0,
and v(z) = 2°%1, (x > 1), 6 € (0,1) belong to V.
The main result of the Wiman-Valiron theory is formulated as follows.

Theorem 1. Let v € V and k(t) = 4\/v(t)Inv(t). Suppose that f is an

entire function, a value r is normal and large enough, |zy| =,

£ (z0)| > nM(r, f), v 2(w(r, f)) <n <1,
holds, and

r(l—@) <p<r<1+40;(y))a v=u(r, f).

Then if ¢ € Z4 we have for |z| = p

(g)q D) = f(z)+0 <@> M(p, f)-

In particular, ifInp —Inr = o (ﬁ), then

mG.£9) = (2) {10 () barge
= (1+o() (2)" M(r,f)

as r — +oo outside a set of finite logarithmic measure.

We generalize the Wiman-Valiron method for fractional derivatives.

Let f € L(0,a), a > 0. The Riemann-Liouville fractional derivative of order
a > 0 for f is defined as

Df(x) = %{Infaf(:c)}, ae€(n—1,n], neN,
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where

x —t)l-«

N B A (O
) = ey |
0

is the Riemann-Liouville fractional integral of order o > 0 for f, I'(«) is the
Gamma function. In particular, if 0 < a < 1, then

1 d/x F(6)dt

F(1—a)de | (x—t)
0

D f(x) =

The fractional derivative has the following property ([8]):
F(/B) xﬁfozfl
G-

It follows from (3) that the fractional derivative for the entire function (1)
is defined as

Dozt = a, B> 0. (3)

o0

« « F +1) n
D) = gy

Theorem 2. Let v € V and k(t) = 4/v(t)Inv(t). Suppose that f is an

entire function, a value r is normal and large enough, |zy| =,

[f(z0)| =M (r, f), v (v(r f)) <n <1
holds, and

r(l—®><p<r<l+40;(y)>, v=uv(rf).

Then if ¢ > 0 we have for |z| = p:
p1Df(2)

4

= 12+0 (") meo.p) (@)

In particular, iflnp —Inr =o (ﬁ), then

M.t = (2) {1+ 0 (%) bargn

= (L+o(V) (%) M(r.f) (5)

r

DR

as r — +oo outside a set of finite logarithmic measure.
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For p € [0;400) we set u(r,p, f) = \a,,(r,f)\p”(“f).
To prove Theorem 2, we need the following statements.

Lemma 1. [11, Lemma 3.4], cf. [4, Lemma 2] Let v € V and k(t) =
4+/v(t)Inv(t). Then we have for any fixed positive q and for all p, |In p—Inr| <
1

k(v)?
S nffanl” = o (%)  v=vin ), (6)
[n—v|>k(v)

as r — +oo outside a set of finite logarithmic measure.

Lemma 2. [11, Lemma 3.5], cf. [4, Lemma 7] Suppose that P is a
polynomial of degree m and |P(z)| < M for |z| < r. Then for R > r we have

eMmR™!

rm

|P'(2)] < , |zl < R.

Theorem 3. [11, Lemma 3.7], cf. [4, Theorem 10] Let v € V and k(t) =
4y/v(t)Inv(t). Suppose that f is an entire function, a value r is normal and
enough large, |zo| =,

1f(z0)| =nM(r, f), v 3(v(r,f)) <n<1

Then, if z = zpe™, |7| < wwk—, v = v(r, f), we have

18k (v)’
in S — 1)+ )7+ a7 4 800),
where
k(v)\’ r()T\°
el <22 () =12, el < (BT
n n
Proof. Let
vi =min{n: |n —v| < k()}, vo=max{n:|n—v| <k}
We write
f(2) = P(2)2"" + R(z), (7)
where
Pz)= Y lan|s" (8)
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Since p(r, p, f) < M(p, f), from Lemma 1 with ¢ = 0 for all p, [ln p—Inr| <
ﬁ, we obtain for |z| = p

F(z) = P(2)2" + 0 (%) = P(2)2" + o (MUE5)§)> , 9)

as r — +oo outside a set E of finite logarithmic measure.
In particular, from (9) with p = r we have |P(z)|r"* < (1 + o(1))M(r, f),
i.e. for all sufficiently large » ¢

< 1,01 M(r, f)

Y1

1P(2)] = M*(r), |z|=r (10)

We need the asymptotic representation for Gamma functions ([5])

g (o) o men

First we estimate the fractional derivative of order ¢ for R(z). From (3)
and Lemma 1 we deduce

(1 +n n—q in
[p!DIR(2)| = |p? Z maw aem?
[n—v|>k(v)

q
<Ol —o (PR, (12)
[n—v|>k(v)

T'(n+l) _
Tari-g”

Repeated application of Lemma 2 shows that for any ¢ € Z and |z| = p

where v = v(r, f), r - 400, r ¢ E, and C = sup{2

q
Poe) < () ) 13)
In fact,
P(z)] < ME26a)p 70
- r,nVQ*Vl
2e M* (1)K (v) 1 RO k()
< 1 < M
< 0 + 10m(0) < (r), r— 400
and, similarly,
b emax{[PUV ()| : J2] < ph(r(v) — j + 1pr
[PD(z)] <

— ,rllgflllf]?l’l
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< (") arer,

We need generalized Leibniz’s formula for fractional derivatives to estimate
the first summand in (7). Let f(x) and g(z) be analytic functions on [a, b], then
(8, p. 278])

+oo o
D(f-g) =) ( k) (D Ff)g®, (14)

k=0
o\  (=DFal'(k —a)
where <k> TTA-—ark+1)

It follows from (3) and (14) that

plDI(Z" P(2)) = p? Z ( )quzmp(M)(Z)

B VQZ—I:A <q> - I'(v +1) 21 plm) ()

m)T(v1+1—qg+m)

vo—1q
R A G ) B +Z LOA+1=9) npim(y)
T +1-q) Tinti—g+m)”
We now estimate the second term in parentheses taking into account (13)
and (11)

(V)
V1+1_Q) m p(m)
P
mz<> V1—|—1—q+m)p ()

2k(v)

—QTmt1-g9)  (6ps)\" .
<Zrl_q 1 (222)  are o

! Fm+1)I'(v1+1—qg+m) r

2K

<C(@) Y. —1= v O () M ()

—~ m1+q
2k(v)

< C(q)@M*(r) > m11+q =0 (@) M*(r).
m=1
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Therefore, in view of (9) and the previous estimate we have
T+l K(v)
qu V1 I/l M*
(Pe)2") = e (P + 0 (B2 arr)

) =
ylyjjiq (f ( Tp’ )+0(()M*() )> (15)

1 t)
Since mAE =0 (%) t — 400, using (15) and (12) we have for |z| = p:
v

ADIf(z) = LD <f(z) Lo (M(r,p, f)>

Th+1-9 o)
0 (")) = g s (164 o (o)
+0 (@M(r, f) (g)”)) , (16)

as r — +oo outside a set of finite logarithmic measure.
Next we choose zp so that |f(zg)| = M(r, f) and take n = 1, 7 = In(p/r).
Then Theorem 3 gives

1
18k(v)’

In ‘f (gz:o)‘ =In|f(z0)| + v+ OQ1), |7|<
so that
n M(p, f) > o M(r, f) + v n(p/r) + O(1).
Since (p/r)"' 7" = exp{7(r1 —v)} = O(1), we have

(2) a6 = (2) (2) ™ e

r

=0 ((2) M@, ) = 0 (p. ).
Thus, (16) yields
() = s (e o (")) an
According to (11) we have

I(v +1)

T 1o~ L+ (1 +0 (1>> , V=400 (18)

14
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pID1f(z) = 11 (1 +0 (%)) (f(Z) +0 (@M(p, f)))
—_— (f(z)JrO <@M(p,f)>>

when r — +o0 outside a set of finite logarithmic measure, that is (4).
We choose z in (4) in turn so as to make |f(z)| and |D?f(z)| maximal and

deduce that
w0t < (140 (2)) (2) aen

v

M(p, Df) > <1+0 <@>> <%>qM(p,f)

M) = (1+0(")) (%)QM@, 9.

To complete the proof of (5) it remains to show that
InM(p, f) =InM(r, f) +vin(p/r) + o(1).
To see this we note that (7) and (12) yield for our range of p
InM(p, f) =vilnp+InM(p, P)+ o(1).
On the other hand it follows from Lemma 2 that

M(p, P) = M(r, P) (1 +0 (%)) ~ M(r,P)

Hence

and

so that

if k(v)In(p/r) = o(1), and now the second equality of (5) also follows and the
proof of Theorem 2 is complete. O

Remark 1. D9%(p?f(z)) has the same asymptotic estimate as p?D?f(z),
thus under the conditions of Theorem 2 for |z| = p we have

D) = (16140 (“aren) ) ). (19)

as r — +oo outside a set of finite logarithmic measure. Note that the operator
D4(pif(pe'?)) keeps analyticity and have other nice properties (see [3, Ch. IX]).
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3. An Application to Fractional Differential Equations

It is known [16, 6, 2] that every nontrivial solution of the equation

F9(z) +a(2)f(2) =0, (20)

where a(z) is a polynomial of degree m, is an entire function of order p[f] =
1+ %, where
log log M (r, f)

plf] = imsup ———=—1-=.
r—00 log r

On the other hand, for fractional values of ¢ € (0,1) equation (20) with
a(t) = A(t?), where A is a polynomial of degree m, admits a solution of the
form f(t) = v(t9), t > 0, where v is entire with p[v] < HTm ([5])-

It is not possible to estimate the growth of solutions of (20) using Theorem
2, because it would require an asymptotics for the Gelfond-Leontiev differential
operators (see [5]), which is more general than D?. Nevertheless we can obtain
an asymptotic of solutions for some class of fractional equations.

We consider the fractional differential equation in the form

DUrf(2))

z

a(z)f(z) =0, (21)
where the coefficient a(z) is an entire function, ¢ > 0, and
DYf(z) = DUf () = T(q + 1)£(0). (22)

Remark 2. The analog of the operator (22) can be found in ([3, Chap.9]).
This definition provides that D(r?f(re'¥)) 0 0.

The proofs of the following theorems are standard ([6]).

Theorem 4. The equation (21) with the initial condition f(0) = fo has
an entire solution.

Theorem 5. Let a(z) be a polynomial of degree m > 0. Then all not-

trivial solutions f of the equation (21) have the order of growth o = mT‘H.
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