

**UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS
BASED ON ORDER OF CONVOLUTION CONSISTENCE**

Sh. Najafzadeh¹ §, A. Ebadian², E. Amini³

^{1,2,3}Department of Mathematics

Payme Noor University

P.O. Box 19395-4697 Tehran, IRAN

Abstract: In this paper we consider the modified Hadamard product or convolution of analytic functions with negative coefficients, combined with an Sălăgean integral operator. We discuss when it is a given class. Following idea of U. Bednarz and J. Sokól we shall determine the order of convolution consistence for certain analytic functions with negative coefficients.

AMS Subject Classification: 30C45, 30C50

Key Words: Hadamard product, analytic functions with negative coefficient, order of convolution, starlike function of order α , convex function of order α , extreme points

1. Introduction and Preliminaries

Let $\mathcal{H}(\mathcal{U})$ be the set of all functions which are regular in the unit disk $\mathcal{U} = \{z : |z| < 1\}$,

$$\mathcal{A} = \{f \in \mathcal{H}(\mathcal{U}) : f(0) = f'(0) - 1 = 0\},$$

and $\mathcal{S} = \{f \in \mathcal{A} : f \text{ is univalent in } \mathcal{U}\}$.

Received: July 20, 2015

© 2015 Academic Publications

§Correspondence author

In [12] the subfamily \mathcal{N} of \mathcal{S} consisting the functions of f of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \quad a_k \geq 0, \quad k = 2, 3, \dots, \quad z \in \mathcal{U} \quad (1)$$

has been considered.

Let D^n be the *Sălăgean* differential operator (see [5], [9]) $D^n : \mathcal{A} \rightarrow \mathcal{A}$, $n \in \mathbb{N}$, defined as

$$D^0 f(z) = f(z), \quad D^1 f(z) = Df(z) = zf'(z), \quad D^n f(z) = D(D^{n-1} f(z))$$

for all $z \in \mathcal{U}$.

Definition 1.1. ([5], [9]) Let $\alpha \in [0, 1)$ and $n \in \mathbb{N}$. The class $\mathcal{S}_n(\alpha)$ of the n -starlike functions of order α is defined by

$$\mathcal{S}_n(\alpha) = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{D^{n+1} f(z)}{D^n f(z)} > \alpha, \quad z \in \mathcal{U} \right\}.$$

The class $\mathcal{S}_n(0)$ is denoted by \mathcal{S}_n . We note that $\mathcal{S}_0 = \mathcal{ST}$ is the class of starlike functions and $\mathcal{S}_1 = \mathcal{CV}$ is the class of convex functions. Further $\mathcal{S}_0(\alpha) = \mathcal{ST}(\alpha)$ is the class of starlike functions of order α and $\mathcal{S}_1(\alpha) = \mathcal{CV}(\alpha)$ is the class of convex functions of order α .

Let $\mathcal{T}_n(\alpha) = \mathcal{S}_n(\alpha) \cap \mathcal{N}$ be the class of n -starlike functions of order α with negative coefficients. In particular, $\mathcal{T}_0(\alpha)$ and $\mathcal{T}_1(\alpha)$ are the classes of the starlike functions of order α with negative coefficients and the class of convex functions of order α with negative coefficient, respectively, introduced by H. Silverman [12]. We denote $\mathcal{T}_n(0)$ by \mathcal{T}_n . (see also the works [4], [7], [8] for further developments involving each of the classes $\mathcal{S}_n(\alpha)$).

Definition 1.2. ([6]) Let $\alpha \in [0, 1)$, $\beta \in (0, 1]$ and let $n \in \mathbb{N}$; we define the class $\mathcal{T}_n(\alpha, \beta)$ of n -starlike functions of order α and type β with negative coefficients by

$$\mathcal{T}_n(\alpha, \beta) = \{f \in \mathcal{A} : |J_n(f, \alpha; z)| < \beta, \quad z \in \mathcal{U}\},$$

where

$$J_n(f, \alpha; z) = \frac{\frac{D^{n+1} f(z)}{D^n f(z)} - 1}{\frac{D^{n+1} f(z)}{D^n f(z)} + 1 - 2\alpha}, \quad z \in \mathcal{U}.$$

$\mathcal{T}_0(\alpha, \beta)$ is the class of starlike functions of order α and type β , and $\mathcal{T}_1(\alpha, \beta)$ is the class of convex functions of order α and type β , further $\mathcal{T}_n(\alpha, 1) = \mathcal{T}_n(\alpha)$ is the class of n -starlike functions of order α with negative coefficients.

Theorem 1.3. ([6]) Let $\alpha \in [0, 1)$, $\beta \in (0, 1]$ and $n \in \mathbb{N}$. The function f of the form (1) is in $\mathcal{T}_n(\alpha, \beta)$ if and only if

$$\sum_{k=2}^{\infty} k^n (k - 1 + \beta(k + 1 - 2\alpha)) a_k \leq 2\beta(1 - \alpha).$$

This result is sharp.

From Definition 1.2 and Theorem 1.3, we have the following theorem:

Theorem 1.4. For $f(z)$ of the form (1), we have $f \in \mathcal{T}_n(\alpha, 1) = \mathcal{T}_n(\alpha)$ if and only if

$$\sum_{k=2}^{\infty} k^n (k - \alpha) a_k \leq 1 - \alpha, \quad \text{where } \alpha \in [0, 1). \quad (2)$$

This result is sharp.

The convolution or the Hadamard product of two functions f and g in \mathcal{A} of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad \text{and} \quad g(z) = z + \sum_{k=2}^{\infty} b_k z^k$$

is the function $(f * g)$ defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

Let us consider the Sălăgean integral operator (see [2], [3], [5]) $I^s : \mathcal{A} \longrightarrow \mathcal{A}$, $s \in \mathbb{R}$, such that

$$I^s f(z) = I^s \left(z + \sum_{k=2}^{\infty} a_k z^k \right) = z + \sum_{k=2}^{\infty} \frac{a_k}{k^s} z^k.$$

Definition 1.5. ([2]) Let \mathcal{X} , \mathcal{Y} and \mathcal{Z} be subsets of \mathcal{A} . We say that the triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is \mathcal{S} -closed under the convolution if there exists a number $S(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ such that

$$S(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) = \min\{s \in \mathbb{R} : I^s(f * g) \in \mathcal{Z}, \forall f \in \mathcal{X}, \forall g \in \mathcal{Y}\}.$$

The number $S(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is called the order of convolution consistence of the triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$.

In [2] U. Bednarz and J. Sokól obtained the order of convolution consistence concerning certain class of univalent functions (starlike, convex,...). Moreover, in [1] the authors studied the properties of the integral convolution of the neighborhoods of these classes.

The modified Hadamard product or \circledast -convolution of two functions f and g in \mathcal{N} of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k \quad \text{and} \quad g(z) = z - \sum_{k=2}^{\infty} b_k z^k \quad (3)$$

is the function $(f \circledast g)$ defined by

$$(f \circledast g)(z) = z - \sum_{k=2}^{\infty} a_k b_k z^k. \quad (\text{see [11]}) \quad (4)$$

Definition 1.6. ([10]) The order of \circledast -convolution consistence of the triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$, where \mathcal{X} , \mathcal{Y} and \mathcal{Z} are subsets of \mathcal{N} , is denoted by S_{\circledast} , where

$$S_{\circledast}(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) = \min\{s \in \mathbb{R} : I^s(f \circledast g) \in \mathcal{Z}, \forall f \in \mathcal{X}, \forall g \in \mathcal{Y}\}.$$

G. Sălăgean and A. Taut in [10] obtained the order of convolution consistence concerning the classes of starlike functions with negative coefficients and convex functions with negative coefficients. They proved the following theorem:

Theorem 1.7. *We have the following \circledast -convolution consistence*

- (a) $S_{\circledast}(\mathcal{T}_0, \mathcal{T}_0, \mathcal{T}_0) = -1$,
- (b) $S_{\circledast}(\mathcal{T}_0, \mathcal{T}_0, \mathcal{T}_1) = 0$,
- (c) $S_{\circledast}(\mathcal{T}_1, \mathcal{T}_0, \mathcal{T}_0) = -2$,
- (d) $S_{\circledast}(\mathcal{T}_1, \mathcal{T}_1, \mathcal{T}_0) = -3$,
- (e) $S_{\circledast}(\mathcal{T}_1, \mathcal{T}_0, \mathcal{T}_1) = -1$,
- (f) $S_{\circledast}(\mathcal{T}_1, \mathcal{T}_1, \mathcal{T}_1) = -2$.

We note that $\mathcal{T}_0 = \mathcal{ST} \cap \mathcal{N}$ and $\mathcal{T}_1 = \mathcal{CV} \cap \mathcal{N}$.

In this paper we obtain the order of \circledast -convolution concerning the class $\mathcal{T}_n(\alpha)$.

2. Main Result

Theorem 2.1. Let $0 < \alpha < 1$, if $f \in \mathcal{T}_{n+p}(\alpha)$ and $g \in \mathcal{T}_{n+q}(\alpha)$, then $I^s(f \circledast g) \in \mathcal{T}_{n+r}(\alpha)$, where $p, q, r, n \in \mathbb{N}$ and

$$s \geq r - p - q - n - \log_2 \frac{2 - \alpha}{1 - \alpha}. \quad (5)$$

This result is sharp, and we have

$$S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\alpha), \mathcal{T}_{n+r}(\alpha)) = r - n - p - q - \log_2 \frac{2 - \alpha}{1 - \alpha}. \quad (6)$$

Proof. Since $f \in \mathcal{T}_{n+p}(\alpha)$ and $g \in \mathcal{T}_{n+q}(\alpha)$. If f and g have the form (3), then from (2) in Theorem 1.4, we have

$$\sum_{k=2}^{\infty} k^{n+p} \frac{k - \alpha}{1 - \alpha} a_k \leq 1, \quad \sum_{k=2}^{\infty} k^{n+q} \frac{k - \alpha}{1 - \alpha} b_k \leq 1,$$

and by the Cauchy-Schwarz inequality, we obtain

$$\sum_{k=2}^{\infty} k^{n+\frac{p+q}{2}} \frac{k - \alpha}{1 - \alpha} \sqrt{a_k b_k} \leq 1. \quad (7)$$

We need to find conditions on s, r, p, q, n such that

$$\sum_{k=2}^{\infty} k^{n+r-s} \frac{k - \alpha}{1 - \alpha} a_k b_k \leq 1.$$

Thus, it is sufficient to show that

$$k^{n+r-s} \frac{k - \alpha}{1 - \alpha} a_k b_k \leq k^{n+\frac{p+q}{2}} \frac{k - \alpha}{1 - \alpha} \sqrt{a_k b_k}, \quad k \in \{2, 3, \dots\}.$$

that is,

$$\sqrt{a_k b_k} \leq k^{s-r+\frac{p+q}{2}}, \quad k \in \{2, 3, \dots\}.$$

From (7), we know that

$$\sqrt{a_k b_k} \leq k^{-n-\frac{p+q}{2}} \frac{1 - \alpha}{k - \alpha}, \quad k \in \{2, 3, \dots\}.$$

Consequently, it is sufficiently to have

$$k^{-n-\frac{p+q}{2}} \frac{1 - \alpha}{k - \alpha} \leq k^{s-r+\frac{p+q}{2}}, \quad k \in \{2, 3, \dots\}.$$

or, equivalently,

$$(1 - \alpha) \frac{k^{r-s-n-p-q}}{k - \alpha} \leq 1, \quad k \in \{2, 3, \dots\}. \quad (8)$$

Letting $\phi(x) = \frac{x^{r-s-n-p-q}}{x-\alpha}$, $x \geq 2$, we obtain

$$\begin{aligned} \phi'(x) &= \frac{(r - s - n - p - q)x^{r-n-s-p-q-1}(x - \alpha) - x^{r-n-s-p-q}}{(x - \alpha)^2} \\ &= \frac{x^{r-n-s-p-q}}{(x - \alpha)^2} \left((r - s - n - p - q) \left(\frac{x - \alpha}{x} \right) - 1 \right). \end{aligned}$$

Hence, $\phi'(x) \leq 0$ for all $x \leq 2$, or, $\phi(x)$ is a decreasing function on x . Consequently, from (8) it is sufficiently to have

$$\frac{1 - \alpha}{2 - \alpha} 2^{r-s-n-p-q} \leq 1. \quad (9)$$

But the inequality (9) holds for s, r, p, q, n satisfying (5) and this show that

$$S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\alpha), \mathcal{T}_{n+r}(\alpha)) \leq r - p - q - n - \log_2 \frac{2 - \alpha}{1 - \alpha}. \quad (10)$$

Finally, by using the extremal functions

$$f_2(z) = z - \frac{1 - \alpha}{2^{n+p}(2 - \alpha)} z^2 \in \mathcal{T}_{n+p}(\alpha) \text{ and } g_2(z) = z - \frac{1 - \alpha}{2^{n+q}(2 - \alpha)} z^2 \in \mathcal{T}_{n+q}(\alpha),$$

From (4), we can see that

$$I^s(f \circledast g) = z - \frac{(1 - \alpha)^2}{2^{2n+q+q+s}(2 - \alpha)^2} z^2 \in \mathcal{T}_{n+r}(\alpha).$$

But from (2) in Theorem 1.4 we deduce

$$I^s(f \circledast g) = z - \frac{1 - \alpha}{2^{n+r}(2 - \alpha)} z^2 \in \mathcal{T}_{n+r}(\alpha), \quad (11)$$

and (11) show that the inequality (5) is sharp and we have,

$$S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\alpha), \mathcal{T}_{n+r}(\alpha)) \geq r - n - p - q - \log_2 \frac{2 - \alpha}{1 - \alpha}. \quad (12)$$

Therefore from (10) and (12), the relation (6) holds true. The proofs runs as in the previous proof. \square

Corollary 2.2. *Let $0 < \alpha < 1$. We have the following \circledast -convolution consistence*

- (a) $S_{\circledast}(\mathcal{T}_0(\alpha), \mathcal{T}_0(\alpha), \mathcal{T}_0(\alpha)) = -\log_2 \frac{2-\alpha}{1-\alpha}$,
- (b) $S_{\circledast}(\mathcal{T}_0(\alpha), \mathcal{T}_0(\alpha), \mathcal{T}_1(\alpha)) = 1 - \log_2 \frac{2-\alpha}{1-\alpha}$,
- (c) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_0(\alpha), \mathcal{T}_0(\alpha)) = -1 - \log_2 \frac{2-\alpha}{1-\alpha}$,
- (d) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_1(\alpha), \mathcal{T}_0(\alpha)) = -2 - \log_2 \frac{2-\alpha}{1-\alpha}$,
- (e) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_0(\alpha), \mathcal{T}_1(\alpha)) = -\log_2 \frac{2-\alpha}{1-\alpha}$,
- (f) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_1(\alpha), \mathcal{T}_1(\alpha)) = -1 - \log_2 \frac{2-\alpha}{1-\alpha}$.

Theorem 2.3. *Let $0 \leq \alpha, \beta, \gamma < 1$, $\alpha \neq \beta$, $\gamma \leq \alpha$, $\gamma \leq \beta$. If $f \in \mathcal{T}_{n+p}(\alpha)$ and $g \in \mathcal{T}_{n+q}(\beta)$, then $I^s(f \circledast g) \in \mathcal{T}_{n+r}(\gamma)$, where $p, q, r, n \in \mathbb{N}$ and*

$$s \geq r - p - q - n - \log_2 \frac{2-\alpha}{1-\alpha} - \log_2 \frac{2-\beta}{1-\beta} + \log_2 \frac{2-\gamma}{1-\gamma}. \quad (13)$$

This result is sharp, and we have

$$\begin{aligned} S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\beta), \mathcal{T}_{n+r}(\gamma)) \\ = r - p - q - n - \log_2 \frac{2-\alpha}{1-\alpha} - \log_2 \frac{2-\beta}{1-\beta} + \log_2 \frac{2-\gamma}{1-\gamma}. \end{aligned} \quad (14)$$

Proof. Since $f \in \mathcal{T}_{n+p}(\alpha)$ and $g \in \mathcal{T}_{n+q}(\beta)$, if f and g have the form (3), then from (2) in Theorem 1.4, we have

$$\sum_{k=2}^{\infty} k^{n+p} \frac{k-\alpha}{1-\alpha} a_k \leq 1, \quad \sum_{k=2}^{\infty} k^{n+q} \frac{k-\beta}{1-\beta} b_k \leq 1,$$

and by the Cauchy-Schwarz inequality, we obtain

$$\sum_{k=2}^{\infty} k^{n+\frac{p+q}{2}} \sqrt{\frac{(k-\alpha)(k-\beta)}{(1-\alpha)(1-\beta)}} \sqrt{a_k b_k} \leq 1. \quad (15)$$

We need to find conditions on s, r, p, q, n such that

$$\sum_{k=2}^{\infty} k^{n+r-s} \frac{k-\gamma}{1-\gamma} a_k b_k \leq 1.$$

Thus, it is sufficient to show that

$$k^{n+r-s} \frac{k-\gamma}{1-\gamma} a_k b_k \leq k^{n+\frac{p+q}{2}} \sqrt{\frac{(k-\alpha)(k-\beta)}{(1-\alpha)(1-\beta)}} \sqrt{a_k b_k},$$

that is,

$$\sqrt{a_k b_k} \leq k^{s-r+\frac{p+q}{2}} \sqrt{\frac{(k-\alpha)(k-\beta)}{(1-\alpha)(1-\beta)}} \frac{1-\gamma}{k-\gamma}, \quad k \in \{2, 3, \dots\}.$$

From (15), we know that

$$\sqrt{a_k b_k} \leq k^{-n-\frac{p+q}{2}} \sqrt{\frac{(1-\alpha)(1-\beta)}{(k-\alpha)(k-\beta)}}, \quad k \in \{2, 3, \dots\}.$$

Consequently, it is sufficiently to have,

$$k^{-n-\frac{p+q}{2}} \sqrt{\frac{(1-\alpha)(1-\beta)}{(k-\alpha)(k-\beta)}} \leq k^{s-r+\frac{p+q}{2}} \sqrt{\frac{(k-\alpha)(k-\beta)}{(1-\alpha)(1-\beta)}} \frac{1-\gamma}{k-\gamma}, \quad k \in \{2, 3, \dots\},$$

or, equivalently,

$$\frac{(1-\alpha)(1-\beta)(k-\gamma)}{(k-\alpha)(k-\beta)(1-\gamma)} k^{r-s-n-p-q} \leq 1, \quad k \in \{2, 3, \dots\}. \quad (16)$$

Letting $\phi(x) = \frac{(x-\gamma)}{(x-\alpha)(x-\beta)} x^{r-s-n-p-q}$, $x \geq 2$, we obtain that

$$\begin{aligned} \phi'(x) &= \frac{x^{r-n-s-p-q}}{(x-\alpha)^2(x-\beta)^2} \left((x-\alpha)(x-\beta) \right. \\ &+ \frac{(x-\gamma)(x-\alpha)(x-\beta)(r-n-s-p-q)}{x} \\ &- (x-\alpha)(x-\gamma) - (x-\beta)(x-\gamma) \Big) \\ &\leq \frac{x^{r-n-s-p-q}}{(x-\alpha)^2(x-\beta)^2} \left(2(x-\alpha)(x-\beta) - (x-\alpha)(x-\gamma) \right. \\ &- (x-\beta)(x-\gamma) \Big) \leq 0. \end{aligned}$$

Hence, $\phi'(x) \leq 0$ for all $x \leq 2$, or, $\phi(x)$ is a decreasing function on x . Consequently, from (16) it is sufficient to have

$$2^{r-s-n-p-q} \leq \frac{2-\alpha}{1-\alpha} \frac{2-\beta}{1-\beta} \frac{1-\gamma}{2-\gamma}. \quad (17)$$

But the inequality (17) holds for s, r, p, q, n satisfying (13) and this show that

$$\begin{aligned} S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\alpha), \mathcal{T}_{n+r}(\alpha)) \\ \leq r - n - s - p - q - \log_2 \frac{2 - \alpha}{1 - \alpha} - \log_2 \frac{2 - \beta}{1 - \beta} + \log_2 \frac{2 - \gamma}{1 - \gamma}. \end{aligned} \quad (18)$$

Finally, by using the extremal functions

$$f_2(z) = z - \frac{1 - \alpha}{2^{n+p}(2 - \alpha)} z^2 \in \mathcal{T}_{n+p}(\alpha) \text{ and } g_2(z) = z - \frac{1 - \beta}{2^{n+q}(2 - \beta)} z^2 \in \mathcal{T}_{n+q}(\beta).$$

From (4) we can see that

$$I^s(f \circledast g) = z - \frac{(1 - \alpha)(1 - \beta)}{2^{2n+q+q+s}(2 - \alpha)(2 - \beta)} z^2 \in \mathcal{T}_{n+r}(\alpha). \quad (19)$$

But from (2) in Theorem 1.4 we deduce

$$I^s(f \circledast g) = z - \frac{1 - \gamma}{2^{n+r}(2 - \gamma)} z^2 \in \mathcal{T}_{n+r}(\alpha), \quad (20)$$

and (20) show that the inequality (12) is sharp and we have,

$$\begin{aligned} S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\alpha), \mathcal{T}_{n+r}(\alpha)) \\ \geq r - n - s - p - q - \log_2 \frac{2 - \alpha}{1 - \alpha} - \log_2 \frac{2 - \beta}{1 - \beta} + \log_2 \frac{2 - \gamma}{1 - \gamma}. \end{aligned} \quad (21)$$

Therefore from (18) and (21) the relation (14) holds. The proof goes as the previous one. \square

Corollary 2.4. *Let $0 \leq \alpha, \beta, \gamma < 1$, $\alpha \neq \beta$, $\gamma \leq \alpha$, $\gamma \leq \beta$. We have the following \circledast -convolution consistence:*

- (a) $S_{\circledast}(\mathcal{T}_0(\alpha), \mathcal{T}_0(\beta), \mathcal{T}_0(\gamma)) = -\log_2 \frac{2 - \alpha}{1 - \alpha} - \log_2 \frac{2 - \beta}{1 - \beta} + \log_2 \frac{2 - \gamma}{1 - \gamma}$,
- (b) $S_{\circledast}(\mathcal{T}_0(\alpha), \mathcal{T}_0(\beta), \mathcal{T}_1(\gamma)) = 1 - \log_2 \frac{2 - \alpha}{1 - \alpha} - \log_2 \frac{2 - \beta}{1 - \beta} + \log_2 \frac{2 - \gamma}{1 - \gamma}$,
- (c) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_0(\beta), \mathcal{T}_0(\gamma)) = -1 - \log_2 \frac{2 - \alpha}{1 - \alpha} - \log_2 \frac{2 - \beta}{1 - \beta} + \log_2 \frac{2 - \gamma}{1 - \gamma}$,
- (d) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_1(\beta), \mathcal{T}_0(\gamma)) = -2 - \log_2 \frac{2 - \alpha}{1 - \alpha} - \log_2 \frac{2 - \beta}{1 - \beta} + \log_2 \frac{2 - \gamma}{1 - \gamma}$,
- (e) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_0(\beta), \mathcal{T}_1(\gamma)) = -\log_2 \frac{2 - \alpha}{1 - \alpha} - \log_2 \frac{2 - \beta}{1 - \beta} + \log_2 \frac{2 - \gamma}{1 - \gamma}$,
- (f) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_1(\beta), \mathcal{T}_1(\gamma)) = -1 - \log_2 \frac{2 - \alpha}{1 - \alpha} - \log_2 \frac{2 - \beta}{1 - \beta} + \log_2 \frac{2 - \gamma}{1 - \gamma}$.

Theorem 2.5. Let $0 \leq \alpha \leq 1$, if $f \in \mathcal{T}_{n+p}(\alpha)$ and $g \in \mathcal{T}_{n+q}$ Then $I^s(f \circledast g) \in \mathcal{T}_{n+r}(\alpha)$, where $p, q, r, n \in \mathbb{N}$ and

$$s \geq r - p - q - n - 1.$$

This result is sharp, and we have

$$S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}, \mathcal{T}_{n+r}(\alpha)) = r - p - q - n - 1.$$

Proof. In Theorem (2.3), we set $\alpha = \gamma$ and $\beta = 0$. \square

Corollary 2.6. Let $0 < \alpha < 1$, we have the following \circledast -convolution consistence

- (a) $S_{\circledast}(\mathcal{T}_0(\alpha), \mathcal{T}_0, \mathcal{T}_0(\alpha)) = -1$,
- (b) $S_{\circledast}(\mathcal{T}_0(\alpha), \mathcal{T}_0, \mathcal{T}_1(\alpha)) = 0$,
- (c) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_0, \mathcal{T}_0(\alpha)) = -2$,
- (d) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_1, \mathcal{T}_0(\alpha)) = -3$,
- (e) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_0, \mathcal{T}_1(\alpha)) = -1$,
- (f) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_1, \mathcal{T}_1(\alpha)) = -2$.

Theorem 2.7. Let $0 < \alpha < 1$, if $f \in \mathcal{T}_{n+p}(\alpha)$ and $g \in \mathcal{T}_{n+q}$ Then $I^s(f \circledast g) \in \mathcal{T}_{n+r}$, where $p, q, r, n \in \mathbb{N}$ and

$$s \geq r - p - q - n - \log_2 \frac{2 - \alpha}{1 - \alpha}.$$

This result is sharp, and we have

$$S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}, \mathcal{T}_{n+r}) = r - p - q - n - \log_2 \frac{2 - \alpha}{1 - \alpha}.$$

Proof. In Theorem (2.3), we set $\beta = \gamma = 0$. \square

Corollary 2.8. Let $0 < \alpha < 1$,. We have the following \circledast -convolution

consistence

- (a) $S_{\circledast}(\mathcal{T}_0(\alpha), \mathcal{T}_0, \mathcal{T}_0) = -\log_2 \frac{2-\alpha}{1-\alpha}$,
- (b) $S_{\circledast}(\mathcal{T}_0(\alpha), \mathcal{T}_0, \mathcal{T}_1) = 1 - \log_2 \frac{2-\alpha}{1-\alpha}$,
- (c) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_0, \mathcal{T}_0) = -1 - \log_2 \frac{2-\alpha}{1-\alpha}$,
- (d) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_1, \mathcal{T}_0) = -2 - \log_2 \frac{2-\alpha}{1-\alpha}$,
- (e) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_0, \mathcal{T}_1) = -\log_2 \frac{2-\alpha}{1-\alpha}$,
- (f) $S_{\circledast}(\mathcal{T}_1(\alpha), \mathcal{T}_1, \mathcal{T}_1) = -1 - \log_2 \frac{2-\alpha}{1-\alpha}$.

Theorem 2.9. Let $0 \leq \alpha < 1$, $0 < \beta \leq 1$, if $f \in \mathcal{T}_{n+p}(\alpha, \beta)$ and $g \in \mathcal{T}_{n+q}(\alpha, \beta)$. Then $I^s(f \circledast g) \in \mathcal{T}_{n+r}(\alpha, \beta)$, where $p, q, r, n \in \mathbb{N}$ and

$$s \geq r - p - q - n - \log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)}. \quad (22)$$

This result is sharp, and we have

$$S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\beta), \mathcal{T}_{n+r}(\gamma)) = r - p - q - n - \log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)}. \quad (23)$$

Proof. By applying the Cauchy-Schwarz inequality and similar technique as in the proof of Theorem 2.1, we obtain that

$$\frac{k^{r-s-n-p-q} 2\beta(1-\alpha)}{(k-1) + \beta(k+1-2\alpha)} \leq 1, \quad k \in \{2, 3, \dots\}. \quad (24)$$

Letting $\phi(x) = \frac{x^{r-s-n-p-q}}{(x-1) + \beta(x+1-2\alpha)}$, $x \geq 2$ and we obtain that,

$$\begin{aligned} \phi'(x) &= \frac{(r-s-n-p-q)(x(\beta+1) + \beta(1-2\alpha) - 1)x^{r-n-s-p-q-1} - (\beta+1)x^{r-n-s-p-q}}{(x(\beta+1) + \beta(1-2\alpha) - 1)^2} \\ &= \frac{x^{r-n-s-p-q}}{(x(\beta+1) + \beta(1-2\alpha) - 1)^2} \left((r-s-n-p-q) \left(\frac{x(\beta+1) + \beta(1-2\alpha) - 1}{x} \right) - (\beta+1) \right). \end{aligned}$$

Hence, $\phi'(x) \leq 0$ for all $x \leq 2$, or, $\phi(x)$ is a decreasing function on x . Consequently, from (24) it is sufficient to have

$$2^{r-s-n-p-q} \leq \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)}. \quad (25)$$

But the inequality (25) holds for s, r, p, q, n satisfying (22) and this show that

$$S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\alpha), \mathcal{T}_{n+r}(\alpha)) \leq r - p - q - n - \log_2 \frac{1 + \beta(2 - \alpha)}{2\beta(1 - \alpha)}. \quad (26)$$

Finally, by using the extremal functions

$$\begin{aligned} f_2(z) &= z - \frac{2\beta(1 - \alpha)}{2^{n+p}(1 + \beta(3 - 2\alpha))} z^2 \in \mathcal{T}_{n+p}(\alpha, \beta), \\ g_2(z) &= z - \frac{2\beta(1 - \alpha)}{2^{n+q}(1 + \beta(3 - 2\alpha))} z^2 \in \mathcal{T}_{n+q}(\alpha, \beta). \end{aligned}$$

From (4) we can see that

$$I^s(f \circledast g) = z - \frac{(2\beta(1 - \alpha))^2}{2^{2n+q+q+s}(1 + \beta(3 - 2\alpha))^2} z^2 \in \mathcal{T}_{n+r}(\alpha)$$

But from (2) in Theorem 1.4 we deduce

$$I^s(f \circledast g) = z - \frac{2\beta(1 - \alpha)}{2^{n+r}(1 + \beta(3 - 2\alpha))} z^2 \in \mathcal{T}_{n+r}(\alpha), \quad (27)$$

and (27) show that the inequality (22) is sharp and we have,

$$S_{\circledast}(\mathcal{T}_{n+p}(\alpha), \mathcal{T}_{n+q}(\alpha), \mathcal{T}_{n+r}(\alpha)) \geq r - n - p - q - \log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)}. \quad (28)$$

Therefore from (26) and (28) the relation (23) holds. Those proofs run as the previous ones. \square

Corollary 2.10. *Let $0 \leq \alpha < 1$, $0 < \beta \leq 1$. We have the following \circledast -convolution consistence*

- (a) $S_{\circledast}(\mathcal{T}_0(\alpha, \beta), \mathcal{T}_0(\alpha, \beta), \mathcal{T}_0(\alpha, \beta)) = -\log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)},$
- (b) $S_{\circledast}(\mathcal{T}_0(\alpha, \beta), \mathcal{T}_0(\alpha, \beta), \mathcal{T}_1(\alpha, \beta)) = 1 - \log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)},$
- (c) $S_{\circledast}(\mathcal{T}_1(\alpha, \beta), \mathcal{T}_0(\alpha, \beta), \mathcal{T}_0(\alpha, \beta)) = -1 - \log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)},$
- (d) $S_{\circledast}(\mathcal{T}_1(\alpha, \beta), \mathcal{T}_1(\alpha, \beta), \mathcal{T}_0(\alpha, \beta)) = -2 - \log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)},$
- (e) $S_{\circledast}(\mathcal{T}_1(\alpha, \beta), \mathcal{T}_0(\alpha, \beta), \mathcal{T}_1(\alpha, \beta)) = -\log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)},$
- (f) $S_{\circledast}(\mathcal{T}_1(\alpha, \beta), \mathcal{T}_1(\alpha, \beta), \mathcal{T}_1(\alpha, \beta)) = -1 - \log_2 \frac{1 + \beta(3 - 2\alpha)}{2\beta(1 - \alpha)}.$

References

- [1] U. Bednarz and S. Kanas, Stability of the integral convolution of k -uniformly convex and k -starlike functions, *Journal of Appl. Analysis*, **10**, No 1 (2004), 105-115.
- [2] U. Bednarz and J. Sokól, On order of convolution consistency of the analytic functions, *Stud. Univ. Babes-Bolyai Math.*, **55**, No 3 (2010), 41-50.
- [3] I.C.M. Balaet și, An integral operator associated with differential superordinations, *An. Stiint. Univ. Ovidius Constanta Ser. Mat.* **17**, No 3 (2009), 37-44.
- [4] V.P. Gupta and P.K. Jain, Certain classes of univalent functions with negative coefficients, *Bull. Austral. Math. Soc.* **14** (1976), 409-416.
- [5] S.G.S. Sălăgean, Subclasses of univalent functions, *Complex Analysis - Fifth Romanian-Finnish Seminar, Part 1* (Bucharest, 1981), *Lecture Notes in Math.*, **1013**, Springer (1983), 362-372.
- [6] G.S. Sălăgean, On some classes of univalent functions, *Seminar of Geometric Function Theory*, Cluj - Napoca, 1983.
- [7] G.S. Sălăgean, Classes of univalent functions with two fixed points, *Babes-Bolyai Univ., Itinerant Sem. Funct. Eq., Approx. Conv.*, 1984, 181-184.
- [8] G.S. Sălăgean, On univalent functions with negative coefficients, *Babes-Bolyai Univ., Res. Sem.*, Preprint 7/1991, 47-54.
- [9] G.S. Sălăgean: *Geometria Planului Complex*, Ed. Promedia Plus, Cluj Napoca, 1999.
- [10] G.S. Sălăgean and A. Taut, On the order of convolution consistency of the analytic functions with negative coefficients, 2011.
- [11] A. Schild and H. Silverman, Convolutions of univalent functions with negative coefficients, *Ann. Univ. M. Curie Skł., Sec. A*, **29** (1975), 99-107.
- [12] H. Silverman, Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.*, **5** (1975), 109-116.

