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Abstract: Numerous time-dependent phenomena govern our world. The time
series are part of one of the methods often used to understand mathematically.
Time series can be used to predict future events. In this article, we use the
concept of time series to analyze and model the Index of air quality in Dakar to
make his short-term forecast. To top this approach, the auto-regressive moving
average(2,1) selected by the optimal Akaike information criterion and Bayesian
information criterion was used to perform some simulations.
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1. Introduction

The statistical prediction is applied in many fields such as the atmospheric
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science, astronomy, economics, socio-political science, signal processing, etc.
Note that a time series or time series is a sequence formed of observations over
time. From the knowledge of the previous information, we can estimate the
behavior of a system in the future. If the estimate of the future state of the
system is accurate, we speak of a method of entirely deterministic prediction. In
fact, several factors make the exact calculation of the future state of the system
impossible. However, it is possible to generate a model that can be used to
calculate the probability of a range of future behaviors between two specified
limits. Such a model is called a stochastic model and stochastic processes.
An important class of stochastic models is used for the description detrending
called class stationary stochastic models. These models assume that time series
properties are invariant under the time translation. These models include the
autoregression models (AR), Moving Average models (MA) and autoregressive
moving average models (ARMA). The processes used for the description of non-
stationary time series (average, variance and others) are: ARIMA, SARIMA,
... ARIMA and SARIMA models are extensions of ARMA class in order to
include more realistic dynamics, in particular, respectively, non stationarity in
mean and seasonal behaviours.

For the construction of models, whatever their class, Box and Jenkins have
introduced a methodology for obtaining a linear model that best adjusts to
a time series. This methodology consists of three steps: identification of the
model, parameter estimation and validation of the model, cf Fiordaliso [1].

The article is structured as follows: Section 2 is devoted to the basic con-
cepts rest of ARMA. Ssection 3 presents the optimal selection criterion. Section
4 discusses the document, the Box and Jenkins approach to retain ARMA(2,1)
as our simulation model and we end with the conclusion and some perspectives.

2. Process ARMA(AR+MA)

The ARMA models (also known as Box Jenkins models), are the most common
type of time series model. They are mainly based on two principles highlighted
by Slutsky and Yule, the autoregressive and moving average principles. Their
application to the analysis and prediction of time series was widespread Box
and Jenkins in 1970. They showed that this process could be applied to many
areas and was easy to implement.

Given a time series Xt, the ARMA model is a tool to understand and
attempt to predict possibly future values in this series. The model consists of
two parts: an Autoregressive (AR) part and Moving-Average (MA) part. The
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model is generally denoted ARMA (p, q), where p is the order of the AR part
and q the order of the party with MA p > 0; q > 0.

An autoregressive model and moving-average orders (p, q) (abbreviated
ARMA (p, q)) is a discrete time process (Xt, t ∈ N) satisfying, cf. Jonathan
[5]:

Xt = εt +

p∑

i=1

ϕiXt−i +

q∑

i=1

θiεt−i, (2.1)

where the parameters ϕi and θi are constants, and the error terms εi are inde-
pendent of the process.

• An autoregressive model AR(p) may be identified as an ARMA(p, 0). In
this case the series becomes :

Xt = c+

p∑

i=1

ϕiXt−i + εt

where ϕ1, . . . , ϕp are the model parameters, c is a constant and εt white
noise, cf Peter and al [6]. In some literature [5], the constant is often
omitted, the process is then said to be centered. The first autoregressive
processes were introduced by George Udny Yule. In his paper he uses
the first autoregression model to model the time series of the number of
sunspots than the Schuster periodogram method, cf. Jonathan and al [5].

• A moving average model MA(q) is an ARMA(0, q). The series is then:

Xt = εt +

q∑

i=1

θiεt−i

where θ1, . . . , θq are the parameters of the model εt, εt−1, . . . are again the
error terms. Eugen Slutzky introduced this model for the first time in
1927 the moving average process in his article.

Note that the error terms of εi are generally assumed to be independent
and identically distributed (iid) as a normal distribution with zero mean : εt ∼
N(0, σ2) where σ2 denotes the variance.

Condensed manner, using the delay operator, the ARMA may be written
in condensed form as, for all t ∈ Z,

A(z)Xt = B(z)εt (2.2)
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where we define for any z ∈ C, polynomials A et B by, cf Jonathan et al [5]:
A(z) = 1− θ1z − . . .− θpz

p and B(z) = 1 + ϕ1z + . . .+ ϕqz
q .

In the case of AR(p), we have B(z) = 1 whereas symmetrically, in the case
of MA(q), we have A(z) = 1. Modeling is referred to as ”minimal” if θp 6= 0,
ϕq 6= 0 and if A and B have no common root. Without this, it is always possible
to find a formulation ARMA(p′, q′) equivalent with p′ 6 p and q′ 6 q generating
(Xt).

2.1. Autocorrelation and Correlograms Functions

The autocorrelation function of a process (Xt, t ∈ Z) with average E(Xt) = m,
denoted ρ(k) or ρk, is defined by ∀k ∈ Z:

ρ(k) = ρk =
γ(k)

γ(0)
, (2.3)

where ρ(k) ∈ [−1, 1] , and γ(k) = γk denotes the autocovariance function,

∀ ∈ Z, γ(k) = γk = E[(Xt −m)(Xt−k −m)].

The partial autocorrelation [8] of order k denotes the correlation between Xt

and Xt−k obtained when the influence of the variables Xt−i with i < k was
removed.

The graph of an autocovariance function (resp. Autocorrelation) is called
a variogram (resp. correlogram). Similarly, we define a partial correlogram as
the graph of the partial autocorrelation function (resp. correlogram).

An AR (p) has simple correlogram characterized by a geometric decrease
in its terms and partial correlogram characterized by its first p terms different
from 0.

AR(p) MA(q)
ρ(h) decreases exponentially to 0 with h 0 if |h| > q and non-zero if h = q
r(h) 0 if h > p and non-zero if h = p -
ρi(h) 0 if h > p and non-zero if h = p decreases exponentially to 0 with h

where ρi(h) is the inverse auto-correlation of order h and is defined by ρiX(h) =
γi
X
(h)

γi
X
(0)

and r(h).

Inverse autocorrelations [8] a MA(q) has the same properties as the auto-
correlations of an AR(q).
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Proposition 2.1. (cf. Jonathan et al. [5], Brockwell et al. [7] and Stocker
[9]) The centered stationary process (Xt) is generated by minimal modeling
AR(p) if and only if ρ(p) 6= 0 and ρ(h) = 0 for any h > p.

Proposition 2.2. (cf. Brockwell et al. [7]) The centered stationary
process (Xt) is generated by a minimal MA(q) model if and only if ρ(q) 6= 0
and ρ(h) = 0 for any |h| > q.

There are other places in the rest of the paper where you need to make
the same correction In practice, an ARMA process is often presumed under the
following conditions:

1. the process is stationary in the visual analysis:

• no trend,

• no seasonality,

• constant variance.

2. empirical correlation function is:

• to decay too slow,

• without periodic peaks.

Proposition 2.3. (cf. Brockwell et al. [7] ) Either the process (Xt)
generated by the stationary modeling minimal ARMA(p, q) A(L)Xt = B(L)εt
where (εt) is a white noise variance σ2 > 0. So, for λ ∈ T = [−π, π], its spectral

density is given by fX(λ) = σ2|B(e−iλ)|2

2π|A(e−iλ)|2
.

The stationary character of (Xt) is implicitly related to the fact that the
polynomial A does not vanish on the unit circle, thus guaranteeing the existence
of fX(λ) on over all the torus T.

2.2. Estimation of ARMA Model

Parameter estimation of ARMA(p, q) where p and q commands are assumed to
be known can be achieved by various methods in the time domain:

• Ordinary Least Squares (model without MA components, q = 0). In
this case, there are the Yule Walker equations. Replacing theoretical
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autocorrelations by their estimators, one can find the MCO estimators of
the model parameters by solving the Yule Walker equations.

• Maximum Likelihood approach (Box and Jenkins 1970) [8].

• Exact Maximum Likelihood (Newbold 1974, Harvey and Philips 1979,
Harvey 1981) [8].

We will present here briefly the approach of the estimate by maximum
likelihood. This maximization is performed by using nonlinear optimization
algorithms such as Newton-Raphson or the simplex method that we will not
explain it in this chapter. Here it suffices to show how the writing of the likeli-
hood maximization program to estimate the parameters of an ARMA (p, q).

2.3. Stationarity and Causality of the Process

Definition 2.4. We say that the process (Yt)t∈T (T = N or Z) is strictly
stationary (or strongly stationary) if the law of {Yt1 , . . . , Ytn} is the same as
the law of {Yt1+τ

, . . . , Ytn+τ
} for all (t1, . . . , tn) with ti ∈ T for i = 1, . . . , n and

for any τ ∈ T with ti+τ ∈ T .

Thus, a random process is strictly stationary if all these statistical char-
acteristics, that means all those moments are invariant for any change in the
origin of time. But the stationary in strict sense is too restrictive, and this
condition is relaxed by defining the stationary of second order.

Definition 2.5. A process (Yt)t∈T , is called second-order stationary (or
weakly stationary) if (Yt)t∈T , is 2nd order and if the first two moments are
time-invariant:

1. E(Yt) = m = constant ∀ t ∈ T

2. V ar(Yt) = σ2 = γ(0) < ∞

3. Cov(Yt, Yt−h) = E(YtYt−h)− E(Yt)E(Yt−h) = γ(h) ∀ t ∈ T ,∀ h ∈ T

In short, a process Yt is called second-order stationary if its mean, its vari-
ance and its covariance are independent of time and if variance is non infinite.
A such a process is without trend in mean and without trend in variance.
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Example 2.6. The best known example of stationary process is white
noise process (denoted BB or White Noise). A White Noise is a series of real
random variable εt, t ∈ T such that: E(εt) = 0 ∀ t ∈ T ,

and γ(h) = E(εtεt−h) =

{
σ2 if h = 0

0 h 6= 0 if not

Definition 2.7. An AR(p) process is called causal when there is a series
of numbers αk as k ∈ Z, ∑

k∈Z

| αk |< ∞

and

Xt =
∞∑

k=0

αkεtk.

By this definition, we can see any moving average process is causal.

3. Selection Criterion

The autocorrelation functions and partial autocorrelation allow us to determine
the order of an autoregressive or moving average model. Let us look for the
model from the statistical criterion.

3.1. Candidate Models Search

For simplicity assume that research is done among not what is a sidestep ARMA
process, it allows us to put aside seasonal patterns. What is a fine ARMA pro-
cess is that of the unknown couple (p∗, q∗) such that (p∗, q∗) < (pmax, qmax). In
other words, it is assumed that real orders are respectively less than two orders
pmax and qmax that one focuses on. In practice, a problem arises when the
orders pmax and qmax are chosen too small to find the best model. Generally
we examine correlograms representing the autocorrelations and partial auto-
correlations estimated in order to set these maximum limits. Setting maximum
limits pmax and qmax gives rise to a family of (pmax +1)× (qmax +1) candidate
models, as shown in Table 1.

The search for an optimal model in the sense of a certain criterion will
therefore be in this family. If the procedure results in the choice of a model
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q \ p 0 1 . . . pmax

0 AR(1) . . . AR(pmax)

1 MA(1) ARMA(1, 1) . . . ARMA(pmax, 1)
...

...
...

...
...

qmax MA(qmax) ARMA(qmax, 1) . . . ARMA(pmax, qmax)

Table 1: Candidate models search

belonging to the last column or the last row then it is prudent to redefine the
new values for pmax or qmax higher than those initially chosen.

Let li the log-likelihood of the ith pattern, T the size of the working sample
and ki the number of parameters, the selection criterion is written in general
as follows:

ci(T, ki) =
−2li
T

+
kig(T )

T
, (3.1)

where g(T ) is a positive function of many parameters to estimate and therefore
denotes the magnitude of the penalty.

This minimization problem reflects the tradeoff between increasing likeli-
hood and increasing complexity of the model.

3.2. AIC and BIC Criterion for Autoregressive Process

The Akaike Information Criterion (AIC) generates a function that estimates
the quality of the fit. Recall that if the number of parameters increases, the
variance σ̂2

ε decreases. In order not to end up with an over-parameterization of
the model, we add a factor that will make a compromise between the number
of parameters and minimum variance. In the following, we will take a model
A(p) and considers σ̂2

ε using maximum likelihood for many positive values of p
. This method could also be used for a model MA(q). The AIC consists of
calculating

AIC(p) = log(σ̂2
ε ) + 2

p

T
.

Using this criterion, we remark that if p is the obtained parameter of the mini-
mization and p is the parameter of the real model, it has the following property:
P (p̂ > p) −→ 1 when T −→ +∞, [8]. The criterion therefore tends to select a
larger number of parameters than the real model, which leads us to a small error
term σ̂2

ε . If one wishes to have a better choice of order p, there is the Bayesian
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information criterion (BIC) that uses a higher penalty. The BIC selects the pa-
rameter p which minimizes the following quantity BIC(p) = log(σ̂2

ε )+
p
T log(T ).

3.3. AIC and BIC for ARMA Model

In estimation, it is a little more expensive to deduct the p and q order for a
ARMA(p,q) process because to optimize the model it is necessary to minimize
a function of two variables. The AIC and BIC criteria for a ARMA(p,q) process
are written as:

AIC(p, q) = log(σ̂2
ε ) + 2

(p + q)

T
, BIC(p, q) = log(σ̂2

ε ) +
(p+ q)

T
log(T ).

To minimize these functions, one method is to make two iterative loops on p and
q to test all pairs (p, q) p until some limits < P and q < Q. Inside these loops,
first compute the estimators Φ̂, θ̂ and using for example the least squares or
maximum likelihood, σ̂2

ε we calculate the AIC and BIC criteria for these various
levels and there is the minimum of these quantities. It was therefore the values
p̂ and q̂ that minimize the AIC or BIC. Then we calculate efficient estimators
of the model parameters ARMA (p̂, q̂) using the maximum likelihood method.
If several models are competing, we choose the pair (p, q) which minimizes

statistics AIC(p, q) = log(σ̂2
ε) + 2 (p+q)

T or BIC(p, q) = log(σ̂2
ε) +

(p+q)
T log(T ),

cf. Peter et al. [6].

4. Estimation, Validation Testing and Forecasting ARMA

The modeling procedure of Box and Jenkins comprises the following steps, [8]:

1. Stationarity and seasonal adjustment

2. Identification

3. Estimate

4. Validation and Test

5. Forecast

4.1. Stationarity Tests of the iqa Series

To verify the stationarity there are several methods: visual examination in the
series, the calculations of the mean and variance of the subsets of the series
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and equality tests, visual analysis of the decrease in the function of autocorre-
lation and unit root tests (Dickey-Fuller, Phillips-Perron Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test ...). We use the unit root test in the current research.

Statistic p-value
Phillips-Perron Unit Root Test -11.0836 0.01
Augmented Dickey-Fuller Test -4.8911 0.01

KPSS 0.5337 0.03408

We observe that for the Dickey-Fuller Augmented, the Phillips-Perron and
just like the KPSS test, the p-value less than 0.05 so the variable log(iqa) is
stationary.

4.2. Model Identification of iqa: ARMA(2,1)

In some literature the analysis of univariate time series as that of our research
on the Index of air quality in the city of Dakar in the Box and Jenkins boils
down to three steps: identification, estimation, validation. The initial phase of
identification is often difficult in practice. It is not clear at all to often find the
right model to suit the timeline series considered. It is in this phase that takes
place the great work operations research series good adjustment model.

Figure 1: ACF and PACF for series log(iqa).

By observing Figure 1, there is seen that the autocorrelation and partial
autocorrelation decay slowly and take time before they significantly nil.

For this reason we rule out possible to retain an AR or MAmodel. Estimates
the AIC and BIC criteria for an ARMA(p, q) p = 1, . . . , 5 and q = 1, . . . , 5.
Looking couple (p, q) optimal (minimum) for our model. Tables 2 and 3 give
us those values.

Operational research by the AIC seems to direct us towards the opera-
tion (the model) ARMA(4,4) followed by ARMA(5,4) and ARMA (2,1). But
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p \ q 1 2 3 4 5
1 805.07 790.47 779.93 774.89 770.37
2 762.64

third candidate optimum(2,1)
764.57 766.4 768.4 770.22

3 764.56 766.64 768.5 769.84 772.33
4 766.39 768.2 764.29 762.25

first candidate optimum(4,4)
764.04

5 768.38 770.36 772.42 762.52
second candidate optimum(4,5)

764.45

Table 2: Criterion AIC series iqa for (p, q) ∈ [1, ..., 5]2

the third optimal choice (minimum) which would be the lowest AIC operation
ARMA(2,1). We choose to estimate three parameters, eight or even nine to
estimate. Selecting a model of nine or eight parameters maximizes the likeli-
hood of the model. This model could give us a better fit in our sample, but
could be completely wrong to make predictions. So we choose to estimate three
parameters instead of eight or nine. To check if this choice fits well to our data,
we also have the opportunity to compare the two variance estimators residues.

p \ q 1 2 3 4 5

1 825.0663 815.4707 809.9266 809.8786 810.3665

2 787.6319

optimum(2,1)
800.9503 826.8575 810.1573 822.2392

3 794.5862 801.3645 808.2271 814.8847 822.1193

4 801.3752 808.201 811.2327 827.0412 819.5427

5 808.3771 814.8691 815.7096 819.4184 825.8988

Table 3: BIC Criterion for series log(iqa) with (p, q) ∈ [1, ..., 5]2

The BIC of the table 3 shows that the pair (2,1) gives us the minimum. We
retain finally fit for our operation ARMA(2,1).

4.3. Estimation and Simulation of IQA

In this section we estimate and simulation of log(IQA) by an ARMA(2,1) under
the R software. With Farma library in R, the simulation gives us:
Title: ARIMA Modelling
Call: armaFit(formula = arma(2, 1), data = log(iqa))
Moments: Skewness=0.2539 Kurtosis= 0.9756.
Skewness measures the asymmetry of the distribution process and kurtosis mea-
sures the excess kurtosis: it is equal to 3− K̂U . The estimate of kurtosis and
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skewness are respectively given by:

K̂U =
1
T

∑T
t=1(ût − ū)4

( 1
T

∑T
t=1(ût − ū)2)2

and ŜK =
1
T

∑T
t=1(ût − ū)3

( 1
T

∑T
t=1(ût − ū)2)3/2

.

The R software provides us the coefficients of the estimation in the following
table:

Estimate Std. Error t value Pr(>|t|)

ar1 1.59923 0.03428 46.65 <2e-16 ***

ar2 -0.60384 0.03298 -18.31 <2e-16 ***

ma1 -0.93293 0.01862 -50.11 <2e-16 ***

intercept 4.04585 0.14121 28.65 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

sigma^2 estimated as: 0.9162

log likelihood: -376.32

AIC Criterion: 762.64

We note the model estimation seems good, because the value of our esti-
mator is very close to the true value.

QQ-PLOT test of normality is a graphical method: The point cloud is
formed by (quantile N(0.1), reduced empirical quantile of ût), assuming H0 the
cloud is on the straight line y = x). We confirm that there is a normality.
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4.3.1. Adequacies Tests

With R software, Box.test gives us the following result:
Box-Pierce test
Data: predict$residuals
X-squared = 6383.219, df = 10, p-value = 0,6742
The p-value is large (0.6742 > 0.05) so the residuals are not correlated.

And the Kolmogorov-Smirnov lillie test with the function () provides us:
Lilliefors (Kolmogorov-Smirnov) normality test
data: predict$residuals
D = 0.1125, p-value < 0.3221
We can therefore say the residues data follow a Gaussian distribution.

4.4. Forecast of iqa by ARMA(2,1)

In this section we predict log(IQA) for a 31-day period in January 2013, we
compare these results with real measurements taken at stations during the
same period.

1erJan2013 2jan2013 3jan2013 4jan2013 5jan2013 6jan2013 7jan2013 8jan2013

logiqa Prdit 4.7178 4.5378 4.4269 4.3582 4.3152 4.2880 4.2705 4.2589

Residuals 0.3409 0.4096 0.4388 0.4535 0.4620 0.4676 0.4716 0.4748

9jan2013 10jan2013 11jan2013 12jan2013 13jan2013 14jan2013 15jan2013 16jan2013

4.2509 4.2451 4.2407 4.2372 4.2341 4.2314 4.2290 4.2266

0.4776 0.4800 0.4823 0.4844 0.4864 0.4883 0.4901 0.4919

17jan2013 18jan2013 19jan2013 20jan2013 21jan2013 22jan2013 23jan2013 24jan2013

4.2244 4.2222 4.2201 4.2180 4.2159 4.2139 4.2119 4.2099

0.4936 0.4953 0.4970 0.4986 0.5001 0.5016 0.5031 0.5045

25jan2013 26jan2013 27jan2013 28jan2013 29jan2013 30jan2013 31jan2013

4.2080 4.2061 4.2042 4.2023 4.2004 4.1986 4.1968

0.5059 0.5073 0.5086 0.5099 0.5111 0.5124 0.5135

4.5. Measuring Quality Prediction

In our initial sample, (X1, . . . ,XT ) only consider, T1 = [(1 − ε)T ] observations
with ε > 0. The L = T − [(1 − ε)T ] either are the L = T − T1 will be predict
by the model. We can then consider several criteria:
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Figure 2: Forecasts and confidence interval to 90% (red) and
95%(yellow).

• Mean Absolute Percentage Error

MAPE =
1

L

L∑

i=1

∣∣∣XT1+i−X̂T1+i/T1

XT+i

∣∣∣

• Mean Square Error

MSE =

(
L∑

i=1

(XT1+i − X̂T1+i/T1)
2

L

)1/2

Here L is the number of fitted points. We get under the R software, MSE =
4.687186 and MAPE = 4.624215. In conclusion we can say ARMA(2,1) is a good
model for our fit and taking into account the information criterion corrected
above, the pair (2,1) is a good choice of optimal pair (p, q) that minimizes the
criterion. Indeed MSE gives greater weight to larger deviations (which could
result from outliers) and MAPE gives less overall weight to a large deviation if
the time series value is large. MSE give us the averages of the squared deviations
and MAPE averages the absolute percent errors. Although the concept of
MAPE sounds very simple and convincing, it has major drawbacks in practical
application [10].

It cannot be used if there are zero values (which sometimes happens for ex-
ample in demand data) because there would be a division by zero. For forecasts
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which are too low the percentage error cannot exceed 100%, but for forecasts
which are too high there is no upper limit to the percentage error. When MAPE
is used to compare the accuracy of prediction methods it is biased in that it will
systematically select a method whose forecasts are too low. This little-known
but serious issue can be overcome by using an accuracy measure based on the
ratio of the predicted to actual value (called the Accuracy Ratio), this approach
leads to superior statistical properties and leads to predictions which can be
interpreted in terms of the geometric mean [10]. Mean square error (MSE) can
also be utilized in the same fashion. Squaring the forecast errors eliminates
the possibility of offsetting negative numbers, since none of the results can be
negative.

5. Conclusion and Perspectives

This research leads us to choose the ARMA(2,1) to model and predict the
index of the air quality in Dakar. The model can be used to make short-term
predictions of IQA in Dakar by the air quality management center (CGQA). It
provides a tool that the quality monitoring center air Dakar could use to benefit
public health. An interesting avenue of research work would be to couple an
urban sprawl model with a simulation model of emissions of pollutants from
road transport. Indeed, there is evidence that as the city grows in extent, the
more origin-destination trips made daily by motorists is growing, resulting in
increased traffic. Such a model could be used to assess the impact of new areas
of development plans and cities around Dakar on transport and the impact of
that traffic on people and plants.
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