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Abstract: This paper considers a Poisson arrival queuing system with an
exponential server (server-1) and a general server (server-2) operating under
dual control. We extend our analysis of the same queuing system with an
infinite buffer to the finite case. The case presented here has many applications
in manufacturing, computer centers and telecommunications systems.
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1. Introduction

In queuing systems, there are two reasons why analysis is carried out under
finite capacity assumption. First, the assumption of infinite capacity does not
exist in real-life situations, [1]. Most physical systems with queuing tendencies
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for instance, manufacturing systems, assembly lines, material handling systems
and service shops are known to harbor finite capacities. Additionally, queuing
spaces in malls, telecommunications and computer business centers especially,
centers with control procedures are known to have finite waiting spaces for
customers. Similarly, in telecommunications and computer systems, finite con-
trolled telephone lines, computer networks and ATM switches exist, [9] and [8].
Secondly, unlike in infinite capacity analysis, an account of lost customers is
taken into consideration in finite capacity analysis as rejection or loss proba-
bility. This probability (often called the blocking probability) is essential in
designing optimal buffers in areas of application. For instance in communi-
cation networks, it is well known that increase utilization of network servers
can be achieved through resource sharing of link capacities and buffer spaces
among different customer sessions. On the other hand, this benefit potentially
has led to increase in congestion and degradation in quality of service (QoS).
Consequently, understanding the dynamics between offered traffic load, per-
ceived QoS measures, link capacities and buffer spaces is essential for efficient
design and provision of network switching elements.

In the last three decades, a lot of analysis has been carried out on queuing
systems with finite buffers. For a survey, [5], [6], [9], [8], [17], [1] and [20]. In
particular, [21] proved vital results and performance measures for a queuing
model called the M/M,G/2 with an exponential server and a general server
under controlled procedures that direct customers to service. Basically as in
[7], the purpose of applying control procedures in queuing analysis is to find
the optimal operating policy for turning the servers on and off that provides
the lowest long-run cost. Several papers have been published in this line and
broadly, can be divided into two categories according to whether the system
is considered to control the service or the arrival process of customers in the
system. For service control policies, [22], [11], [3], [16], [15], [12], [2] and [18] are
good examples. On the other hand, controlling the arrival process is also not
a new practice. The first investigation was carried out by [10]. Recently, [23]
studied the optimal control of a randomized control policy in the M/G/1 queue
with second optional service and general start-up times in which the server
is typically subject to unpredictable breakdowns. [13] studied the operating
characteristics of an M/G/1 queuing system with a randomized control policy
and at most J vacations. However to the best of our knowledge, few if any
research explore the dual control problem that is; a control procedure for both
the arrival and service processes of customers in a queuing system.

The dual control procedures implies that when the number of customers
reaches a finite value K, no further arriving customers are allowed into the
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system and the rule for service is solely determined by the service provider.
As for works dealing with optional service procedures, [14] and [19] are good
examples. Extensively, [21] extended [19] model to include a fixed control pol-
icy that controls the usage of servers in the system under finite and infinite
arrival process. Unfortunately, no suitable linear cost structure was derived.
Though in [14] a cost structure was given, the assumption of infinite capacity
is supposed. The aforementioned papers and many other ones revealed that
no works on cost analysis for a queue with dual control under finite customer
flow assumption exist. This is against the fact that in many service stations
with finite capacities, both the arrival and the service process are controlled
away from the customer. In the presented model, we attempt to fill this gap.
We suppose that when the number of customers reaches a threshold value K
(the system capacity), no further arriving customers are allowed into the sys-
tem. Similarly, for service customers, the choice of servers is in accordance
with a set of predefined rules that are service provider dependent. In addition,
we characterized that the exponential server provides service to the first and
second arriving customer category and the general server serves the remain-
ing customer category. Similar to what is found in [17], our analysis is based
on the finite capacity approximation of the general service distribution to the
exponential distribution so that existence of stationary solution is guaranteed.

The rest of the paper is organized as follows. In Section 2, the model is
described along side a controlled queue discipline. Section 3 provides some
finite behavior of the model under the stated queue discipline. In Section 4,
the mathematical model is formulated. Section 5 derives the lost probability
function for a finite K under the dual control procedures employed in this work.
In Section 6 (Appendix), we study the cost function for this queuing system
under the dual control policy assumption and derive vital management results.
Finally, some concluding remarks are given.

2. Model Formulation

We consider an M/G/2 queuing system with an exponential server (server-1)
and a general server (server-2). Customers arrive according to a Poisson process
at a rate λ for service on either of the two servers in the system. The job
tendency, the nature of servers and the queue discipline are as in [21] however
in this case, we make the additional assumption that the available queuing
space is limited to K customers only, (including the service customer) where K
is an integer. Thus, a customer who upon arrival meets a system size j = K is
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lost. The service time distribution depends on the server that provides service.
For customers served by server-1, the service time S1 is exponential with rate
µ1, i.e. F1(t) = P (S1 < t) = 1 − e−µ1t, probability density function (PDF)
f1(t)dt = dF1(t) and Laplace-Stiltjes Transform (LST) f∗

1 (s) =
∫∞

0 e−stdF1(t).
Similarly, for customers serviced by server-2, their service time distribution
B(t) = P [S2 < t] is general with PDF b(t), a mean β = E[S2] and a LST b∗(s)
given by b∗(s) =

∫∞

0 e−stdB(t). For reasons to do with stability, we suppose
that λ ≤ µ1 +

1
β . Now, if an arriving customer finds:

1. Both servers free: He is asked to take service from server-1.

2. Server-1 is busy and server-2 is idle: The customer is asked to wait
for the unfinished job on server-1.

3. Server-1 is busy, one customer is waiting for server-1, and server-

2 is idle: The customer is asked to take service from server-2.

4. Both servers are engaged: the customer is asked to join the queue
and wait for his service turn as a second waiting customer.

5. The system capacity accommodates a customer size j ≤ K ∈ Z.

2.1. The Stationary Customer Distribution

Denote by {X(t), ζ(t)}t≥0 the customer process, where X(t) represents the
number of customers in the system at time t and ζ(t) is the past service time
of a customer on server-2. Looking at the system at departure instants when
a service is completed on server-2, then the bi-variate process {X(t), ζ(t)}t≥0

is a Markov process. Suppose that the service time of customers is continuous
and that the system is empty at time zero. That means one can apply the
supplementary variable technique to analyze the process {X(t), ζ(t)}t≥0, see
[4]. Define for t ≥ 0 :

R0,0(t) = P (X(t) = 0)

R1,0(t) = P (X(t) = 1, server-2 idle)

R1,1,0(t) = P (X(t) = 2, server-2 idle)

Rj(t, η)dη = P (X(t) = j, η ≤ ζ(t) < η + dη), η > 0, j = 3, ...K.

Given that λ < µ1 +
1
β holds, then as t → ∞, R0,0(t), R1,0(t), R1,1,0(t) and

Rj(t, η) will converge to R0,0, R1,0, R1,1,0 and Rj(η) respectively. More pre-
cisely, {X(t), ζ(t)}t≥0 → {X, ζ}. Suppose that the rate-equality principle holds.
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If Rj is the stationary probability that there are j customers in the system,
then it is trivial under this assumption that R0 = R0,0, R1 = R1,0, R2 = R1,1,0.
And for 3 ≤ j ≤ K, Rj(η) gives the stationary probability that there are three
up to K customers in the system.

By the ergodic theorem satisfied by the process {X, ζ}, the stationary prob-
abilities R0,0, R1,0, R1,1,0 and Rj(η) will satisfy the differential equations below:

λR0,0 = µ1R1,0, j = 0 < K, (1)

(λ+ µ1)R1,0 = λR0,0 + µ1R1,1,0, j = 1 ≤ K, (2)

(λ+ µ1)R1,1,0 = λR1,0 +

(

µ1 +
1

β

)

R1,1,1(η); j = 2 ≤ K. (3)

And for 3 ≤ j ≤ K, we have
(

λ+ µ1 +
1

β

)

R1,1,1(η) = λR1,1,0 +

(

µ1 +
1

β

)

R4(η), (4)

(

λ+ µ1 +
1

β

)

Rj(η) = λRj−1(η) +

(

µ1 +
1

β

)

Rj+1(η). (5)

From (1) and (2), we have

R1 = R1,0 =

(

λ

µ1

)

R0,0 =

(

λ

µ1

)

R0, (6)

R2 = R1,1,0 =

(

λ

µ1

)2

R0. (7)

For Rj ; 3 ≤ j ≤ K, we take advantage of Lemma 6 in Appendix and solve
the accompanying differential equations for a special case of b(t) = 1. For a
complete discussion on the methodology, see [21]. Thus, for 2 ≤ j ≤ K, we
obtain that

Rj =

(

λ

µ1 +
1
β

)(j−2)
(

λ

µ1

)2

R0, (8)

where R0 is the idle state probability.
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Put λ
µ1+

1

β

= ρ1 and λ
µ1

= ρ and apply the normalization condition. Conse-

quently,

1 = R0,0 +R1,0 +R1,1,0 +

K
∑

j=3

Rj . (9)

Upon further simplification, one obtains that

R0 = R0,0 =
(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2(1− ρK1 )
. (10)

Inserting (10) in (8), Rj for the finite capacity M/M,G/2 queue under the
control formulation adopted here is obtained. This is given by

R1 = R1,0 =
ρ(1− ρ1)

(1 + ρ)(1 − ρ1) + ρ2(1− ρK1 )
, K = 1, (11)

and1 for 2 ≤ j ≤ K customers, we have

Rj =
ρ
(j−2)
1 ρ2(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2(1− ρK1 )
. (12)

Now, if we substituteK for j in (12), then the probability that the system is
full to capacity for such K ∈ Z is obtained. This is equivalent to the probability
that an incoming customer is blocked and therefore lost. Thus,

RK =
ρ
(K−2)
1 ρ2(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2(1− ρK1 )
. (13)

3. The Lost Customer Analysis

Denote by RK+r the stationary probability that r = 0, 1, 2, ... customers are
lost upon arrival when there are K customers in the system. The Lebesgue
count for this lost corresponds to the sequence

{K + r} = {K,K + 1,K + 2,K + 3, ...K + n+ ...}. (14)

1
K = 0 is unrealistic.
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If Q is such that Q[N = K+ r] = RK+r, then by conditioning on the threshold
K we have

Q[K + r |K,K − 1,K − 2, ..., 0] (15)

= Q[K + r |K] = Q[K, r |K] (16)

= Q[K]Q[r] = RKRr. (17)

Here, Rr gives the stationary probability that exactly r = 0, 1, 2, 3, ... customers
are lost when there are already K customers in the system. Thus,

RK+r = RKR0 +RKR1 +RKR2 +RKR3 + ... = RK

j=∞
∑

j=0

Rj . (18)

The summation component in (18) could be determined by letting j → ∞.
Consequently, for a fixed value of K, the probability that rcustomers are lost
by the system is given by

Rr =
ρ
(K−2)
1 ρ2(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2(1− ρK1 )

ρ
(K+r−2)
1 ρ2(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2
. (19)

Theorem 1. Suppose K is minimal. Then the lost probability in (19)
reduces to

Rr =
ρ4+r(1− ρ)2

1− ρ4
. (20)

Proof. In [21], we have shown that K is minimal if

RK =
ρ2(1− ρ1)

[(1 + ρ)(1− ρ1) + ρ2]− (ρρ1)2
. (21)

The minimality condition ensures that ρ1 → ρ. Consequently, the stationary
customer process (X, ζ) is saddled on server-1. Given that λ < µ1 +

1
β holds,

it is trivial that λ < µ1 for the M/M/1/K is implied. Suppose that a long
service of mean β is in progress on server-2 such that 1

β = 0 : more precisely,

β → ∞ onto ρ1 = λ
µ1+

1

β

where ρ1 is the occupation rate of the two servers

in the M/M,G/2 model. Then ρ1 = λ
µ1
. Denote by ρ the occupation rate

of the classical M/M/1/K model. By definition ρ = λ
µ1
. This means ρ1 =

ρ. Finally, the assertation follows if Kmin is substituted in (19) upon further
simplification.
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Corollary 2. The lost probability in terms of the blocking probability is
given by

Rr = ρr+2(1− ρ)RK , (22)

where ρ is the occupation rate of a system with a single exponential server.

Proof. This is straightforward, in view of (20).

Theorem 3. The expected number of lost customers in the M/M/1/2
queue is given by

E[N ] = ρ2E[N ]M/M/1RK . (23)

Proof. Denote by ω(s) the generating function for customers who arrive the
system when there are already K customers. By definition,

ω(s) =

∞
∑

r=0

Rrs
r = ρ2(1− ρ)RK(1 + ρs+ ρ2s2 + ρ3s3 + ...). (24)

The limit of this infinite series attached to (24) exists. Consequently,

ω(s) =
ρ2(1− ρ)RK

1− ρs
. (25)

Differentiating ω(s) and applying some basic properties of generating functions
gives

ω
′

(1) =
ρ3

(1− ρ)
RK . (26)

Finally, the theorem follows upon re arranging (26) in the light of stationary
mean number of customers in the M/M/1 queue.

Corollary 4. The expected number of lost customers in the M/M/1/2
system increases with increase in the blocking probability.

Proof. This holds in view of the proportionality relationship between the
two measures. More precisely, the increase in the size of the lost expectation
grows maximally for higher values of ρ for a given blocking probability.
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4. Cost Analysis

In this section, we study the cost of running the M/M,G/2 queuing system
under the dual control policy employed in this work. The cost is studied in the
light of the general server. We define the bounds under which the cost goes
to that of two queuing models namely; the M/M/1/K and the parallel server
M/M/2/K with an arrival control.

Proposition 5. The cost f of running a system of servers is inversely propor-

tional to the service rate. In addition, f is injective.

Proof. The proposition holds directly since the failure rates (slow server
rates) climb as servers aged. Consequently, one may conclude that aging servers
with slow service rate have a substantial cost-adding role in the overall cost
dynamics of the system. Similarly, the injective part follows since f is a cost
function.

Now, suppose that for some i-servers, the cost f is given by the equation

f

(

i=M
∑

i=1

µi

)

=
M
∑

i=1

[Ci + µivi(1− Pi)] + λE[T ]C0, (27)

where:

Ci = fixed cost per unit time for server i

ri = cost incurred per unit service in the ith server

Pi = proportion of time server i is idle per unit time

C0 = penalty cost per unit time wait

λ = arrival rate

µi = mean service rate of the ith server

E[T] = mean total time spent in the system.

Assuming that customer renewal is possible so that Pi → 1. Let C0 = 1. Then
a simplified form of (27) for a two-heterogeneous server queuing system will
take the form

f

(

i=2
∑

i=1

µi

)

= C1 + C2 + (µ1 + µ2)E[T ]. (28)

If E[T ] is stationary, and C1 and C2 are fixed numbers, we have for:
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1. µ2 = µ1:
The cost of running the M/G/2 queue with dual control studied in this pa-
per is equivalent to that of a two-exponential server homogenous queuing
system with service rate 2µ1 similar to that of [14].

2. µ2 → 0:
The work load of the system is saddled on server-1 entirely. This phe-
nomenon is equivalent to a long service with an average of β = ∞ units
of service time taking place on server-2. Consequently, the effective work
load leading to the cost of the system is determined by that of server-
1. The cost function under this condition is equal to that of running a
queuing system with a single exponential server.

3. µ2 > µ1:
Here, the cost is greater than the cost of running a two server homogenous
system with exponential servers. The upward increase is about ǫ cost unit.
For ǫ > 0, the effective increase is significant.

5. Concluding Remarks

We have presented an analysis of two measures needed for a broader system
analysis and operations management for the M/M,G/2 queuing system working
under a dual control policy namely; the lost probability and the cost function.
It was shown for the trivial buffer M/M,G/2 queue that the lost probability
increases with increase in the blocking probability. Moreover, this lost is pro-
nounced for high values of the occupation rate. Similarly, for the cost function,
we have shown that depending on the size of the service rate of the general
server the cost goes to that of the M/M/1, the M/M/2 and the M/M/2+ queu-
ing systems respectively. The cost analysis of these known systems are available
in the literature.

One can apply the results proved here for designing suitable buffers for
relevant controlled systems for better application and optimal use of investment
resources. As a scope for further work, analysis of lost customer distribution
under the general K is possible and interesting.
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6. Appendix

Lemma 6. Given that the traffic condition λ < µ1 +
1
β holds, then in a busy

period

Q∗
j(0) = Q̃j, j = 3, 4, ....K. (29)

Proof. Suppose that a busy period is in progress such that the time Tn be-
tween any two successive departures on server-2 is given by Tn = tn−tn−1, n =
1, 2, 3, ..., . . . Then for n ≥ 1, the service period is a probabilistic replication of
the initial period T1 starting at t = 0. Now, if the queue length process2 at t
is N(t) such that 3 ≤ N(0) ≤ K, then N(t) would reach steady state3 starting
at t = 0. Consequently, N(t) is a regenerative process over t on state space
S = 3, 4, ... and Tn = tn − tn−1 is the underlying renewal process at time epoch
tj each time a departure occurs on server-2. Now, given that λ < µ1 +

1
β holds,

then upon service completion on server-2, the state probability Rj(t) can be
expressed as

Rj(t) = P [N(t) = j, j = 3, 4, . . . ,K]. (30)

In addition, if η units of service time elapsed in a busy period at any time t,
then the conditional probability that there are j customers in the system is
equal to

Rj(t, η) = P [N(t) = j | t = η, j = 3, 4, . . . ,K]. (31)

Now, let

Qj(t, η) =
Rj(t, η)

1−B(t, η)
, (32)

so that

2
N(t) is equivalent to X(t)

3Precisely at (0+)
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Qj(t)(1 −B(t)) = Rj(t) = P [N(t) = j | t1 > t], (33)

then

K
∑

j=3

Qj(t) = P [t1 > t] = 1−B(t) (34)

and

Qj(t) =

∫ ∞

0
P [N(t) = j, t1 > t | t1 = η] (35)

which simplifies to the expression

Qj(t) =

∫ ∞

η
P [N(t) = j | t1 = η]dB(η) (36)

and Rj(t) now will equal to the equation

Rj(t) =

∫ ∞

0
P [N(t) = j, t1 = η]dB(η). (37)

Thus, by conditioning on T1 under steady state conditions, it can be shown
that the following renewal equation is satisfied:

Rj(t) = Qj(t) +

∫ t

0
Rj(t− x)dB(x). (38)

This renewal equation has a unique solution of the form

Rj(t) = Qj(t) +

∫ t

0
Qj(t− x)dM(x), (39)

whereM(x) is the renewal function of a renewal process with inter-renewal time
distribution B(t). Thus, the application of the key-renewal theorem yields that

lim
t→∞

Rj(t) →
1

β

∫ ∞

0
Q(x)dx. (40)

The integral in (40) is the probabilistic version of Q̃j when the mean service
time on server-2 is β. Thus,

R̃jβ = Q̃j = Q∗
j(0). (41)

Thus, the lemma holds.
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