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Abstract: In this paper we consider the modified Hadamard product or
convolution of analytic functions with negative coefficients, combined with an
Salagean integral operator. We discuss when it is a given class. Following
idea of U. Bednarz and J. Sokdl we shall determine the order of convolution
consistence for certain analytic functions with negative coefficients.
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1. Introduction and Preliminaries

Let H(U) be the set of all functions which are regular in the unit disk U = {z :
2] <1},
A={feHU): f(0)=f(0)-1=0},

and S ={f € A: fis univalent in U}.
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In [12] the subfamily N of S consisting the functions of f of the form
f(z):z—Zakzk, ap >0, k=23,..., zel (1)
k=2

has been considered.
Let D™ be the Sdlagean differential operator (see [5], [9]) D™ : A — A,
n € N, defined as

Df(2) = f(z), D'f(2) =Df(2) ==2f'(z), D"f(z) =D(D"""f(2))

for all z € U.

Definition 1.1. ([5], [9]) Let @ € [0,1) and n € N. The class S,,(«) of the
n-starlike functions of order « is defined by

D"Jrlf(z)

Sn(a):{fEA:ReW

> a, zEU}.

The class S,,(0) is denoted by S,. We note that Sy = ST is the class
of starlike functions and & = CV is the class of convex functions. Further
So(a) = ST («) is the class of starlike functions of order o and S () = CV(«v)
is the class of convex functions of order .

Let Tp(a) = Sp(a) N be the class of n-starlike functions of order o with
negative coefficients. In particular, 7p(«) and 77 («) are the classes of the star-
like functions of order @ with negative coefficients and the class of convex func-
tions of order o with negative coefficient, respectively, introduced by H. Silver-
man [12]. We denote 7,(0) by 7,. (see also the works [4], [7], [8] for further
developments involving each of the classes S, («)).

Definition 1.2. ([6]) Let e € [0,1), 8 € (0,1] and let n € N; we define
the class T, (a, B) of n-starlike functions of order o and type [ with negative
coefficients by

Tnlo, B) ={f € A:|Jn(f, 5 2)| < B, z €U},

where
B

Jn(faa;z) = Dnr1f(z) 1_9 , zel.

Dijiz) T
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To(a, ) is the class of starlike functions of order o and type 3, and 71 («, /)
is the class of convex functions of order a and type [, further 7, (c, 1) = T, ()
is the class of n-starlike functions of order o with negative coefficients.

Theorem 1.3. ([6]) Let a € [0,1), 5 € (0,1] and n € N. The function f
of the form (1) is in T,(«, B) if and only if

ik"(k —1+B(k+1-2a))ap <26(1 —a).
k=2

This result is sharp.
From Definition 1.2 and Theorem 1.3, we have the following theorem:

Theorem 1.4. For f(z) of the form (1), we have f € T, (a,1) = Tp(a) if
and only if

Z E'(k — a)ap <1—«, where a€0,1). (2)
k=2
This result is sharp.

The convolution or the Hadamard product of two functions f and ¢ in A
of the form

f(2) —z+2ak2 and ¢g(z —Z-FZbkz

k=2
is the function (f * g) defined by

(f*g —z—l—Zakbkz

Let use consider the Salagean integral operator (see [2], [3], [5]) I*: A —
A, s € R, such that

If(z (z—l—Zakz)—z—l—zakk

Definition 1.5. ([2]) Let X, ) and Z be subset of A. We say that the
triple (X, ), Z) is S-closed under the convolution if there exists a number
S(X, Y, Z) such that

S(X, Y, Z)y=min{s e R: I°(fxg) € Z, Vf e X, Vge V}.
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The number S(X, ), Z) is called the order of convolution consistence of the
triple (X, Y, Z).

In [2] U. Bednarz and J. Sokdl obtained the order of convolution consistence
concerning certain class of univalent functions (starlike, convex,...). Moreover,
in [1] the authors studied the properties of the integral convolution of the neigh-
borhoods of these classes.

The modified Hadamard product or ®-convolution of two functions f and
g in NV of the form

f(z)=2- Zakzk and g(z) =z — Z bz* (3)
k=2

k=2
is the function (f ® g) defined by

(f®g)(z) =2— Zakbkzk. (see[11]) (4)
k=2

Definition 1.6. ([10]) The order of ®-convolution consistence of the triple
(X, YV, Z), where X, Y and Z are subsets of N, is denoted by Sg, where

Se(X, Y, Z)=min{scR: I’(f®g) € Z, Vfe X, Vge YV}

G. Salagean and A. Taut in [10] obtained the order of convolution consis-
tence concerning the classes of starlike functions with negative coefficients and
convex functions with negative coefficients. They proved the following theorem:

Theorem 1.7. We have the following ®-convolution consistence

Ss(To, 7o, To) = —1,
Se(To, To, T1) = 0,
S (T, 70, To) = =2,
Se(Th,Ti,To) = =3,
Se(Ti,To, i = —1,
) Se(Th, T, Th) = —2.
We note that To = ST (N and Ty = CV(N.

a

2]
NN NGO N N

@

R e N N T TR
=N

In this paper we obtain the order of ®-convolution concerning the class

To().
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2. Main Result

Theorem 2.1. Let 0 < a < 1, if f € Tpyp(a) and g € Tyyq(a), then
Is(f®g) € 7;14,7«((1), where p,q T, € N and

2 —«

()

sZr—p—q—n—log21 .
-«

This result is sharp, and we have

2 —«

Se(Tntp(@), Tatq(@); Tngr(@)) =7 —n —p — g —log (6)

1—a’

Proof. Since f € Tpip(a) and g € Tpiq(a). If f and g have the form (3),
then from (2) in Theorem 1.4, we have

> k—a = k—a
ntp T < n+q <1
DT —ap <1, Y Kb <1,
k=2 k=2
and by the Cauchy-Schwarz inequality, we obtain

> +a k —
> gt apbr < 1. (7)
P 1 -«

We need to find conditions on s,r,p, q,n such that

oo

k—
S kst S < 1
pt 1l -«
Thus, it is sufficient to show that
k — k —
prer s T zakbk < g+ — z\/akbk, ke{2,3,..).

that is,
Vapby <k ke {23,

From (7), we know that

1 _
Varby < kT - Z ke {23, ..}

Consequently, it is sufficiently to have

pta 1 — v ptq

Enm < kST ke{23,..}.

k—«
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or, equivalently,

1_a7krsnpq 1 ked{2,3 8
<
( ) :IC — ) {77 } ()

Letting ¢(z) = &— """ 2 > 2 we obtain

r—o

o(z) = (r—s—n—p-— q)xr_”_s_p_q;l(x —a) —g"TnTsTP

(z - a)

_ szzq((r—s—n—p—q)(x;a)—l).

(z —a)

Hence, ¢'(x) < 0 for all x < 2, or, ¢(z) is a decreasing function on z. Conse-
quently, from (8) it is sufficiently to have

1—«
2 —«

or=s=n—p=q < 1, 9)

But the inequality (9) holds for s,r,p, q,n satisfying (5) and this show that

—

2
Se(Tasp(@), Tosg(@), Tusr(@)) <7 = p— g —n —logy - (10)

Finally, by using the extremal functions

1—a
2n14(2 — o)

1—a

fQ(Z) = Z—m 2'2 € Tn+q(06),

2% € Tyip(a) and go(z) = 2

From (4), we can see that

(1 a)?

s — .
I(f®g) ==z 92n+ata+s(2 — o)

222 € Thir(a).

But from (2) in Theorem 1.4 we deduce

1—«

]S(f®g):Z_W

3= a) 22 € Thyrla), (11)

and (11) show that the inequality (5) is sharp and we have,

2 —«

S@(Tnﬂo(a)a %+q(a), Toir(a)) =7 —n—p—q—log, (12)

Therefore from (10) and (12), the relation (6) holds true. The proofs runs as
in the previous proof. U

11—«
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Corollary 2.2. Let 0 < a < 1. We have the following ®-convolution
consistence

(@) 56 (Tola), Tole), Tofe) = ~log T —.

() 54(To(), To(), Tala) =1~ loga T —.
(©) Su(Tile), Tof), To(@)) = ~1 ~ foga T —
(@) 84(Ti(0), Ti(a), To(a)) = —2 loga—2
(€) So(Ti(a), To(a), i @) = —logs T,

() 86(Ti(), Ti(@), i) = 1~ logsT—

Theorem 2.3. Let0< o, 8,v<1, a#fp, y<a, y<B. If f € Thyp(a)
andg € 7;L+q(5)7 then Is(f®g) € 7;L+T(’Y)7 Wherep7 q, 7, n € N and

2 -« 2-p 2—7x

>r—p—q—n-— — .
s>r—-p—q—n long_a log21_ﬁ+log21_7 (13)
This result is sharp, and we have
S (Tntp(@), Tntq(B), Tntr (7))
2—« 2—0 2—7
=r—p—q—n-—1log, T — log, - + log, T (14)

Proof. Since f € Tpip(a) and g € Tniq(B), if f and g have the form (3),
then from (2) in Theorem1.4, we have

o0 o0

k— k—
Zk"+p1 - zak <1, anﬂrbk <1,
k=2 k=2

@

and by the Cauchy-Schwarz inequality, we obtain

Dok \/ —Elf - Z;E]f = g; arb < 1. (15)
k=2

We need to find conditions on s, 7, p, q,n such that

oo

k —
anJrriSl ’Yakbk <1.
k=2 -
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Thus, it is sufficient to show that

n rfsk_’y n pTﬂ (k'_a)(k‘_ﬁ)
T e Vu—axr—mva”“

that is,

apbr < kerergrq\/((II:Z;EIf:g)) 11_::, ke {2,3,....}.

From (15), we know that

Vb < kT % ke{23,..}.

Consequently, it is sufficiently to have,

kn;\/w < ksr“z”\/(k —OEZA LY g,

(k—a)(k—p) (I-a)d=p) k-~
or, equivalently,

(1—a)(1 = B)(k—7)
(k= a)(k—B)(1—7)

EroemrmPrma <1, ke {2,3,....} (16)

Letting ¢(z) = %x““"ﬂ’*q, x > 2, we obtain that
, LT n—s—p—q
40 = Goap—gr (=)
. o)) B —n—s—p-q)
x

—(w—®®—7%%x—m®—vo

ol 5
—<x—@@—w)so

y(mx—mm—ﬁwwx—w@—v>

Hence, ¢'(x) < 0 for all x < 2, or, ¢(x) is a decreasing function on z.
Consequently, from (16) it is sufficient to have

Qr—s—n—p—q < 2_042_/81_7.
T l-al—-p82—v

(17)
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But the inequality (17) holds for s, r,p, ¢, n satisfying (13) and this show that
Se(Tntp(@), Tntq(@), Tasr(a))

2 — 2—p 2— 'y

<r-n—-s—-p—q-— logg1 10g21 ﬁ+10g21 (18)

Finally, by using the extremal functions
-« 9 1-8

fQ(Z) = Z—mz S Tn+p(Oé) and QQ(Z) = —mz2 € Tn+q(,8)
From (4) we can see that
s (1 — Oé)(l - /8)
1 (f ® g) - 22n+q+q+s(2 — a)(2 _ 5) 22 € TTLJH“(O‘)' (19)
But from (2) in Theorem 1.4 we deduce
1—
P(f®g)=z— W;V)ZQ € Thyr(a), (20)

and (20) show that the inequality (12) is sharp and we have,
So(Tntp(@); Tntq(@), Tnsr(a))

_ 23 2 _

>r—-n—s—p—q-— log21 logQ1 B—Hong (21)
Therefore from (18) and (21) the relation (14) holds. The proof goes as the
previous one. ]

Corollary 2.4. Let 0 < a,B,v <1, a# 8, v <a, v < . We have the
following ®-convolution consistence:

(@) So(To(a), To(8). To(1)) = ~logas —o — logas— + logar—.
) 56(To(a) To(8) Til) = L~ logaT—5 — loga T + loga T —
(© SelTi(a). To(9). To(1)) = ~1 ~loga T —= —loga T — + log2—.
(@) So(Ti(@),Ti(8). To(0) = ~2~ loga T —2 — fogn T~ +logaT—,
(€) Su(Ti(0), To(8), Ta()) = ~logs>—2 —zongjg o 2=,
() SuTi@). Ti(3) Tila) = ~1L ~loga T —5 ~ logu T + logmT—.
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Let 0 < o < 1, if f € Tpyp(a) and g € Tpiq Then
Is(f®g) € 7;14,7«((1), where p,q, T, € N and

s>r—p—q—n-—1.

This result is sharp, and we have

S®(7:’L+p(a)77;z+q7 Toir(@) =r7—p—q—n—1.

Proof. In Theorem (2.3), we set o = and = 0.

Corollary 2.6.
consistence

Theorem 2.7.

O

Let 0 < o < 1, we have the following ®-convolution

(@) Se(To(@), To, To(@))
(b)  Se(To(a), To, Ti(e))
(¢)  Se(Ti(a), To, To(e))
(d)  Se(Ti(@),T1, To(@))
(e)  Se(Ti(@),To, Th(@))
(f) Se(Ti(a), Ti, Ta(a))

Let 0 < o < 1, if f € Tpyp(a) and g € Tpiq Then
I’(f®g) € Toyr, where p, q, v, n € N and

2 —«

s2r—p-q-n-log

This result is sharp, and we have

Se(Tnip(@), Tatg, Tngr) =7 —p—q—n —logy

Proof. In Theorem (2.3), we set § =~ = 0.

Corollary 2.8.

22—«

1—a

O

Let 0 < a < 1,. We have the following ®-convolution
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consistence
2 —«
(a’) S@(%(O&),%,%) - —10921 — Oé’
2 —
(0) Sa(Tol0). To, Ti) = 1~ logsT—.
2 —
(€) Sa(Ti(e), To, To) = —1 — logaT—,
2 —
(@) Sa(Ti(@), T, T5) = ~2 — logaT—,
2 —
() Sa(Ti(@),To,Ti) = ~logsT—,
2—«

(f) Se(Ti(@). T, Thi) = ~1 — logaT—.

Theorem 2.9. Let 0 < o <1, 0 < g < 1, if f € Thyp(e,B) and
g & 7:14_(](06,,8). Then Is(f®g) € 7:’L+T(Oé7/8)7 where p,q, r,n € N and

14+ 5(3 —2w)

Sp_p_g—1 —
s>r—p—q—n—1log, 2801 —a) (22)
This result is sharp, and we have
1483 -2«
S (Tartn(@). TasaB). Tar (1)) =1~ p— g = m —logy i PO =20 ()

26(1 - a)

Proof. By applying the Cauchy-Schwarz inequality and similar technique
as in the proof of Theorem 2.1, we obtain that

kr=s—n=P=12B3(1 — q)
e ke{23, ..} (24)

gT—S—n—p—q

(z—1)+B8(z+1-2a)°
(r—s—n—p—q)(z(B+1)+ Bl —2a) —1)a" " 7P 971 (B4 1)z" "7 P9
(z(B+1) + B(1 — 2a) — 1)*

_ z z(B+1) +B(1—20) — 1
_(x(ﬂ+1)+ﬂ(1f2a)71)2((rfsfnfp*qx z )*([”1))'

Hence, ¢'(z) < 0 for all z < 2, or, ¢(x) is a decreasing function on x. Conse-
quently, from (24) it is sufficient to have

P B(3 —2a)
= T 28(1—a)

Letting ¢(x) =

x > 2 and we obtain that,

¢'(z) =

r—m—s—p—q

oQr—s—n—p—gq

(25)
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But the inequality (25) holds for s, r,p, ¢, n satisfying (22) and this show that
1+6(2—a)

Se(Tntp(@), Tatq(@); Tnsr(@)) <7 —p—gq—n—log, 28(1—a)

(26)

Finally, by using the extremal functions
) 2(1 —a)
P =2 54 53— 2a)
_ 280-a)
(1 + B3 - 20))

From (4) we can see that

Z2 € Tner(aa /8)7

g2(z) = =z 2% e Thiq(a, B).

s B (28(1 — a))?
Ifeg) =z— 22ntatats(1 + B(3 — 2a)))

But from (2) in Theorem 1.4 we deduce

26(1 — «)

(14 8(3 —2a))

and (27) show that the inequality (22) is sharp and we have,

14+ 5(3 —2w)
26(1— a)

Therefore from (26) and (28) the relation (23) holds. Those proofs run as the
previous ones. ]

2,22 € Thir(e)

22 € Thyrla), (27)

F(f®g) =z- 54

So(Tnrp(a), Totq(a), Totr(a)) =7 —n—p—q—logy (28)

Corollary 2.10. Let 0 < o < 1, 0 < 8 < 1. We have the following
®-convolution consistence

(@ S (Talar ), To(eu 8). Tler ) = — logy —y 1o,

) Sa(Tolas8),To(a. 5) i, 5) = 1~ logy —5 22

(€ Sa(Ti(a,8),To(a. ) Tafa 5) = 1 - logy 12,

(@) S (il 5),Ti(0 5). Tler ) = 2 logy =5 J =2

(© o (T 5),To(a 5). Tler. ) = — logy —y o2,
1+ B(3 - 2)

() Se(Tile ), Ta(e B), Ta(e, B)) = —1 — logy —5 57—
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