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1. Introduction

Most of the real life problems using mathematical modeling are converted into
functional equations like partial differential equations, integro-differential equa-
tion, stochastic equations and others. The mathematical formulations of many
physical phenomena result into integro-differential equations.

An integro-differential equation is an equation which contains derivatives
and integrations of unknown function. These equations arise in fluid dynamics,
biological models and chemical kinetics. In the past several decades for the
numerical solution of linear and non linear differential equations many effective
methods have been presented like variational iteration method [7], Adomian
decomposition method [1], homotopy analysis method [8], homotopy perturba-
tion method [5], He’s homotopy perturbation method [2] and wavelet method
[4].

But there are very few methods for the numerical solution of the boundary
value problems for higher order integro differential equations. The boundary
value problems for higher order integro differential equations had been investi-
gated by Agrawal [3], Morchalo [11], [12], Karimpour [9], Wazwaz [14], Yusu-
foglu [15] and Zhao, Corless [16].

In the recent years, the wavelets have started to play an important role
into many different fields of science and engineering. Many researchers have
started to use different types of wavelets to solve differential equations and
found wavelets a powerful and effective tool for analyzing problems of greater
computational complexity.

Lepik [10] used Haar wavelet method to solve non-linear integro differen-
tial equations. Ghasemi et al. [5] presented the comparison between Wavelet -
Galerkin method and homotopy perturbation method for the non - linear inte-
gro differential equations. Ghasemi et al. also provided numerical solution of
linear integro differential equations by using sine-cosine wavelet method [6].

In the present paper, the Legendre wavelet method (LWM) is applied to
find numerical solution of m-th order integro-differential equation of the form

y(m)(x) = f(x) +

∫ x

0
k(x, t)F

(

y(t)
)

dt, 0 < x < b (1)

with the boundary conditions

y(j)(0) = αj , j = 0, 1, 2, ..., r − 1,

y(j)(b) = βj , j = r, r + 1, ...,m − 1,
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where y(m)(x) indicates the m-th order derivative of y(x) and F
(

y(x)
)

is a non-
linear function, K(x, t) is the kernel and f(x) is a function of x. y(x) and f(x)
are real and can be differentiated any number of times for x ∈ [0, b] and αj ,
and βj are real finite constants.

The Legendre wavelet method converts the integro differential equation into
integral equation and using Legendre wavelets expand the solution having un-
known coefficients. The approximate solution of equation (1) is obtained by
evaluating unknown coefficients using the properties of Legendre wavelets along
with the Gaussian integration formula.

2. Preliminary Concepts

2.1. Wavelets and Legendre Wavelets

The wavelets are families of functions constructed from dilation parameter a
and translation parameter b of a single function called the ’mother wavelet’
Ψ(t). They are defined by

Ψa,b(t) =
1

√

| a |
Ψ

(

t− b

a

)

, a, b ∈ R, a 6= 0.

Now for the discrete values of a and b, a = a−k
0 , b = nb0a

−k
0 , a0 > 1, b0 > 0,

where n and k are positive integers. We have the following family of discrete
wavelets:

Ψk,n(t) =| a |−1/2 Ψ
(

ak0t− nb0

)

,

where Ψk,n(t) forms a basis of L2(R).

Legendre Wavelets. The Legendre wavelet Ψnm(t) = Ψ(k, n̂,m, t) have
four arguments n̂ = 2n− 1, n = 1, 2, 3, · · · , 2k−1, k can be any positive integer,
m is the order of the Legendre polynomials and t is the normalized time. They
are defined on the interval [0, 1) by

Ψnm(t) =

{

2k/2
√

m+ 1
2Pm

(

2kt− n̂
)

for n̂−1
2k

≤ t ≤ n̂+1
2k
,

0 otherwise.
(2)

The coefficient
√

m+ 1
2 is for orthonormality, the dilation parameter is 2−k and

the translation parameter is n̂2−k. Here Pm(t) are the well known Legendre



380 R.S. Chandel, A. Singh, D. Chouhan

polynomials of orderm which are orthogonal with respect to the weight function
w(t) = 1 on the interval [−1, 1] and satisfy the following formulae:

P0(t) = 1, P1(t) = t

and

Pm+1(t) =

(

2m+ 1

m+ 1

)

t Pm(t)−
(

m

m+ 1

)

Pm−1(t), m = 1, 2, 3, · · · .

2.2. Function Approximation

A function defined over [0, 1] may be expressed as

f(t) =
∞
∑

n=1

∞
∑

m=0

CnmΨnm(t). (3)

Here

Cnm = 〈f(t),Ψnm(t)〉

〈., .〉 denotes the inner product. On truncating the infinite series in equation
(3), we have

f(t) ∼=
2k−1

∑

n=1

M−1
∑

m=0

CnmΨnm(t) = CTΨ(t),

where C and Ψ(t) are 2k−1M × 1 matrices given by

C =
[

C10, C11, ..., C1M−1, C20, ...,

C2M−1, ..., C2k−10, ..., C2k−1M−1

]T
(4)

and

ψ(t) =
[

ψ10(t), ψ11(t), ..., ψ1M−1(t), ψ20(t), ...,

ψ2M−1(t), ..., ψ2k−10(t), ..., ψ2k−1M−1

]T
. (5)
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3. Legendre Wavelet Method (LWM) for Higher Order
Integro-Differential Equations with Given Boundary Conditions

Consider the integro-differential equation given in equation (1). Now define
L = dm

dxm . So

L−1y(x) =

∫ x

0
dx

∫ x

0
dx...

∫ x

0
y(x)dx (m-times).

By equation (1),

L−1
{

ym(x)
}

= L−1
{

f(x)
}

+ L−1

{

∫ x

0
K(x, t)F

(

y(t)
)

dt

}

y(x) = g(x) + h(x) + L−1

{

∫ x

0
K(x, t)F

(

y(t)
)

dt

}

,

where h(x) = L−1
{

f(x)
}

and g(x) is a function of x along with constants.
Now suppose

∅(x) = g(x) + h(x),

then

y(x) = ∅(x) +

∫ x

0
(x− t)mK(x, t)F

(

y(t)
)

dt. (6)

Let

y(x) = CTΨ(x). (7)

So we have

CTΨ(x) = ∅(x) +

∫ x

0
(x− t)mK(x, t)F

(

CTΨ(t)
)

dt. (8)

Now collocate equation (8) at 2k−1M points xi as

CTΨ(xi) = ∅(xi) +

∫ xi

0
(x− t)mK(x, t)F

(

CTΨ(t)
)

dt. (9)

On taking the zeros of the Chebyshev polynomials as collocation points, we
have

xi = cos
(

(2i+ 1)π/2kM
)

, i = 1, 2, ..., 2k−1M.
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For using the Gaussian integration formula in equation (9), the interval [0, xi] is
transferred into the interval [-1,1] by means of the transformation τ = 2

xi
t− 1.

Then, equation (9) may be written as

CTΨ(xi) = ∅(xi) +
xi
2

∫ 1

−1

(

x− xi
2
(τ + 1)

)m

×K
(

x,
xi
2
(τ + 1)

)

F
(

CTΨ
(xi
2
(τ + 1)

)

)

dτ.

Now on using the Gaussian integration formula, we have

CTΨ(xi) = ∅(xi) +
xi
2

s
∑

j=1

Wj

(

x− xi
2
(τj + 1)

)m

×K
(

x,
xi
2
(τj + 1)

)

F
(

CTΨ
(xi
2
(τj + 1)

)

)

dτ, (10)

where τ is a zero of the Legendre polynomials Ps+1, andWj are the correspond-
ing weights. The Gaussian integration formula is used for the polynomials of
degree not exceeding 2s + 1. The weight Wj can be evaluated by the formula

Wj =

∫ 1

−1

s
∏

j=0,j 6=i

( τ − τj
τi − τj

)

dτ.

From equation (10), 2k−1M non-linear equations are obtained which can be
solved for the elements of C in equation (7) using Newton’s iterative method.

4. Theorems on Convergence and Error Estimation

In this section, some theorems on convergence analysis and error estimation of
proposed method are given.

Theorem 4.1. The solution of problem (1), given by series solution equa-
tion (3), using the Legendre wavelet method converges towards u(x).

Proof. Suppose Ψk,n(t) =| a |−1/2 Ψ(ak0t− nb0), where Ψk,n(t) form a basis
of L2(R) and let L2(R) be a Hilbert space. In particular, for a0 = 2 and
b0 = 1,Ψk,n(t) forms an orthonormal basis.
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Let

u(x) =
M−1
∑

i=1

C1iΨ1i(x),

where

C1i = 〈u(x),Ψ1i(x)〉 for k = 1 and 〈., .〉 represents an inner product.

Now

u(x) =
n
∑

i=1

〈u(x),Ψ1i(x)〉Ψ1i(x).

Let us denote

Ψ1i(x) as Ψ(x) and αj = 〈u(x),Ψ(x)〉.

Suppose {Sn} is the sequence of partial sums of
(

αjΨ(xj)
)

and Sn, Sm are
arbitrary partial sums with n ≥ m.

Now we prove {Sn} is a Cauchy sequence in Hilbert space.
Let

Sn =
n
∑

j=1

αjΨ(xj).

So

〈u(x), Sn〉 =
〈

u(x),

n
∑

j=1

αjΨ(xj)

〉

=

n
∑

j=1

αj〈u(x),Ψ(xj)〉 =
n
∑

j=1

αjαj =

n
∑

j=1

| αj |2 .

Now we claim that

‖ Sn − Sm ‖2=
n
∑

j=m+1

| αj |2 for n > m.

Then,

‖
n
∑

j=m+1

αjΨ(xj) ‖2=
〈

n
∑

i=m+1

αiΨ(xi),

n
∑

j=m+1

αjΨ(xj)

〉

=
n
∑

i=m+1

n
∑

j=m+1

αiαj〈Ψ(xi),Ψ(xj)〉 =
n
∑

j=m+1

αjαj =
n
∑

j=m+1

| αj |2 .
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Hence ‖ Sn − Sm ‖2=∑n
j=m+1 | αj |2 for n > m.

By the Bessel inequality, we have
∑∞

j=1 | αj |2 is convergent and hence

‖ Sn − Sm ‖2→ 0 as m,n→ ∞. Now ‖ Sn − Sm ‖ converges to 0 and {Sn} is a
Cauchy sequence so suppose it converges to ′s′. We prove that u(x) = s,

〈s− u(x),Ψ(xj)〉 = 〈s,Ψ(xj)〉 − 〈u(x),Ψ(xj)〉

= 〈 lim
n→∞

Sn,Ψ(xj)〉 − αj = lim
n→∞

〈Sn,Ψ(xj)〉 − αj = αj − αj

⇒ 〈s − u(x),Ψ(xj)〉 = 0.

Hence u(x) = s and
∑n

j=1 αjΨ(xj) converges to u(x).

4.1. Error Estimation

Error estimation for the approximate solution of equation (6) is discussed in
this part using the method presented in [13].

Suppose u(x) is the approximate solution for u(x) and En(x) = u(x)−u(x)
is the error function,

u(x) = ∅(x) +

∫ x

0
(x− t)mK(x, t)F

(

y(t)
)

dt+Hn(x),

where Hn(x) is the perturbation term,

Hn(x) = u(x)−∅(x)−
∫ x

0
(x− t)mK(x, t)F

(

y(t)
)

dt. (11)

Now find an approximation En(x) to the error function En(x) in the same
way as we did before the solution of the problem. Subtracting equation (11)
from equation (6), the error function En(t) satisfies the problem

En(x) +

∫ x

0
(x− t)mK(x, t)F

(

y(t)
)

dt = −Hn(x). (12)

Equation (12) is recalculated in the same way as we did before the solution of
equation (7) for the construction of En(x) to En(x). Hence the stability of the
Legendre wavelet method is established through this convergence theorem and
error estimation.
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5. Numerical Examples

In the following examples, the proposed Legendre wavelet method is discussed
to find the numerical solution of two boundary value problems of fourth order
integro-differential equations.

Example (i). In the following example, we consider linear boundary value
problem for the integro-differential equation

y
′′′′

(x) = 5ex − 1 +

∫ x

0
y(x)dx, 0 < x < 1, (13)

subject to the boundary conditions

y(0) = 0, y
′

(0) = 1, y(1) = e, y
′

(1) = 2e. (14)

We apply the Legendre wavelet method presented in this paper and solve the
equation (13) for k = 1 and M = 4.

On applying L−1 both sides of equation (13), we have

L−1[y
′′′′

(x)] = L−1[5ex]− L−1[−1] + L−1

[

∫ x

0
y(x)dx

]

y(x) = x+
Ax2

2
+
Bx3

6
+
x4

24
+ L−1[5ex] + L−1

[

∫ x

0
y(x)dx

]

,

where y
′′

(0) = A, y
′′′

(0) = B,

y(x) = −5− 4x+
(A− 5)x2

2
+

(B − 5)x3

6

+
x4

24
+ 5ex +

∫ x

0
(x− t)4y(t)dt.

On replacing y(x) by CTΨ(x),

CTΨ(x) = −5− 4x+
(A− 5)x2

2
+

(B − 5)x3

6

+
x4

24
+ 5ex +

∫ x

0
(x− t)4CTΨ(t)dt. (15)
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On solving equation (15), we have

C10 =
−B − 7(2A +B)

24
, C11 =

−4− (2A+B)

4
√
3

,

C12 =
2A+B

24
√
5
, C13 =

B

120
√
7
.

On using the boundary conditions, we have A = 2, B = 3. Now by equation
(7) we have

y(x) = C10Ψ10 + C11Ψ11 + C12Ψ12 + C13Ψ13.

Hence,

y(x) = x+ x2 +
x3

2!
+
x4

3!
.

Therefore, we have y(x) = xex which is the exact solution.
Table 1 shows the error for different values of M compared with the exact

solution for Example (i).
Example (ii). Now we consider the non-linear boundary value problem

for integro-differential equation

y
′′′′

(x) = 3ex − x3

3
− e2x

2
− 2xex − 3

2
+

∫ x

0
y2dx, (16)

subject to the boundary conditions y(0) = 1, y(1) = 1 + e, y
′

(0) = 2, y
′

(1) =
1 + e. For k = 1,M = 4, we have by equation (16)

L−1[y
′′′′

(x)] = L−1
[

3ex − x3

3
− e2x

2
− 2xex − 3

2

]

+ L−1

[

∫ x

0
y2dx

]

y(x) = 1 + 2x+
Ax2

2
+
Bx3

6

+L−1
[

3ex − x3

3
− e2x

2
− 2xex − 3

2

]

+ L−1

[

∫ x

0
y2dx

]

,

where y
′′

(0) = A, y
′′′

(0) = B,

y(x) =
193

32
− 111

16
x+

8A− 55

16
x2 +

4B − 19

24
x3 − 1

16
x4

− 1

2520
x7 + 11ex − 1

32
e2x − 2xex +

∫ x

0
(x− t)4

(

y(t)
)2
dt.
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On replacing y(x) by CTΨ(x) and solving it, we have

C10 =
−B − 7(2A +B)

24
, C11 =

−4− (2A+B)

4
√
3

,

C12 =
2A+B

24
√
5
, C13 =

B

120
√
7
.

By using the boundary conditions, we have A = 1, B = 1. Now by equation (7)
we have

y(x) = C10Ψ10 + C11Ψ11 + C12Ψ12 + C13Ψ13.

Hence,

y(x) = 1 + 2x+
x2

2!
+
x3

3!
.

Therefore, we have y(x) = x+ ex which is the exact solution.
Table 2 shows the error for different values of M with the exact solution for

Example (ii).
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6. Conclusion

In this paper the Legendre wavelet method (LWM) has been proposed for the so-
lutions of boundary value problems of higher order linear and nonlinear Volterra
integro-differential equations. The Gaussian integration method and the prop-
erties of the Legendre wavelets are used to reduce the problem into nonlinear
algebraic equations. For the given function approximation, the convergence of
the Legendre wavelet method is also proved. Illustrative examples are given
to demonstrate the validity, accuracy and correctness of the proposed method.
The error between the approximate solution and exact solution decreases when
the degree of approximation increases.
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