ON A STABILIZED FINITE ELEMENT METHOD
WITH MESH ADAPTIVE PROCEDURE FOR
CONVECTION-DIFFUSION PROBLEMS
M. Farhloul1, A. Serghini Mounim2, A. Zine3 1Département de Mathématiques et de Statistique
Université de Moncton
Moncton, N.B., E1A 3E9, CANADA 2Department of Mathematics and Computer Science
Laurentian University
Sudbury, Ontario, P3E 2C6, CANADA 3Département de Mathématiques et Informatique
Université de Lyon
Institut Camille Jordan, CNRS-UMR5208
Ecole Centrale de Lyon, 36 av. Guy de Collongue
69134 Ecully Cedex, FRANCE
Abstract. Computing solutions of convection-diffusion equations is an important and
challenging problem from the numerical point of view. We present in this work
a numerical scheme to study this problem. The scheme combines a stabilized finite
element method introduced in [Serghini Mounim, A stabilized finite element method
for convection-diffusion problems, Mumer. Methods Partial Differential
Eq 28: 1916-1943, 2012], with an adaptive mesh refinement procedure which is based
on the residual a posteriori error estimators. It is worthwhile to point out that the
numerical results indicate that the stabilization parameter introduced in
[Serghini Mounim, A stabilized finite element method
for convection-diffusion problems, Numer. Methods Partial Differential
Eq.28 (2012), 1916-1943] gives much better results than the standard
Streamline upwind/Petrov-Galerkin (SUPG) one.
AMS Subject Classification: 65N30, 65N15, 65N50
Key Words and Phrases: convection-diffusion equations, streamline upwind/Petrov-Galerkin method, residual-free bubble method, residual a posteriori error estimates, adaptive mesh refinement
Download full article from here (pdf format).
DOI: 10.12732/ijam.v28i6.3
Volume: 28
Issue: 6
Year: 2015