
International Journal of Applied Mathematics
————————————————————–
Volume 28 No. 5 2015, 579-591
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v28i5.10

UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

BASED ON ORDER OF CONVOLUTION CONSISTENCE

Sh. Najafzadeh1 §, A. Ebadian2, E. Amini3

1,2,3Department of Mathematics
Payme Noor University

P.O. Box 19395-4697 Tehran, IRAN

Abstract: In this paper we consider the modified Hadamard product or
convolution of analytic functions with negative coefficients, combined with an
Sǎlǎgean integral operator. We discuss when it is a given class. Following
idea of U. Bednarz and J. Sokól we shall determine the order of convolution
consistence for certain analytic functions with negative coefficients.

AMS Subject Classification: 30C45, 30C50
Key Words: Hadamard product, analytic functions with negative coefficient,
order of convolution, starlike function of order α, convex function of order α,
extreme points

1. Introduction and Preliminaries

Let H(U) be the set of all functions which are regular in the unit disk U = {z :
|z| < 1},

A = {f ∈ H(U) : f(0) = f ′(0)− 1 = 0},

and S = {f ∈ A : f is univalent in U}.
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In [12] the subfamily N of S consisting the functions of f of the form

f(z) = z −
∞
∑

k=2

akz
k, ak ≥ 0, k = 2, 3, ..., z ∈ U (1)

has been considered.

Let Dn be the Sǎlǎgean differential operator (see [5], [9]) Dn : A −→ A,
n ∈ N, defined as

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z), Dnf(z) = D(Dn−1f(z))

for all z ∈ U .

Definition 1.1. ([5], [9]) Let α ∈ [0, 1) and n ∈ N. The class Sn(α) of the
n-starlike functions of order α is defined by

Sn(α) =

{

f ∈ A : Re
Dn+1f(z)

Dnf(z)
> α, z ∈ U

}

.

The class Sn(0) is denoted by Sn. We note that S0 = ST is the class
of starlike functions and S1 = CV is the class of convex functions. Further
S0(α) = ST (α) is the class of starlike functions of order α and S1(α) = CV(α)
is the class of convex functions of order α.

Let Tn(α) = Sn(α)
⋂

N be the class of n-starlike functions of order α with
negative coefficients. In particular, T0(α) and T1(α) are the classes of the star-
like functions of order α with negative coefficients and the class of convex func-
tions of order α with negative coefficient, respectively, introduced by H. Silver-
man [12]. We denote Tn(0) by Tn. (see also the works [4], [7], [8] for further
developments involving each of the classes Sn(α)).

Definition 1.2. ([6]) Let α ∈ [0, 1), β ∈ (0, 1] and let n ∈ N; we define
the class Tn(α, β) of n-starlike functions of order α and type β with negative
coefficients by

Tn(α, β) = {f ∈ A : |Jn(f, α; z)| < β, z ∈ U},

where

Jn(f, α; z) =

Dn+1f(z)
Dnf(z) − 1

Dn+1f(z)
Dnf(z) + 1− 2α

, z ∈ U .
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T0(α, β) is the class of starlike functions of order α and type β, and T1(α, β)
is the class of convex functions of order α and type β, further Tn(α, 1) = Tn(α)
is the class of n-starlike functions of order α with negative coefficients.

Theorem 1.3. ([6]) Let α ∈ [0, 1), β ∈ (0, 1] and n ∈ N. The function f

of the form (1) is in Tn(α, β) if and only if

∞
∑

k=2

kn
(

k − 1 + β(k + 1− 2α)
)

ak ≤ 2β(1 − α).

This result is sharp.

From Definition 1.2 and Theorem 1.3, we have the following theorem:

Theorem 1.4. For f(z) of the form (1), we have f ∈ Tn(α, 1) = Tn(α) if
and only if

∞
∑

k=2

kn(k − α)ak ≤ 1− α, where α ∈ [0, 1). (2)

This result is sharp.

The convolution or the Hadamard product of two functions f and g in A
of the form

f(z) = z +

∞
∑

k=2

akz
k and g(z) = z +

∞
∑

k=2

bkz
k

is the function (f ∗ g) defined by

(f ∗ g)(z) = z +

∞
∑

k=2

akbkz
k.

Let use consider the Sǎlǎgean integral operator (see [2], [3], [5]) Is : A −→
A, s ∈ R, such that

Isf(z) = Is
(

z +

∞
∑

k=2

akz
k

)

= z +

∞
∑

k=2

ak

ks
zk.

Definition 1.5. ([2]) Let X , Y and Z be subset of A. We say that the
triple (X , Y, Z) is S-closed under the convolution if there exists a number
S(X , Y, Z) such that

S(X , Y, Z) = min{s ∈ R : Is(f ∗ g) ∈ Z, ∀f ∈ X , ∀g ∈ Y}.
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The number S(X , Y, Z) is called the order of convolution consistence of the
triple (X , Y, Z).

In [2] U. Bednarz and J. Sokól obtained the order of convolution consistence
concerning certain class of univalent functions (starlike, convex,...). Moreover,
in [1] the authors studied the properties of the integral convolution of the neigh-
borhoods of these classes.

The modified Hadamard product or ⊛-convolution of two functions f and
g in N of the form

f(z) = z −
∞
∑

k=2

akz
k and g(z) = z −

∞
∑

k=2

bkz
k (3)

is the function (f ⊛ g) defined by

(f ⊛ g)(z) = z −
∞
∑

k=2

akbkz
k. (see[11]) (4)

Definition 1.6. ([10]) The order of ⊛-convolution consistence of the triple
(X , Y, Z), where X , Y and Z are subsets of N , is denoted by S⊛, where

S⊛(X , Y, Z) = min{s ∈ R : Is(f ⊛ g) ∈ Z, ∀f ∈ X , ∀g ∈ Y}.

G. Sǎlǎgean and A. Taut in [10] obtained the order of convolution consis-
tence concerning the classes of starlike functions with negative coefficients and
convex functions with negative coefficients. They proved the following theorem:

Theorem 1.7. We have the following ⊛-convolution consistence

(a) S⊛(T0,T0,T0) = −1,

(b) S⊛(T0,T0,T1) = 0,

(c) S⊛(T1,T0,T0) = −2,

(d) S⊛(T1,T1,T0) = −3,

(e) S⊛(T1,T0,T1 = −1,

(f) S⊛(T1,T1,T1) = −2.

We note that T0 = ST
⋂

N and T1 = CV
⋂

N .

In this paper we obtain the order of ⊛-convolution concerning the class
Tn(α).
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2. Main Result

Theorem 2.1. Let 0 < α < 1, if f ∈ Tn+p(α) and g ∈ Tn+q(α), then
Is(f ⊛ g) ∈ Tn+r(α), where p, q, r, n ∈ N and

s ≥ r − p− q − n− log2
2− α

1− α
. (5)

This result is sharp, and we have

S⊛(Tn+p(α),Tn+q(α),Tn+r(α)) = r − n− p− q − log2
2− α

1− α
. (6)

Proof. Since f ∈ Tn+p(α) and g ∈ Tn+q(α). If f and g have the form (3),
then from (2) in Theorem 1.4, we have

∞
∑

k=2

kn+pk − α

1− α
ak ≤ 1,

∞
∑

k=2

kn+q k − α

1− α
bk ≤ 1,

and by the Cauchy-Schwarz inequality, we obtain

∞
∑

k=2

kn+
p+q

2
k − α

1− α

√

akbk ≤ 1. (7)

We need to find conditions on s, r, p, q, n such that

∞
∑

k=2

kn+r−sk − α

1− α
akbk ≤ 1.

Thus, it is sufficient to show that

kn+r−sk − α

1 − α
akbk ≤ kn+

p+q

2
k − α

1− α

√

akbk, k ∈ {2, 3, ....}.

that is,
√

akbk ≤ ks−r+ p+q

2 , k ∈ {2, 3, ....}.

From (7), we know that

√

akbk ≤ k−n−
p+q

2
1− α

k − α
, k ∈ {2, 3, ....}.

Consequently, it is sufficiently to have

k−n−
p+q

2
1− α

k − α
≤ ks−r+ p+q

2 , k ∈ {2, 3, ....}.
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or, equivalently,

(1− α)
kr−s−n−p−q

k − α
≤ 1, k ∈ {2, 3, ....}. (8)

Letting φ(x) = xr−s−n−p−q

x−α
, x ≥ 2, we obtain

φ′(x) =
(r − s− n− p− q)xr−n−s−p−q−1(x− α)− xr−n−s−p−q

(x− α)2

=
xr−n−s−p−q

(x− α)2

(

(r − s− n− p− q)(
x− α

x
)− 1

)

.

Hence, φ′(x) ≤ 0 for all x ≤ 2, or, φ(x) is a decreasing function on x. Conse-
quently, from (8) it is sufficiently to have

1− α

2− α
2r−s−n−p−q ≤ 1. (9)

But the inequality (9) holds for s, r, p, q, n satisfying (5) and this show that

S⊛(Tn+p(α),Tn+q(α),Tn+r(α)) ≤ r − p− q − n− log2
2− α

1− α
. (10)

Finally, by using the extremal functions

f2(z) = z−
1− α

2n+p(2− α)
z2 ∈ Tn+p(α) and g2(z) = z−

1− α

2n+q(2− α)
z2 ∈ Tn+q(α),

From (4), we can see that

Is(f ⊛ g) = z −
(1− α)2

22n+q+q+s(2− α)2
z2 ∈ Tn+r(α).

But from (2) in Theorem 1.4 we deduce

Is(f ⊛ g) = z −
1− α

2n+r(2− α)
z2 ∈ Tn+r(α), (11)

and (11) show that the inequality (5) is sharp and we have,

S⊛(Tn+p(α),Tn+q(α),Tn+r(α)) ≥ r − n− p− q − log2
2− α

1− α
. (12)

Therefore from (10) and (12), the relation (6) holds true. The proofs runs as
in the previous proof.
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Corollary 2.2. Let 0 < α < 1. We have the following ⊛-convolution
consistence

(a) S⊛(T0(α),T0(α),T0(α)) = −log2
2− α

1− α
,

(b) S⊛(T0(α),T0(α),T1(α)) = 1− log2
2− α

1− α
,

(c) S⊛(T1(α),T0(α),T0(α)) = −1− log2
2− α

1− α
,

(d) S⊛(T1(α),T1(α),T0(α)) = −2− log2
2− α

1− α
,

(e) S⊛(T1(α),T0(α),T1(α)) = −log2
2− α

1− α
,

(f) S⊛(T1(α),T1(α),T1(α)) = −1− log2
2− α

1− α
.

Theorem 2.3. Let 0 ≤ α, β, γ < 1, α 6= β, γ ≤ α, γ ≤ β. If f ∈ Tn+p(α)
and g ∈ Tn+q(β), then Is(f ⊛ g) ∈ Tn+r(γ), where p, q, r, n ∈ N and

s ≥ r − p− q − n− log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
. (13)

This result is sharp, and we have

S⊛(Tn+p(α),Tn+q(β),Tn+r(γ))

= r − p− q − n− log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
. (14)

Proof. Since f ∈ Tn+p(α) and g ∈ Tn+q(β), if f and g have the form (3),
then from (2) in Theorem1.4, we have

∞
∑

k=2

kn+p k − α

1− α
ak ≤ 1,

∞
∑

k=2

kn+q k − β

1− β
bk ≤ 1,

and by the Cauchy-Schwarz inequality, we obtain

∞
∑

k=2

kn+
p+q

2

√

(k − α)(k − β)

(1− α)(1 − β)

√

akbk ≤ 1. (15)

We need to find conditions on s, r, p, q, n such that

∞
∑

k=2

kn+r−sk − γ

1− γ
akbk ≤ 1.
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Thus, it is sufficient to show that

kn+r−s k − γ

1− γ
akbk ≤ kn+

p+q

2

√

(k − α)(k − β)

(1− α)(1 − β)

√

akbk,

that is,

√

akbk ≤ ks−r+ p+q

2

√

(k − α)(k − β)

(1− α)(1 − β)

1− γ

k − γ
, k ∈ {2, 3, ....}.

From (15), we know that

√

akbk ≤ k−n− p+q

2

√

(1− α)(1 − β)

(k − α)(k − β)
, k ∈ {2, 3, ....}.

Consequently, it is sufficiently to have,

k−n−
p+q

2

√

(1− α)(1 − β)

(k − α)(k − β)
≤ ks−r+ p+q

2

√

(k − α)(k − β)

(1− α)(1 − β)

1− γ

k − γ
, k ∈ {2, 3, ....},

or, equivalently,

(1− α)(1 − β)(k − γ)

(k − α)(k − β)(1− γ)
kr−s−n−p−q ≤ 1, k ∈ {2, 3, ....}. (16)

Letting φ(x) = (x−γ)
(x−α)(x−β)x

r−s−n−p−q, x ≥ 2, we obtain that

φ′(x) =
xr−n−s−p−q

(x− α)2(x− β)2

(

(x− α)(x − β)

+
(x− γ)(x− α)(x − β)(r − n− s− p− q)

x

− (x− α)(x − γ)− (x− β)(x− γ)

)

≤
xr−n−s−p−q

(x− α)2(x− β)2

(

2(x− α)(x− β)− (x− α)(x − γ)

− (x− β)(x − γ)

)

≤ 0.

Hence, φ′(x) ≤ 0 for all x ≤ 2, or, φ(x) is a decreasing function on x.
Consequently, from (16) it is sufficient to have

2r−s−n−p−q ≤
2− α

1− α

2− β

1− β

1− γ

2− γ
. (17)
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But the inequality (17) holds for s, r, p, q, n satisfying (13) and this show that

S⊛(Tn+p(α),Tn+q(α),Tn+r(α))

≤ r − n− s− p− q − log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
. (18)

Finally, by using the extremal functions

f2(z) = z−
1− α

2n+p(2− α)
z2 ∈ Tn+p(α) and g2(z) = z−

1− β

2n+q(2− β)
z2 ∈ Tn+q(β).

From (4) we can see that

Is(f ⊛ g) = z −
(1− α)(1 − β)

22n+q+q+s(2− α)(2 − β)
z2 ∈ Tn+r(α). (19)

But from (2) in Theorem 1.4 we deduce

Is(f ⊛ g) = z −
1− γ

2n+r(2− γ)
z2 ∈ Tn+r(α), (20)

and (20) show that the inequality (12) is sharp and we have,

S⊛(Tn+p(α),Tn+q(α),Tn+r(α))

≥ r − n− s− p− q − log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
. (21)

Therefore from (18) and (21) the relation (14) holds. The proof goes as the
previous one.

Corollary 2.4. Let 0 ≤ α, β, γ < 1, α 6= β, γ ≤ α, γ ≤ β. We have the
following ⊛-convolution consistence:

(a) S⊛(T0(α),T0(β),T0(γ)) = −log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
,

(b) S⊛(T0(α),T0(β),T1(γ)) = 1− log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
,

(c) S⊛(T1(α),T0(β),T0(γ)) = −1− log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
,

(d) S⊛(T1(α),T1(β),T0(γ)) = −2− log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
,

(e) S⊛(T1(α),T0(β),T1(γ)) = −log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
,

(f) S⊛(T1(α),T1(β),T1(γ)) = −1− log2
2− α

1− α
− log2

2− β

1− β
+ log2

2− γ

1− γ
.
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Theorem 2.5. Let 0 ≤ α ≤ 1, if f ∈ Tn+p(α) and g ∈ Tn+q Then
Is(f ⊛ g) ∈ Tn+r(α), where p, q, r, n ∈ N and

s ≥ r − p− q − n− 1.

This result is sharp, and we have

S⊛(Tn+p(α),Tn+q,Tn+r(α)) = r − p− q − n− 1.

Proof. In Theorem (2.3), we set α = γ and β = 0.

Corollary 2.6. Let 0 < α < 1, we have the following ⊛-convolution
consistence

(a) S⊛(T0(α),T0,T0(α)) = −1,

(b) S⊛(T0(α),T0,T1(α)) = 0,

(c) S⊛(T1(α),T0,T0(α)) = −2,

(d) S⊛(T1(α),T1,T0(α)) = −3,

(e) S⊛(T1(α),T0,T1(α)) = −1,

(f) S⊛(T1(α),T1,T1(α)) = −2.

Theorem 2.7. Let 0 < α < 1, if f ∈ Tn+p(α) and g ∈ Tn+q Then
Is(f ⊛ g) ∈ Tn+r, where p, q, r, n ∈ N and

s ≥ r − p− q − n− log2
2− α

1− α
.

This result is sharp, and we have

S⊛(Tn+p(α),Tn+q,Tn+r) = r − p− q − n− log2
2− α

1− α
.

Proof. In Theorem (2.3), we set β = γ = 0.

Corollary 2.8. Let 0 < α < 1,. We have the following ⊛-convolution
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consistence

(a) S⊛(T0(α),T0,T0) = −log2
2− α

1− α
,

(b) S⊛(T0(α),T0,T1) = 1− log2
2− α

1− α
,

(c) S⊛(T1(α),T0,T0) = −1− log2
2− α

1− α
,

(d) S⊛(T1(α),T1,T0) = −2− log2
2− α

1− α
,

(e) S⊛(T1(α),T0,T1) = −log2
2− α

1− α
,

(f) S⊛(T1(α),T1,T1) = −1− log2
2− α

1− α
.

Theorem 2.9. Let 0 ≤ α < 1, 0 < β ≤ 1, if f ∈ Tn+p(α, β) and
g ∈ Tn+q(α, β). Then Is(f ⊛ g) ∈ Tn+r(α, β), where p, q, r, n ∈ N and

s ≥ r − p− q − n− log2
1 + β(3− 2α)

2β(1− α)
. (22)

This result is sharp, and we have

S⊛(Tn+p(α),Tn+q(β),Tn+r(γ)) = r − p− q − n− log2
1 + β(3− 2α)

2β(1 − α)
. (23)

Proof. By applying the Cauchy-Schwarz inequality and similar technique
as in the proof of Theorem 2.1, we obtain that

kr−s−n−p−q2β(1− α)

(k − 1) + β(k + 1− 2α)
≤ 1, k ∈ {2, 3, ....}. (24)

Letting φ(x) = xr−s−n−p−q

(x−1)+β(x+1−2α) , x ≥ 2 and we obtain that,

φ
′(x) =

(

r − s− n− p− q
)(

x(β + 1) + β(1− 2α) − 1
)

xr−n−s−p−q−1
− (β + 1)xr−n−s−p−q

(

x(β + 1) + β(1− 2α) − 1
)2

=
xr−n−s−p−q

(x(β + 1) + β(1− 2α) − 1)2

(

(r − s− n− p− q)(
x(β + 1) + β(1− 2α) − 1

x
)− (β + 1)

)

.

Hence, φ′(x) ≤ 0 for all x ≤ 2, or, φ(x) is a decreasing function on x. Conse-
quently, from (24) it is sufficient to have

2r−s−n−p−q ≤
1 + β(3− 2α)

2β(1 − α)
. (25)
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But the inequality (25) holds for s, r, p, q, n satisfying (22) and this show that

S⊛(Tn+p(α),Tn+q(α),Tn+r(α)) ≤ r − p− q − n− log2
1 + β(2− α)

2β(1− α)
. (26)

Finally, by using the extremal functions

f2(z) = z −
2β(1 − α)

2n+p(1 + β(3− 2α))
z2 ∈ Tn+p(α, β),

g2(z) = z −
2β(1− α)

2n+q(1 + β(3− 2α))
z2 ∈ Tn+q(α, β).

From (4) we can see that

Is(f ⊛ g) = z −
(2β(1 − α))2

22n+q+q+s(1 + β(3− 2α)))2
z2 ∈ Tn+r(α)

But from (2) in Theorem 1.4 we deduce

Is(f ⊛ g) = z −
2β(1− α)

2n+r(1 + β(3 − 2α))
z2 ∈ Tn+r(α), (27)

and (27) show that the inequality (22) is sharp and we have,

S⊛(Tn+p(α),Tn+q(α),Tn+r(α)) ≥ r − n− p− q − log2
1 + β(3− 2α)

2β(1− α)
. (28)

Therefore from (26) and (28) the relation (23) holds. Those proofs run as the
previous ones.

Corollary 2.10. Let 0 ≤ α < 1, 0 < β ≤ 1. We have the following
⊛-convolution consistence

(a) S⊛(T0(α, β),T0(α, β),T0(α, β)) = − log2
1 + β(3 − 2α)

2β(1 − α)
,

(b) S⊛(T0(α, β),T0(α, β),T1(α, β)) = 1− log2
1 + β(3− 2α)

2β(1 − α)
,

(c) S⊛(T1(α, β),T0(α, β),T0(α, β)) = −1− log2
1 + β(3− 2α)

2β(1− α)
,

(d) S⊛(T1(α, β),T1(α, β),T0(α, β)) = −2− log2
1 + β(3− 2α)

2β(1− α)
,

(e) S⊛(T1(α, β),T0(α, β),T1(α, β)) = − log2
1 + β(3 − 2α)

2β(1 − α)
,

(f) S⊛(T1(α, β),T1(α, β),T1(α, β)) = −1− log2
1 + β(3− 2α)

2β(1− α)
.
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