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Abstract: In this paper we present a family of identities for recursive se-
quences arising from a second order recurrence relation, that gives instances
of Zeckendorf representation. We prove these results using a special case of
an universal property of the recursive sequences. In particular cases we also
establish a direct bijection. Besides, we prove further equalities that provide
a representation of the sum of (r + 1)-st and (r − 1)-st Fibonacci number as
the sum of powers of the golden ratio. Similarly, we show a class of natural
numbers represented as the sum of powers of the silver ratio.
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1. Introduction

According to the Zeckendorf Theorem, every natural number n is uniquely
represented as a sum of nonconsecutive Fibonacci numbers Fk,

n = Fk1
+ Fk2

+ · · · + Fkm , ki+1 ≥ ki + 2, ki ≥ 2.

Such a sum is called the Zeckendorf representation of n [9, 10]. The Fibonacci
sequence can be naturally extended to negative indexes using the same defining
recurrence relation, and terms in this sequence are sometimes called negafi-
bonacci numbers. D. Knuth has shown that there is a unique representation of
an integer N in negafibonacci numbers, see [7]. Representations
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79 = F10 + F8 + F4 = 55 + 21 + 3

and
−37 = F−5 + F−7 + F−10 = 5 + 13 + (−55)

are examples of the former and the latter. The Fibonacci identities like

4Fn = Fn+2 + Fn + Fn−2, n ≥ 2 (1)

5Fn = Fn+3 + Fn−1 + Fn−4, n ≥ 4 (2)

6Fn = Fn+3 + Fn+1 + Fn−4, n ≥ 4 (3)

11Fn = Fn+4 + Fn+2 + Fn + Fn−2 + Fn−4, n ≥ 4 (4)

give examples of a Zeckendorf representation. According to (2), we have

65 = F10 + F6 + F3 = 55 + 8 + 2,

105 = F11 + F7 + F4 = 89 + 13 + 3, . . .

Note that the indexes of the Fibonacci numbers within these identities are the
same as the exponents in the expansion of natural numbers in powers of the
golden ratio φ. In particular, 5 = φ3 + φ−1 + φ−4, 6 = φ3 + φ1 + φ−4, . . . .

This paper aims at finding identities encountering Zeckendorf representa-
tion. We also extend these ideas to more general recursive sequences.

2. Preliminaries

Given c1, c2, . . . , ck ∈ N0, a k-th order linear recurrence is defined by the recur-
rence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k, n ≥ k (5)

and the initial values a0, a1, . . . , ak−1. By (an)n≥0 we denote the sequence of
numbers a0, a1, . . . defined by this recurrence. The following lemma gives a
combinatorial interpretation of the terms of (an)n≥0 [2].

Lemma 1. Let a0 = 1. Then an is equal to the number of colored tilings
of an n-board with tiles of length at most k, where a tile of length i can be

colored in ci colors, 1 ≤ i ≤ k.

Proof. We prove that the number of an n-board tilings obey the same recurrence
relation as the sequence (an)n≥0.
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By a′n we denote the number of tilings of an n-board. The set of all such
n-board tilings can be divided into k subsets, where tilings in the i-th subset
begin with a tile of length i, 1 ≤ i ≤ k. The number of tilings in the i-th subset
is equal to cia

′
n−i

which means that the whole set of n-board tilings counts a′n
tilings,

a′n = c1a
′
n−1 + c2a

′
n−2 + · · ·+ cka

′
n−k.

From the fact that a0 = a′0 = 1 it follows a′n = an which completes the proof.

When k = 2 relation (5) reduces to a second order recurrence relation,

un+2 = sun+1 + tun, n ≥ 0. (6)

This class of recurrences is of particular interest. According to previous argu-
ments, when u0 = 1 then un represents the number of n-board tilings with tiles
of length 1 and 2, where these tiles are colored in s and t colors, respectively.
Tiles of length 1 are called squares while tiles of length 2 are called dominoes.

We use a notion of a breakable cell of a board tiling when proving the
following Lemma 2. It is said that an n-board tiling is breakable at cell m if
it contains a square at cell m or a domino at cells m− 1 and m. Otherwise it
contains a domino covering cells m and m+ 1 and such a tiling is unbreakable
at cell m.

Lemma 2. For the recursive sequence (un)n≥0 and m ≥ 0 we have

um+n = umun + tum−1un−1. (7)

Proof. Let consider condition on breakability at cell m of an (m + n)-board.
We let A denote the set of (m + n)-board tilings breakable at cell m. On the
other hand, let the set B contains those tilings that are unbreakable at cell
m. Clearly, the set A counts umun elements while the set B counts tum−1un−1

tilings. The fact that

um+n = |A|+ |B|

completes the statement of the lemma.

In what follows in this paper Lemma 2 has proved to be very useful.

Two notable representatives of the sequences defined by a second order
recurrence (6) are the Fibonacci sequence and the Pell sequence. We let (Fn)n≥0
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denote the Fibonacci sequence and (Pn)n≥0 denote the Pell sequence. The
Fibonacci sequence arises from (6) when s = t = 1 and when initial values are
0 and 1. In other words the sequence of Fibonacci numbers is defined by the
recurrence

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1. (8)

Close companions of the Fibonacci sequence are Lucas numbers (Ln)n≥0, that
are defined by the same recurrence relation but with initial values L0 = 2 and
L1 = 1. It is worth mentioning that these sequences can also be defined as the
only solutions (x, y), x = Ln, y = Fn of the Diophantine equation

x2 − 5y2 = 4(−1)n, n ∈ N0.

There are numerous properties and identities known for the Fibonacci se-
quence. One can find more in a classic reference on this subject [8]. Recall that
the closed form for Fibonacci sequence, called Binet formula, is

Fn =
φn − φ̄n

√
5

, (9)

where φ = 1+
√
5

2 and φ̄ = 1−
√
5

2 are solutions of the equation x2 − x − 1 = 0.
The golden ratio φ and its conjugate φ̄ are also solutions of the equation xn =
xn−1 + xn−2 meaning that both values φ and φ̄ satisfy the Fibonacci recursion
(8),

φn = φn−1 + φn−2

φ̄n = φ̄n−1 + φ̄n−2.

There is also recurrence relation encountering the n-th power of golden ratio
and n-th Fibonacci number,

φn = φFn + Fn−1.

The Pell sequence is defined by the recurrence relation

Pn+2 = Pn+1 + Pn, P0 = 0, P1 = 1. (10)

The sequence arising from the same recurrence but with initial values 2 and 1 is
called Pell-Lucas sequence. We let (Qn)n≥0 denote this sequence. Equivalently,
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the Pell and Pell-Lucas sequence can be defined as the solutions (x, y), x =
Qn/2, y = Pn of the Diophantine equations

x2 − dy2 = 1

x2 − dy2 = −1

when d = 2. We let ϕ denote the silver ratio, ϕ = 1+
√
2, and we let ϕ̄ = 1−

√
2.

Then the closed formula for the n-th term in Pell sequence Pn can be written
as

Pn =
ϕn − ϕ̄n

ϕ− ϕ̄
. (11)

According to the previous arguments, both the Fibonacci and the Pell se-
quences can be represented as the number of board tilings. However, terms of
these sequences start by 0 which means that they are shifted by 1 in comparison
to the sequence of related tilings. More precisely, denoting the number of an
n-board tilings with uncolored squares and dominoes by fn, we have

fn = Fn+1. (12)

Similarly, we let pn denote the number of tilings of an n-board with squares
in two colors and uncolored dominoes. The number of such n-board tilings is
equal to the (n+ 1)-st Pell number,

pn = Pn+1. (13)

It is worth mentioning that there are numerous results known about the Pell
sequence, including basic identities presented in [1] and some number properties
shown in [3] and [4]. On the Zeckendorf representation by Pell numbers, one
can find more in [5] and [6].

3. The Main Result

We define the sequence (Un)n≥0 such that

un = Un+1. (14)

Theorem 1. For the sequence (Un)n≥0, r ∈ N, r ≡ 0 (mod 2) and t = 1

(Ur+1 + Ur−1)Un = Un+r + Un−r. (15)
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Proof. The definition of the sequence (Un)n≥0 can be extended to negative
indexes. It is obvious that the term having index −n is uniquely determined
by that having index n,

U−n = (−1)n+1Un

tn
.

Now we apply Lemma 2 to both terms in the sum Un+r + Un−r,

Un+r + Un−r = tUn−1Ur + UnUr+1 + tUn−1U−r + UnU−r+1

= tUn−1Pr + UnUr+1 + (−1)r+1Un−1Ur

tn−1
+ (−1)r

UnUr−1

tn

= UnUr+1 + (−1)r
UnUr−1

tn
+ Un−1Ur

(

t+
(−1)r+1

tn−1

)

.

When t = 1 and r is even the expression above reduces to the first two terms,
UnUr+1 + UnUr−1, which completes the proof.

Since both Fibonacci and Pell sequences satisfy constraint on the coefficient
t in Theorem 1 there are two immediate corollaries of Theorem 1.

Corollary 1. For the sequence (Fn)n≥0 of Fibonacci numbers and an even

r ≥ 2 we have

(Fr+1 + Fr−1)Fn = Fn+r + Fn−r. (16)

The first particular representative of the family of identities (16) is

3Fn = Fn+2 + Fn−2, (17)

while further identities are

7Fn = Fn+4 + Fn−4 (18)

18Fn = Fn+6 + Fn−6. (19)

Corollary 2. For the sequence (Pn)n≥0 of Pell numbers and an even r ≥ 2
we have

(Pr+1 + Pr−1)Pn = Pn+r + Pn−r. (20)
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Here we have

6Pn = Pn+2 + Pn−2 (21)

34Pn = Pn+4 + Pn−4 (22)

198Pn = Pn+6 + Pn−6. (23)

as the first three particular identities of the family (20).

Thus, the first representative of (15) arises when r = 2,

(U3 + U1)Un = Un+2 + Un−2. (24)

Note that it also can be proved directly using Lemma 2,

Un+2 + Un−2 = Un−1U2 + UnU3 + Un−1U−2 + UnU−1

= Un(U3 + U1).

Moreover, there is a combinatorial proof of this identity and we are going to
present it on the instance of Pell sequence. According to the previous definition
there are pn ways to tile an n-board with squares in two colors and uncolored
dominoes. In order to form (n+ 2)-board tilings ending with

i) a domino,

ii) two black squares,

iii) black square and white square, respectively,

iv) white square and black square, respectively,

v) two white squares,

we need five sets of an n-board tilings. These (n+2)-board tilings are obtained
by gluing tiles declared above to the end of n-boards in every of these five sets.
To complete the set of (n+2)-board tilings we need those tilings ending with a
square preceded by a domino. This is achieved when we get a set of an n-board
tilings and insert a domino before a square when appropriate and cut the last
domino otherwise. This operation completes the set of (n+2)-board tilings and
in the same time leave the set of (n − 2)-board tilings. Clearly, the described
procedure of gluing and cut tiles holds in both directions which proves that

6pn = pn+2 + pn−2.
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Note that the parameter r within identities (17) - (19) is the same as expo-
nents in the expansion of resulting sum Fr+1 + Fr−1 in powers of φ,

3 = φ2 + φ−2, . . . .

Similarly, we have

6 = ϕ2 + ϕ−2,

34 = ϕ4 + ϕ−4, . . .

where exponents corresponds with the value of parameter r within identities
(21) - (23). These facts are generalized in the following Theorem 2 and Theorem
3.

Theorem 2. For the Fibonacci sequence (Fn)n≥0 and r ∈ Z, r ≡ 0
(mod 2)

Fr+1 + Fr−1 = φr + φ−r. (25)

Proof. Applying the closed formula for Fibonacci sequence to (16) we get

[

φr+1 − φ̄r+1

√
5

+
φr−1 − φ̄r−1

√
5

](

φn − φ̄n

√
5

)

=
φn+r − φ̄n+r

√
5

+
φn−r − φ̄n−r

√
5

[

φr+1 − φ̄r+1

√
5

+
φr−1 − φ̄r−1

√
5

]

=
φn+r − φ̄n+r + φn−r − φ̄n−r

φn − φ̄n
.

Now we have to show that equality

φn+r − φ̄n+r + φn−r − φ̄n−r

φn − φ̄n
= φr + φ−r

holds true. The l.h.s. and r.h.s. of this relation reduce immediately to

−φ̄n+r − φ̄n−r = −φrφ̄n − φ̄nφ−r

φ̄r + φ̄−r = φr + φ−r.

Finally, we use a property

− 1

φ
= φ̄
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of the golden ratio and its conjugate. For even r we have

1

φr
= φ̄r ⇒ φ−r = φ̄r

which means that φ̄r + φ̄−r = φr + φ−r and completes the statement of the
theorem.

Theorem 3. For the Pell sequence (Pn)n≥0 and r ∈ Z, r ≡ 0 (mod 2)

Pr+1 + Pr−1 = ϕr + ϕ−r. (26)

Proof. When applying (11) to the relation (20) we obtain

[

ϕr+1 − ϕ̄r+1

ϕ− ϕ̄
+

ϕr−1 − ϕ̄r−1

ϕ− ϕ̄

]

=
ϕn+r − ϕ̄n−r + ϕn−r − ϕ̄n−r

ϕn − ϕ̄n

which means that in order to prove the theorem we have to show that equality

ϕn+r − ϕ̄n+r + ϕn−r − ϕ̄n−r

ϕn − ϕ̄n
= ϕr + ϕ−r

holds true. Comparison of the l.h.s. and the r.h.s. of this relation gives

−ϕ̄n+r − ϕ̄n−r = −ϕrϕ̄n − ϕ̄nϕ−r

−ϕ̄n(ϕ̄r + ϕ̄−r) = −ϕ̄n(ϕr + ϕ−r)

ϕ−r + ϕr = ϕr + ϕ−r.

Finally, we employ a property that relates the silver ratio and its conjugate

− 1

1 +
√
2
= 1−

√
2,

to show that above relation holds true. This completes the statement of the
theorem.
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4. Some Further Identities

Using Theorem 1 and Lemma 2 various other identities can be proved. Some
of them for the Fibonacci sequence are

8Fn = Fn+4 + Fn + Fn−4, n ≥ 4 (27)

9Fn = Fn+4 + Fn+1 + Fn−2 + Fn−4, n ≥ 4 (28)

57Fn = Fn+8 + Fn+4 + Fn+2 + Fn−2 + Fn−4 + Fn−8, n ≥ 8 (29)

and some of them for the Pell numbers are

3Pn = Pn+1 + Pn−1 + Pn−2, n ≥ 2 (30)

4Pn = Pn+1 + Pn−1 + Pn−2, n ≥ 2 (31)

20Pn = Pn+3 + Pn+2 + Pn−3 + Pn−4, n ≥ 4 (32)

40Pn = Pn+4 + Pn+2 + Pn−2 + Pn−4, n ≥ 4. (33)

For the purpose to prove identity (32) we have

Pn+3 + Pn+2 + Pn−3 + Pn−4

= Pn−1P3 + PnP4 + Pn−1P2 + PnP3 + Pn−1P−3

+PnP−2 + Pn−1P−4 + PnP−3

= 5Pn−1 + 12Pn + 2Pn−1 + 5Pn + 5Pn−1 − 2Pn − 12Pn−1 + 5Pn

= 20Pn.

Such identities can also be proved combinatorially, combining arguments pre-
sented in proofs of Lemma 1 and identity (21).
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