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Abstract: In this paper, we propose a new computational algorithm called
Elsaki-Adomian Decomposition Method (EADM) to solve a nonlinear Black-
Scholes model recently established in [9], [10]. The proposed method is a combi-
nation of the Elsaki transform (ET) and the Adomian Decomposition Method
(ADM). This new computational algorithm is applied directly without using
any transformation, linearization, discretization or taking any additional re-
strictive assumption. Exact solutions of an illustrative example are successfully
found by using the proposed method in order to show its reliability, efficiency,
and accuracy.
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1. Introduction

Recently, Ivancevic [9, 10], based on the modern adaptive markets hypothesis
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[11, 12] the wave market theory [8, 13] and the quantum neural computation
approach, proposed a novel nonlinear option pricing model, which we will call
the Ivancevic option pricing model, specified as

1
i%+502VSS+,8‘V’2V:07 (11)

in order to satisfy efficient and behavioral markets, and their underlying es-
sential nonlinear complexity, where V' = V(S,t) denotes the option-price wave
function, o is the dispersion frequency coefficient the volatility, (which can be
either a constant or stochastic process itself) and  is the Landau coefficient
which represents the adaptive market potential.
We use a plane wave as an initial solution of the (1.1), i.e. we solve the
problem of initial value
{ iVi + 302Vsg + BIV|?V =0, (1.2)
V(S,O):f(S), .

where o and 3 are constant.

In this paper we present some basic definitions of the Elzaki transform
(ET) and the Adomian decomposition method (ADM) and present a reliable
combination of the Adomian decomposition method and the Elzaki transform,
which we will name as Elsaki-Adomian Decomposition Method (EADM), to
solve the Cauchy problem given by (1.2). The problem (1.2) has also been
studied in [15]. Finally, we will discuss a couple of examples to illustrate the
accuracy and usefulness of the method we propose.

2. The Elsaki-Adomian Decomposition Method

In this section we present some basic definitions of the Elzaki transform and
Adomian Decomposition Method (ADM) and present a reliable combination of
the ADM and the Elzaki transform to obtain the solution of nonlinear partial
differential equations; specifically, we solve a nonlinear Black-Scholes model
recently established in [9] and [10].

2.1. Basic Definitions and Properties of the Elsaki Transform

The definition of the Elsaki transform and their properties have been recently
established in [7].
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Definition 1. The Elsaki transform of the functions f : [0,00) — R
belonging to a class A is defined as

PO} = P =u [ O we k)

In the above definition,

t
A={f:3IM, ki, ks > 0s. t., for each t € [0,00), |f(t)] < Me"i}.

It is easy to see that the Elsaki transform is a linear operator and we have the
following proposition.

Proposition 1. Let f be a real-valued function defined on R x [0, 00) at
least twice differentiable with respect to the second variable, f € A, then

(i) E {%} = Tz, u) — uf(x,0),
2 (s N
(i) E {%} = %T(:c,u) — f(z,0) — ULCE,%’ 0

Proof. To obtain transforms of the partial derivatives we use integration by
parts as follows:

5 of (z,1) —u/ af(x’t)e’%dt: im ue’ﬁaf(x’t)dt
ot 0 ot a—oo [ ot

— lim <[ue2f(x,t)]z _ /Oa eif(x,t)dt> = %T(:c,u) —uf(z,0);

a— 00

thus we have shown (i). Now to prove (ii), we assume that f is at last twice
differentiable with respect to ¢ and that f € A. Let h(z,t) = W, then we

obtain
E{%} - E{%} - %E{h(:c,t)} — uh(a,0),

and therefore, using (i):

0% f(x, 1 df(x,0
E{%}—ﬁT(x,u)—f(x,O)—u f(ﬁt )

Following Definition 1 directly we can obtain the following table:
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70 BUO) = F) |

1 u?
t u?
" nlynt2
eat lﬁZu
sin(at) lfa%
cos(at) 1+a—22u2

Table 1: Elsaki transform of some functions.

2.2. The Adomian Decomposition Method

The Adomian Decomposition Method (ADM) is a technique for solving ordinary
and partial nonlinear differential equations [3]. Using this method, it is possible
to express analytic solutions in terms of a rapidly converging series [4]. In a
nutshell, the method identifies and separates the linear and nonlinear parts of
a differential equation. By inverting and applying the highest order differential
operator that is contained in the linear part of the equation, it is possible to
express the solution in terms of the the rest of the equation affected by this
inverse operator. Here, we propose to express this solution by means of a
decomposition series with terms that will be well determined by recursion and
that gives rise to the solution components.
Given a partial (or ordinary) differential equation

Fu(z,t) = g(z,t) (2.1)

with the initial condition
u(z,0) = f(z), (2.2)

where F is a differential operator that could be, in general, nonlinear and
therefore includes linear and nonlinear terms.
Equation (2.1) can be written as

Lyu(z,t) + Ru(z,t) + Nu(z,t) = g(x,t), (2.3)

where L; = %, R is the linear remainder operator that could include partial
derivatives with respect to x, IV is a nonlinear operator which is presumed to be
analytic and ¢ is a non-homogeneous term that is independent of the solution
U.
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Solving for Lyu(z,t), we have
Liu(z,t) = g(x,t) — Ru(x,t) — Nu(x,t). (2.4)

As L is presumed to be invertible, we can apply L fo )dt to both sides
of equation (2.4) obtaining

Ly 'Lyu(x,t) = L7 'g(2,t) — Ly Ru(x,t) — L7 ' Nu(z, t). (2.5)
An equivalent expression to (2.5) is

u(z,t) = f(x) + L g(x,t) — Ly *Ru(x,t) — Ly 'Nu(x, t), (2.6)
where f(x) is the constant of integration with respect to ¢ that satisfies L; f = 0.

In equations where the initial value ¢ = tg, we can conveniently define L.
The ADM proposes a decomposition series solution u(z,t) given as

)= up(x,t). (2.7)
n=0

The nonlinear term Nu(x,t) is given as

)= An(ug,ur,. .. up), (2.8)
n=0

where {4, }7° is the Adomian polynomials sequence [14] given by

1 d” -
An = ZO& ’U,k ’a 0- (2.9)

n! da”

Substituting (2.7), (2.8) y (2.9) into equation (2.6), we obtain

Zun(x,t): x) + L g(x,t) 1RZun x,t) ;1214”, (2.10)
n=0 n=0

from which we can establish the following recurrence relation, for every n =
0,1,2,..., we have:

Unt1(z,t) = L;lRun(ac,t) — L;lAn(uo,ul, CeeyUp), ’
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Using the recurrence formulas (2.11), we can obtain an approximate solution of
(2.1), (2.2) as

k
ug(z,t) = Zun(x,t), where lim wug(z,t) = u(z,t). (2.12)
0 k—o00

In many cases, the convergence of this series is very fast and only a few terms
are needed in order to have an idea of how the solutions behave. Convergence
conditions of this series are examined in [5], [6], [1] and [2] mainly.

3. The Ivancevic Option Pricing Model Using the EADM

Let us consider the initial value problem given in the Ivancevic option pricing
equation (1.2) with a plane wave as an initial solution, i.e. we solve the problem

{ iVy + 30%Vss + BIV|*V =0,

V(S,0) = &9, (3.1)

here we are considering o # 0 and 3 # 0 constant and set 3—§ =q.

By applying the Elsaki transform on both sides of the equation (3.1) and
using the linearity of the Elsaki transform,

%F(S, w) — uV(S,0) — iB{Vss} — iB{a|[V]2V} = 0. (3.2)

Substituting the given initial condition of equation (3.1) into (3.2), we obtain
%F(S, w) — ue'S — iB{Veg} — iE{a|V2V} = 0, (3.3)
where, solving for F'(S,u) we obtain
F(S,u) = u?e™ + iuE{Vss + a|V[*V}. (3.4)
Now, taking the inverse Elsaki transform of (3.4), we obtain
V(S,t) = e +iE  uE{Vss + a|V[*V}], (3.5)

where V(S,t) is the unknown function of the nonlinear term «|V|?V .
Now, using (2.7), we decompose the unknown function V'(S,¢) as a sum of
components defined by the series

V(S,t) = i Vo(S, 1), (3.6)
n=0
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and the nonlinear term can be represented by an infinite series

VPV =V = A,(Vo,Va,..., Vi) (3.7)
n=0

where the components A,, are the Adomian polynomials which can be calculated
by formula (2.9) as follows:

Ay = Vi,

Ay =2VpWi Vo + ViV,

Ay = 2V VoV + ViV + 2V ViVi 4 Vi Vs,

As = 2VoVaVy + 2ViVa Vg + 2V VoV + V2L + 2V ViV + ViE Vs,

By substituting (3.6) and (3.7) into (3.5),
uly {Z Vi,ss + aZAn}
n=0 n=0

By comparing the both sides of the Eq. (3.8) we have the recursive formula

Vo(S,t) = €',
Vir1(S,t) =B~ [UE{Vk,SS + OZAk}], k> 0.

> Valw,t) =€ +iE™! : (3.8)
n=0

(3.9)
Hence, the exact or approximate solutions of the problem (3.1) is given by

V(S t) = i Vo (S, 1).
n=0

3.1. Illustrative Examples

In this subsection, some initial value problems are presented to show the relia-
bility, efficiency and accuracy of the proposed method.

Example 1. Consider the following nonlinear Ivancevic option pricing
model:

(3.10)

iVi + Vss + 6|V|?V =0,
V(Sv 0) = €2isa

where 62 = 1, 8 = 3 and therefore o = 6.
Using the recursive relation (3.9), we have

Vo(S,t) = %%, (3.11)
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Vier1(S,t) = iE~YuE {Vk755 + 6Ak}], k>0, (3.12)

where A,, is an Adomian polynomial which represent the nonlinear term |V|?V.
Now using the recursive relation of equation (3.12), we can easily compute the
other terms of the V'(S,t) as follows:

Vi(S,t) = iE~! [uE {(Vo.ss + 6A0}} . [uE {Vo.ss + 61/02170}]
=iE7 [uE {2e*%} | = 2ie* B uE {1}] = 2ie* B~ [u]
= 2ite2i5,

in a similar way,

Va(S,1) = iE~1 [uE {Viss + 6A1}] e

8i o o
V(S,t) = iE~! [uE {Va,s5 + 6A2}] = —3—ft3e2’5,

16 -,

and so on.
Therefore, the series solution of the function V(S,t) is given by:

V(S,t) = i Vi (S, 1)
n=0

(2it)2  (2it)3  (26t)*  9i(s+t)
o T e T +"'>_€ '

= %9 (1 + 2it +
It is straightforward to verify that V(S,t) = (5t satisfies the problem (3.10).

Example 2. We consider the special case of a S-independent nonlinear
Ivancevic option pricing model:

{ iV + Vss + 6|V|*V = 0,

V(S,0) = 1. (3.13)

Using the recursive relation (3.9), we have

Vo(S,t) =1, (3.14)
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Vip1(S,t) = iE  [uBE {Viss + 6Ak}], k>0, (3.15)
where A,, is an Adomian polynomial which represent the nonlinear term |V|?V.

Now we will use the recursive relation of equation (3.15), we can easily compute
the other terms of the V(5,t) as follows:

Vi(S,t) =B~ [uE {Vo.ss + 6A0}] — ;g [uE {61/02{70}]
=iF! [uE {6}] — GiEil[uE{l}] _ 6Z‘E71[u3] _6it,

in a similar way,

— 36

Va(S,) = i [l {Vi,ss + 641} | = =2,
216

‘/S(S, t) = ’I:Ei1 [UE{VQ,SS —+ 6A2}i| - _ 3'7/_[/_37
— 1296

Vi(S,t) = iE 1[uE{V3755+6A3}} = 20

and so on.
Therefore, the series solution of the function V(S,t) is given by:

V(S.t) = i Vo (S, 1)
n=0

=Vo(S,t) + Vi(S,t) + Va(S,t) + V3(S,t) + Vi(S,t) + -+

_ L (6at)? (6it)®  (6it)* _ Gt
=16t + g e e = e

It is very easy to verify that V(S,t) = 5 satisfies the problem (3.13).

4. Conclusion

The main goal of this paper was to present a reliable combination of Adomain
decomposition and the Elzaki transform. The proposed method is powerful and
efficient. An important conclusion that we can make is that the Elsaki-Adomain
decomposition methods for solving the nonlinear partial differential equations
(1.2) provide the components of exact solution.
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