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Abstract: In this paper, the aim of the investor is to maximize expected
return for a given level of risk. The model is based on a particular risk measure
conditional value-at-risk (CVaR), the expected loss exceeding Value-at-Risk.
The portfolio is optimized for investment in equity, debt and option on equity.
In order to enhance the return potential, the expected return of intermittent
re-investment payment obtained from option is also optimized. We develop a
method to deal with the maximization of return of a portfolio in a two period
context extending the work of Korn and Zeytun [4].
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1. Introduction

Investment in financial asset classes, subject to uncertain prices, leads to an
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expected return distribution. The deviation from expectation is characterized
as the risk of investment (Artzner et al. [1]) contends, risk is related to the
variability of the future value of a position, due to market changes or more
generally to uncertain events, it is better to instead consider future values only.
The risk measure used can be relative or absolute. The former category includes
measures like variance, standard deviation or absolute deviation, whereas latter
category includes measures like value at risk and its variants like conditional
value at risk. The former measures are also termed as volatility measures.

Portfolio is allocation of investment budget into competing asset classes
with a stated objective, which could be either expected return maximization
or risk minimization. These are competing objectives requiring a trade-off on
the part of risk-averse utility maximizer investor, thereby leading to concept of
portfolio optimization and making of economic choice under uncertainty and
risk. Portfolios are essentially built to reduce the risk for a given level of return.
They essentially try to lever the co-variance characteristics of the constituent
securities and it is contended that the portfolio risk is an amalgam of individual
as well as interactive risk. The earliest theory of (Markowitz [7]) addressed the
issue by referring to a relative measure of risk, variance essentially for normal
distribution. It contended that when portfolios are created, expected return
is weighted average where as risk defined as variance (or its square root i.e.,
standard deviation) is not. Efficient diversification can reduce the portfolio
risk significantly by playing on the covariance characteristics and the relative
weight of the securities simultaneously. We have other mean-variance models
as well like Kan and Smith [3], Liu [6] addresses the problem by optimizing
mean-expected absolute deviation.

A challenge arises when we address non-normal distributions with promi-
nent tail characteristics. There is nothing efficient about an optimized portfolio
obtained by ignoring the tails. In fact, by incorporating the tails into risk-return
frontiers hitherto ignored, efficient portfolios become inefficient (Rockafellar et
al. [10]). In the second category, we take absolute risk measure models. In this
category, we have value-at-risk (VaR) models and Conditional Value-at-Risk
(CVaR) models (Artzner et al. [1]). The essential advantage of using CVaR as
a risk measure is that it can be expressed in a linear format (Rockafellar et al.
[9]) and then the portfolio performance can be optimized using standard linear
programming technique.

It is very important to decide which risk measure should be taken into
account. A risk measure shall ideally be coherent (Artzner et al. [1]). According
to (Artzner et al. [1]), Coherence: a risk measure satisfying the four axioms of
translation invariance, subadditivity, positive homogeneity, and monotonicity,
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is called coherent. Although there are several risk measures proposed so far in
the literature, none of them have superiority in all aspects. VaR and CVaR
are becoming more and more popular in portfolio management. Value-at-Risk
(VaR) means the amount of money that expresses the maximum expected loss
from an investment over a specific investment horizon for a given confidence
level. But VaR does not give any information beyond this amount of money
(Baweja et al. [2]). Further it has undesirable mathematical characteristics
such as lack of subaddititivty (Artzner et al. [1]) and Convexity (Rockafellar
et al. [9]). By contrast CVaR is considered a more consistent measure of risk
than VaR. Conditional Value-at-Risk is defined as the weighted average of VaR
and losses strictly exceeding VaR (Rockafellar et al. [9]).

Hence in the present paper we intend to take a coherent risk measure CVaR.
In this paper we assume a financial market with three asset classes bond, stock
and an option on stock. We essentially try to modify (Korn et al. [4]) the
model by introducing one more optimization loop at an intermittent time when
the option matures. We impose a constraint on CVaR as is done in (Martinelli
et al. [8]). It has been observed that the use of option with higher strike
price leads to higher expected return while keeping the risk constant (Korn
et al. [4]). We consider the aspect of using an option that matures before
investor’s horizon time. Then, the one-period (Martinelli et al. [8]) problem
gets a dynamic aspect, the problem of optimally reinvesting the intermediate
payments resulting from the option. It is essentially at this point that our model
works differently from (Korn et al. [4]). It essentially converts the original one
period problem into a two period problem.

The rest of the paper is organized as follows. For better understanding of
the paper, Section 2 introduces basic information on option, stochastic process,
VaR, CVaR and also linearization method of Rockafellar and Uryasev [9]. Based
on CVaR risk measure, the crisp form of the model is presented in Section 3.
In Section 4, we make experiment to examine its parameters and do sensitivity
analysis for the model. Concluding remarks are given in Section 5.

2. Basic Concepts

2.1. Option

Options are one of the more popular financial derivatives currently available.
They are far more popular than the underlying, on which they are written.
Options are essentially dichotomized into Call, an option to buy the underlying
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and Put, an option to sell the underlying ; at a predetermined exercise price
up to or at a predetermined time. Option exercisable only at the expiry of a
predetermined time are called European and option exercisable any time up
to the predetermined time are called American option. In this paper, we only
focus on European call option. A European call option is a contract that gives
the holder the right, but not the obligation, to buy one unit of a stock for a
predetermined strike price K on the maturity time T . The payoff of a call
option is

p(ST ) =

{

0 if ST ≤ K

ST −K if ST > k,

where ST is the price of the underlying asset at maturity time T with strike
price K.

2.2. Stochastic Process [5]

Any variable whose value changes over time in an uncertain way is said to follow
a stochastic process. Stochastic processes can be classified as discrete time or
continuous time. In this paper, we are using discrete-time stochastic process
(Brownian motion). A discrete-time stochastic process is one where value of
the variable can change only at certain fixed points in time such as every day.
A variable follows Brownian motion if the change ∆Z during a small period of
time ∆t is given by

∆Z = ε
√
∆t,

where ε has a standard normal distribution φ(0, 1).

2.3. Linearization of CVaR Method of Rockafellar and Uryasev [9]

Let f : Rn × R
m → R be the loss function which depends upon the control

vector w ∈ R
n and the random vector y ∈ R

m. The random vector y has
the probability distribution function p : Rm → R. However, the existence of
the density is not critical for the considered approach, this assumption can be
relaxed. Let ψ(w,α) denote the probability function, given by

ψ(w,α) =

∫

f(w,y)≤α
p(y)dy

which is the probability that the loss function f(w, y) does not exceed threshold
value α.
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The VaR function α(w, β) = min{α ∈ R : ψ(w,α) ≥ β} where β stands for
confidence level.

The CVaR function φβ(w) = (1− β)−1

∫

f(w,y)≥α(w,β)
f(w, y)p(y)dy.

Here φβ(w) is the conditional expected value of loss function F (w, y) under
the condition that it exceeds VaR function α(w, β). It was shown in (Rockafellar
et al. [9]) that the minimization of CVaR function φβ(w) on the feasible set
X ⊆ R

n can be reduced to the minimization of the function Fβ(w,α) given by

Fβ(w,α) = α+ (1− β)−1

∫

y∈Rm

X+p(y)dy,

on the set X × R, where X+ = (f(w, y)− α)+ = max{0, (f(w, y) − α)}.
Consequently, using equality

min
α∈R

Fβ(w,α) = φβ(w),

min
w∈X

α∈R

Fβ(w,α) = min
w∈X

Fβ(w,α(w, β)) = min
w∈X

φβ(w).

Note that the optimal solution α of this problem is VaR and under general
conditions, the function Fβ(w,α) is smooth. Thus, we can simultaneously find
VaR and CVaR by minimizing function Fβ(w,α).

We can use various approaches to calculate integral function Fβ(w,α). In
this paper, we use method proposed by Rockafellar and Uryasev [10] to approxi-
mate the integral appearing in Fβ(w,α) by using a sample from the distribution
of uncertainty vector y. The integral can be replaced by a summation, and in
this case

min
w∈X

α∈R

Fβ(w,α) = min
w∈X

[

α+
1

N(1− β)

N
∑

i=1

x+i

]

,

subject to constraints xi ≥ f(w, yi)− α,

xi ≥ 0, i = 1, 2, . . . , N,

where x+i = max{0, f(w, yi) − α} and N is the size of the sample and xi’s are
dummy variables.

Now Ri(w) is the return associated with portfolio w, and the relation be-
tween return function and loss function f(w, yi) is given by

f(w, yi) = −Ri(w), i = 1, 2, . . . , N,

where R(w) =
final wealth − initial wealth

initial wealth
.
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3. Formation of Model

We assume a simple investment problem where besides stocks and bonds, the
investor can also include options into the investment portfolio with investment
horizon time T . RS

T , R
B
T and RO,V

T denote return from stock, bond and Euro-
pean call option respectively. The option matures at time T1 = T/4 and the
vector w = (wS , wB , wO) represents weights of the stock, the bond and the op-
tion in the portfolio. RW,V

T is return of the portfolio at time T and it is defined
by

RW,V
T = wSRS

T + wBRB
T + wORO,V

T .

The aim of the investor is to maximize the expected return with risk (CVaR)
kept under the control. In our problem CVaR does not exceed an upper bound
U . Since one financial instrument (option) matures before horizon time T , the
investor faces the problem of re-investing these intermittent payments in the
remaining two investment opportunities (stock and bond) at time T1. As a
consequence, the one-period problem has turned into a two-period problem.
The investor again optimizes the re-investment portfolio (subportfolio) using
weight vector V = (V S, V B) to enhance expected return of re-investment rO,V .
Here V S and V B represent the weights of the stock and the bond respectively
for time T −T1. π0 denotes the European call option’s return at time T1 = T/4.
So π0 is given by

π0 =
(max{0, ST/4 −K})− C(S0,K, T/4)

C(S0,K, T/4)
,

C(S0,K, T/4) is the premium of the option with initial stock price. S0, strike
price K and maturity time T/4. The return of the option rO,V is obtained by
re-investing payoff of the option at time T1 and rO,V satisfies

rO,V = (1 + π0)[V S(1 + rS) + V B(1 + rB)]− 1,

where rS and rB denote the return of the stock and the bond for time T −T/4.
The inner optimization loop optimizes expected return of subportfolio for

the optimal choice of re-investment strategy V and the optimal value of ob-

jective function gives us return of option RO,V
T . The outer optimization loop

optimizes expected return of main portfolio for the optimal choice of initial
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portfolio weight vector w. So our portfolio optimization model reads as follows:

max
W∈R3

1

N

N
∑

i=1

RW,V
T,i , (1)

subject to the constraints

RW,V
T,i = wSRS

T,i + wBRB
T,i + wORO,V

T,i , i = 1, 2, . . . , N, (2)

RO,V
T,i = max

V ∈R2

1

N

N
∑

j=1

rO,V
i,j (3)

subject to the constraints

rO,V
i,j = (1 + π0

i,j)[V
S(1 + rSi,j) + V B(1 + rBi,j)]− 1,

j = 1, 2, . . . , N, (4)

V S + V B = 1 (5)

V S , V B ≥ 0 (6)
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xi = −Rw,V
T,i − α, i = 1, 2, . . . , N, (8)

x+i = max{0, xi} (9)
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α is free. (12)

Here, the subscripts i and j indicate the values of the indexed variables

corresponding to simulation run number. N is number of simulated paths.

Eq. (1) is the objective function with goal to maximize expected return of main

portfolio. Eq. (2) represents portfolio return at time T with initial weight vector

w and re-investment weight vector v, for each scenario. Eq. (3) is objective

function of nested subportfolio to maximize expected return of option for ith

scenario. Eq. (4) represents option’s return at time T for ith scenario. Eq. (5)

and Eq. (10) make sure that the portfolio weights add up to 1. Eq. (6) and

Eq. (11) guarantee that short selling is not allowed. Eq. (8), Eq. (9) and Eq. (12)

are needed to control CVaR of the portfolio. Eq. (7) gives CVaR constraint with

upper bound “U”.

Eq. (8), Eq. (9) and Eq. (12), these three constraints guarantee that Eq. (7)
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gives CVaR and the corresponding value of α will be equal to VaR. If there are

many optimal values of α than required VaR is the left end-point of the optimal

interval.

4. Numerical Application of the Model

We use stochastic simulation optimization method to solve the model by An-

alytic Solver Platform of Microsoft Excel. Real market data of S&P 500 from

1/1/2013 to 31/12/2013 is used to predict future stock price with the help of

standard financial market model for geometric Brownian motion

dSt = (µ− σ2/2)Stdt+ σStdwt,

St+1 − St = (µ − σ2/2)Stdt+ σStdwt,

St+1 = St + (µ − σ2/2)Stdt+ σStdwt.

Here St is stock price at time t with constant volatility σ. dwt is a standard

Wiener process (Brownian motion) with zero mean and unit rate of variance.

In this paper, the present value (PV) of bond with yearly coupons is given by

PV =

N
∑

t=1

C

(1 + rt)t
+

D

(1 + rN )N
,

where D is bond’s face value, C is bond’s coupon payment, and N is bond’s

maturity and rt is market interest rate at time t. Interest rates and their dy-

namics provide probably the most computationally difficult part of the modern

financial theory. The stochastic process for short-term market interest rates are

assumed to follow Vasicek model (discrete version)

∆r = α(b− r)∆t+ σε
√
∆t,

r is current market rate of interest with volatility σ. b is long-run mean of

interest rate and α is speed of mean-reversion.

A fundamental principle of bond-investing is that market interest rate and

bond prices move in opposite directions. Fig. 1 and Fig. 2 can help to visualize

the relationship between market interest rates and present bond prices. These

figures show that market interest rate and present value of bond (bond price)

are inversely proportional.
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Figure 1: Graph of market interest rate

Figure 2: Graph of present value of bond

For calculating the premium of non-dividend paying call option, Black-

Scholes model is used which is described as

C(S, t) = SN(d1)−Ke−r(T−t)N(d2),

d1 =
log( S

K ) + (r + σ2

2 )(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

where S is stock price at time t, T is the maturity date, K is strike price, N(d1)

is cumulative normal distribution, σ is volatility.
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Investment horizon (T ) = 4 years

Size of time steps in discretization (∆t) = 0.004

Number of scenarios (N) = 100

Initial stock price (S0) = 1782.59

variance of stock return (σ2s) = 4.62469E-05

volatility of stock return (σs) = 0.00680051

Mean of daily Stock return (µs) = 0.000957

Initial interest rate (r0) = 0.08

Long-run mean of interest rate (b) = 0.06

volatility of interest rate (σ) = 0.03

Speed of mean reversion of interest rate (α) = 0.07

coupon rate of bond = 0.1

Time to maturity (bond) = 16 years

Face value of bond = 1000

initial weight vector (w) = (1/3, 1/3, 1/3)

Initial weight vector for reinvestment (v) = (1/2, 1/2)

Time to maturity (option) t = 1 year

Strike price of option (K) = 1800

Premium of option C(S0,K, T/4) = 34

Confidence level (β) = 0.95

Upper bound of CVaR = 10%

Table 1: Parameter values (assuming each year has 250 trading days)

We consider an investment problem with a four year investment horizon.

The call option expires in one year. If option ends up in-the-money, then we

re-invest this payoff to the stock and bond with weight vector V = (V S , V B).

We simulate 100 paths for the stock price and interest rate.

The parameter values used in the optimization problem are given in above

Table 1.

By using Standard Evolutionary Engine to the simulated scenarios, we op-

timize our subportfolio for re-investment weights for the payoff of the option.

The optimal solution of subportfolio is given in Table 2.

The optimal value of objective function of subportfolio is option’s return,

which is used to optimize main portfolio for initial weights. The optimal solution



OPTIMAL INVESTMENT PROBLEM... 373

Ro,v 7.06628106

V s = 0.987657396

V B = 0.012342604

Table 2: Optimal solution of the subportfolio

RW,V 1.363102227

W S 0.67200713

WB 0.166504847

WO 0.161488023

Table 3: Optimal main portfolio with option

RW,V 0.762589582

W s 1

WB 0

Table 4: Optimal main portfolio without option

of main portfolio is given in Table 3.

The result for the same optimization problem when the option does not

exist are given in Table 4.

From Tables 3 and 4, it can be seen that the inclusion of an option in the

portfolio increases the quality of the portfolio based on the risk-return trade

off.

The results for different strike prices of the call option are given in Table 5.

The case study show that the optimization algorithm, which is based on

linear programming techniques, is very stable and efficient.CVaR risk manage-

ment constraint (reduce to linear constraint) can be used in various applications

to bound percentiles of loss distributions.

So, above results show that by using a call option with high strike price, we

can increase expected return of our portfolio. But after a certain level of strike

price, the call option leads to total loss as the option ends up out-of-money. In
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K C(S0,K) E(R) CVaR ws wB w0

1650 165 0.9438 0.057 0.6000 0 0.3999

1700 116 1.0044 0.076 0.3868 0.243 0.369

1750 68 1.0970 0.075 0.3788 0.3655 0.2556

1785 37 1.3566 0.093 0.6110 0.212 0.176

1800 27 1.3702 0.098 0.6430 0.187 0.168

Table 5

this case the call investment is the most risky investment. Another remarkable

result is that risk of losing from stock investment is highly correlated with the

risk of losing from call investment. If the option ends up in-the-money, the risk

of losing from stock investment has decreased substantially as the stock has

already done well until maturity of option. Also, the first two columns of Table

5 show that as the strike price of option increases; the call option premium

decreases. Consequently, for the same amount of money, more options can be

bought. That is one of the reasons for the higher strike price leads to higher

expected return.

5. Conclusion

The paper implements a solution to investment situations in a portfolio with

investment in stock, bonds and options on the underlying stock. The investor’s

portfolio is analyzed in terms of expected return and CVaR, and the optimal

weights are determined in a two-stage procedure. The final stage determines

the optimal value of initial weights. The fact that the final stage is dependent

on other stages, makes this approach very interesting. It has been observed

that the introduction of option on equity has enhanced the risk-return tradeoff

of the portfolio tremendously. It has also been observed that the use of option

with higher strike price (which are normally priced cheaper than lower strike

price options) improve the return performance of the portfolio much more than

they impact the risk performance of the porfolio. The optimization model can

handle trading constraints, such as short-selling restriction, while still retaining
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in the class of linear optimization programs. This model has the advantage that

the problem is solvable in reasonable time. The model shows that rebalancing

at intermediate time points is necessary in order to meet the investor’s risk

requirement and to maximize the reward potential of the portfolio.By keeping a

tab on the CVaR at 10% and by successively investing in options with enhanced

strike price (From Rs. 1650 to Rs. 1800) it has been observed that the expected

return of the portfolio increased from 0.9438 to 1.3702. The model indicates

that option can be a potent investment vehicle for investors searching for low

risk alternatives with a limited downside. It is strongly recommended to use this

modified Korn and Zeytun framework to allocate the portfolio with structured

product (option), since it generates well-balanced portfolio providing superior

risk and return trade-off.
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