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Abstract: In this paper a certain class of Weingarten surfaces in Sol geom-
etry is considered. The theorem that the only non-planar ruled Weingarten
surface composed from vertical geodesics are surfaces r(u, v) = (aeku, be−ku, v)
is proved.

AMS Subject Classification: 53C30, 53B25
Key Words: Sol geometry, Weingarten surface, ruled surface

1. Introduction

A Weingarten surface or a W surface is a surface satisfying the Jacobi equa-
tion

Φ(K,H) = det

(

Ku Kv

Hu Hv

)

= 0,

where K is Gaussian curvature and H is mean curvature of the surface.

If a surface satisfies a linear equation with respect to K and H,

aK + bH = c,

a, b, c ∈ R, not all zero, then the surface is called linear Weingarten surface,
or LW-surface.
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It is clear that a surface with constant Gauss curvature or constant mean
curvature is a Weingarten surface. Therefore, Weingarten surfaces can be re-
garded as generalization of surfaces of constant Gauss and constant mean cur-
vature.

The study of Weingarten surfaces was initiated by J. Weingarten in 1861.
E. Beltrami and U. Dini few years later proved that the only non-developable
Weingarten ruled surface in Euclidean 3-space is a helicoidal ruled surface. In
the last decade several papers on Weingarten surfaces in different 3-dimensional
spaces have appeared. Some results on W-surfaces can be found in Dillen at
all. [2], Dillen at all. [3] and Milin [8].

Motivated by the fact that there are no results about Weingarten surfaces in
Sol geometry, we examine a class of ruled Weingarten surface in Sol geometry.

The Sol geometry is one of the eight homogeneous Thurston 3-geometries

E3, S3,H3, S2 × R,H2 × R, ˜SL(2,R), Nil, Sol.

More about curves and surfaces in Sol geometry can be found in Bölcskei at
all. [1], López at all. [5], López at all. [6] and Masaltsev [7].

In this paper we examine ruled Weingarten surfaces in Sol space gener-
ated by vertical geodesics (Proposition 3.1) and prove that the only non-planar
surfaces of this type are surfaces r(u, v) = (aeku, be−ku, v) (Theorem 3.3).

2. The Sol Geometry

The Sol geometry is a geometry of 3-dimensional Sol space, the space R3

equipped with the metric

ds2 = e2zdx2 + e−2zdy2 + dz2. (2.1)

As we mentioned the Sol geometry is one of the 3-dimensional homogeneous
geometries. Generally, the Riemannian manifold (M,g) is called homogeneous
if for any x, y ∈ M there exists an isometry Φ : M → M such that y = Φ(x).
For more about other 3-dim homogeneous geometries, see Scott [9].

The Sol space is also a Lie group with the multiplication

(x, y, z) ∗ (a, b, c) = (x+ e−za, y + ezb, z + c).

Given metric is left-invariant with respect to this operation. It is worth to
mention that in contrast to other homogeneous geometries in Sol geometry
there are no rotations and the corresponding isometry group is 3 dimensional,
the lowest dimension among homogeneous geometries.

A left orthonormal frame {e1, e2, e3} in Sol is given by
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e1 = e−z ∂

∂x
, e2 = ez

∂

∂y
, e3 =

∂

∂z
. (2.2)

The Levi-Civita connection ∇ (in terms of the orthonormal frame), is given
by

∇e1e1 = −e3 ∇e1e2 = 0 ∇e1e3 = e1

∇e2e1 = 0 ∇e2e2 = e3 ∇e2e3 = −e2 (2.3)

∇e3e1 = 0 ∇e3e2 = 0 ∇e3e3 = 0.

3. The Weingarten Ruled Surface in Sol Geometry

In this section we consider ruled surface r(u, v) = (x(u), y(u), v) generated by
vertical geodesics c(t) = (x0, y0, t). Unlike the usual case where the investigation
of surfaces in a space begins with a surface that is a graph of the function
z = z(x, y), here we start with other type of surface taking in account specificity
of Sol metric. Even though the chosen type of cylindrical surface is perhaps the
simplest to consider in Sol, calculations are not trivial and require the use of a
computer algebra system.

First, we determine the Gauss curvature and mean curvature of the given
surface.

Proposition 3.1. The Gauss curvature K and the mean curvature H of

the ruled surface r(u, v) = (x(u), y(u), v) are given by

K =
−4x2uy

2
u

W 4
, (3.1)

H =
xuuyu − xuyuu

2W 3
, (3.2)

where xu =
∂x

∂u
, yu =

∂y

∂u
, xuu =

∂2x

∂u2
, yuu =

∂2y

∂u2
, and W =

√

x2ue
2v + y2ue

−2v .

Proof. The tangent vectors to the surface r(u, v) =
(

x(u), y(u), v
)

in the
base of ambient space Sol are

ru = (xu, yu, 0) = xue
ve1 + yue

−ve2, rv = (0, 0, 1) = e3.
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The coefficients of the first fundamental form are

E = x2ue
2v + y2ue

−2v , F = 0, G = 1. (3.3)

The normal vector is given by n = 1
W
(yue

−ve1 − xue
ve2) and

covariant derivations of tangent vectors are

∇ruru = xuue
ve1 + yuue

−ve2 +
(

y2ue
−2v − x2ue

2v
)

e3

∇rurv = ∇rvru = xue
ve1 − yue

−ve2

∇rvrv = 0.

The coefficients of the second fundamental form are

L =
1

W
(xuuyu − xuyuu), M =

2xuyu
W

, N = 0. (3.4)

Therefore, knowing

K =
LN −M2

EG− F 2
and H =

EN − 2FM +GL

2W 2
,

we obtain the equations (3.1) and (3.2).

Remark 3.2. In [7] Masaltsev investigated minimal ruled surfaces in
Sol geometry and obtained the same expressions for the first and the second
fundamental form. In the same paper he also proved the following statement:
”The ruled minimal surfaces composed from vertical geodesics are the surfaces
of the form r(s, t) = (as + b, s, t) or r(s, t) = (s, as+ b, t).”

Next, we give a characterization of Weingarten surfaces of type r(u, v) =
(

x(u), y(u), v
)

in Sol geometry.

Theorem 3.3. A ruled surface r(u, v) =
(

x(u), y(u), v
)

in Sol space is a

Weingarten surface, if it is either

1. a plane parallel to the z axis,

2. a cylindrical surface r(u, v) = (aeku, beku, v), a, b, k ∈ R.
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Proof. Using Proposition 3.1 we have:

Ku =
8xuyu
W 6

(xuuyu − xuyuu)(x
2
ue

2v − y2ue
−2v),

Kv =
16x2uy

2
u

W 6
(x2ue

2v − y2ue
−2v),

Hu =
1

2W 5

[

W 2(xuuuyu − xuyuuu)− 3(xuuyu − xuyuu)

× (xuxuue
2v + yuyuue

−2v)
]

,

Hv =
−3

2W 5
(xuuyu − xuyuu)(x

2
ue

2v − y2ue
−2v).

From the condition KuHv −KvHu = 0, it follows that

8xuyu(x
4
ue

4v − y4ue
−4v)

×
[

3(x2uy
2
uu − x2uuy

2
u) + 2xuyu(xuuuyu − xuyuuu)

]

= 0. (3.5)

Further, from the equation (3.5) we have two cases:

Case 1. Suppose xuyu = 0.

Hence x(u) = c1, or y(u) = c2, c1, c2 ∈ R.

The corresponding surfaces are planes parallel to the xz-plane and yz-plane
with equations

r(u, v) =
(

c1, y(u), v
)

and r(u, v) =
(

x(u), c2, v
)

, respectively.

These planes represent minimal totally geodesics surfaces in Sol space (K = 0
and H = 0).

Case 2. Suppose xuyu 6= 0.

Since xuyu 6= 0, it follows (x4ue
4v − y4ue

−4v) 6= 0 (∀v 6= 0) and hence, it must
be

3(x2uy
2
uu − x2uuy

2
u) + 2xuyu(xuuuyu − xuyuuu) = 0, (3.6)

or equivalently

3(xuyuu − xuuyu)(xuyuu + xuuyu) + 2xuyu(xuuyu − xuyuu)
′ = 0. (3.7)

This equation is obviously satisfied for xuyuu − xuuyu = 0.
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From xuyuu − xuuyu = 0 we have yuu
yu

= xuu

xu

, which after integration gives
ln yu = ln(axu). After some manipulations and the second integration, we
obtain

y(u) = ax(u) + b, a, b ∈ R. (3.8)

The obtained surface is a plain parallel to the z-axis,

r(u, v) =
(

x(u), ax(u) + b, v
)

,

and represents a ruled minimal surface for which holdH = 0 andK = −4a2e4v

(a2+e4v)2
6=

const.
Further, we could say that the equation (3.6) is satisfied for

(x2uy
2
uu − x2uuy

2
u) = 0 and (xuuuyu − xuyuuu) = 0,

or equivalently

(xuyuu − xuuyu)(xuyuu + xuuyu) = 0, (3.9)

and
∂

∂u
(xuyuu − xuuyu) = 0. (3.10)

Remark 3.4. We point out that we do not have a classification of given
type of surfaces because we did not prove equivalence of the equation (3.6) with
equations (3.9) and (3.10).

From the equation (3.9) we again have two cases:

Case 2a.

We have already examined the case when the equation
xuyuu − xuuyu = 0 implies the condition (3.10). Remember that we have ob-
tained planes parallel to the z-axis.

Case 2b.

From xuyuu+xuuyu = 0, we have
yuu

yu
= −

xuu

xu
which after integration gives

xuyu = const. (3.11)

On the other hand, if we insert xuyuu = −xuuyu in
∂

∂u
(xuyuu − xuuyu) = 0, we have
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xuuyu = const. (3.12)

Combining the equations (3.11) and (3.12), it follows xuu = kxu, k ∈ R. Solving
this differential equation, we obtain x(u) = aeku. Hence y(u) = be−ku and
finally

r(u, v) =
(

aeku, be−ku, v
)

, a, b, k ∈ R. (3.13)

Figure 1 shows a ruled Weingarten surface (3.13) for a = b = k = 1.
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Figure 1: r(u, v) =
(

eu, e−u, v
)

Corollary 3.5. Planes parallel to the xz-plane or yz-plane are only linear

Weingarten surfaces of type r(u, v) =
(

x(u), y(u), v
)

in Sol space.

References
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