
International Journal of Applied Mathematics
————————————————————–
Volume 28 No. 3 2015, 291-306
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v28i3.8

FIXED POINT THEOREMS IN THE STUDY

OF POSITIVE SOLUTIONS FOR SYSTEMS

OF EQUATIONS IN ORDERED BANACH SPACES

Mohammed Said El Khannoussi1 §, Abderrahim Zertiti2
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1. Introduction

In this paper we give some abstract fixed point theorems for systems of equa-
tions in ordered Banach spaces. This can be done by using topological methods,
in particular, the fixed point index.

Let us consider the following system

x = F1(x, y)

y = F2(x, y)

in E × E, where E is an appropriate ordered Banach space with cone P . We
are interested in producing sufficient conditions for the existence of a particular
solutions called ”coexistence states”, i.e. solution (x, y) with both components
nonnegative and nontrivial ((x, y) ∈ P \ {0} × P \ {0}). These solutions are of
special importance. Semitrivial solutions, i.e. solutions (x, y) with exactly one
component nonnegative and nontrivial, are also of interest.

Note that a direct application of Amann’s results in [1] in the Banach space
(E × E,P × P ) for the map F = (F1, F2) implies the existence of a solution
(x, y) ∈ P × P \ {(0, 0)}, this means that (x, y) 6= (0, 0) but some component
of the fixed point (x, y) may be trivial. To solve this problem, we give some
new conditions concerning the partial derivative of F1 and F2 to assure that
each component of (x, y) belongs to P \ {0}. Furthermore, if we suppose that
F verifies the hypothesis

F1(0, y) = F2(x, 0) = 0 ∀(x, y) ∈ E × E,

we assure the existence of ”semitrivial solutions”. Hence, we deduce the exis-
tence of four fixed points in P × P : (0, 0), (x0, 0), (0, y0), (x1, y1) such that

xj , yj ∈ P \ {0} (1)

for j = 0, 1.
Finally, we close this paper by an application of these abstract results to

some problem arising in the theory of epidemics, where the existence of the
”coexistence states” and ”semitrivial solutions” is obtained.

Note that these abstract results may also be applied to some other situa-
tions such as nonlinear boundary value problems for elliptic systems, and other
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kinds of systems of nonlinear integral equations. Obviously, with our approach,
systems of n equations may also be included. This will be done elsewhere.

2. Abstract Fixed Point Theorems

Let (E, ‖.‖E) a real Banach space and P be a nonempty closed convex set in
E.

P is called a cone if it satisfies the following two conditions:

(i) : x ∈ P, λ ≥ 0 =⇒ λx ∈ P

(ii) : x ∈ P,−x ∈ P =⇒ x = θ, where θ denotes the zero element in E.

The cone P defines a linear ordering in E by

x ≤ y iff y − x ∈ P.

For every open subset U of P (from now on, the topological notions of subsets of
P refer to the relative topology of P as a topological subspace of E) and every
compact map F : Ū → P (F is continuous and F (Ū) is relatively compact),
which has no fixed points on ∂U , there exists an integer, ip(F,U), called the
fixed point index of F on U with respect to P , satisfying the usual properties
of the Leray-Schauder degree.

It is trivial that P ×P is a cone in the Banach space (E×E, ‖.‖E×E) where,
for each (x, y) ∈ E × E

‖(x, y)‖E×E = max{‖x‖E , ‖y‖E}.

If r > 0, we denote

Pr = {x ∈ P : ‖x‖E < r}, Sr = {x ∈ P : ‖x‖E = r},

and for any two real numbers 0 < α < β, we denote by Rα,β the set

Rα,β = {(x, y) ∈ P × P : ‖x‖E < α, ‖y‖E < β}.

The cone P × P defines a linear ordering in E × E by

(x1, y1) ≤ (x2, y2) iff x2 − x1 ∈ P and y2 − y1 ∈ P.

Define the operator F = (G,H) : P × P → P × P , where G : P × P → P and
H : P × P → P verifying the following hypotheses
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(F1) : For every y ∈ P , G has a right partial derivative Gx(∞, y), such that
Gx(∞, y) = Gx(∞,∞) and G(x, y) = Gx(∞, y)x + r(x, y), where r is
o(‖x‖E) for x ∈ P near +∞ uniformly in y ∈ P .

(F2) : For every x ∈ P , H has a right partial derivative Hy(x,∞), such that
Hy(x,∞) = Hy(∞,∞) and H(x, y) = Hy(x,∞)y + r′(x, y), where r′ is
o(‖y‖E) for y ∈ P near +∞ uniformly in x ∈ P .

Now we present and prove our main results.

Theorem 1. Let F : P × P → P × P be a completely continuous map
verifying the previous hypotheses (F1)-(F2) and

(H1) There exists (p1, p2) ∈ P \ {0} × P \ {0} and σ > 0 such that

x−G(x, y) 6= λp1, ∀(x, y) ∈ Sσ × P, ∀λ ≥ 0

and
y −H(x, y) 6= λp2, ∀(x, y) ∈ P × Sσ, ∀λ ≥ 0,

(H2) 1 is neither an eigenvalue ofGx(∞,∞) nor ofHy(∞,∞), and bothGx(∞,∞)
and Hy(∞,∞) possess no positive eigenvector to an eigenvalue greater
than one.

Then F has at least one fixed points in P × P : (x1, y1) verifying (1).

Proof. We shall use the following notation

U = Rσ,σ.

First, we prove the existence of a fixed point (x1, y1) of F (F (x1, y1) = (x1, y1))
satisfying (1). In fact, the proof is based on the following steps:

a)
iP×P (F,U) = 0.

In fact, choose a real number µ such that

µ > sup
(x,y)∈U

‖(x, y)− F (x, y)‖
‖(p1, p2)‖

and define h : [0, 1]× Ū → P × P by

h(λ, x, y) = F (x, y) + λµ(p1, p2).
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It is clear that h is completely continuous and from (H1) we have

h(λ, x, y) 6= (x, y), ∀(λ, x, y) ∈ [0, 1]× ∂U.

Hence, by homotopy invariance property

iP×P (F,U) = iP×P (h(0, .), U) = iP×P (h(1, .), U).

However
iP×P (h(1, .), U) = 0,

since if iP×P (h(1, .), U) 6= 0, the existence property implies that there exists
some (x, y) ∈ U such that

(x, y) = F (x, y) + µ(p1, p2),

whence

µ =
‖(x, y)− F (x, y)‖

‖(p1, p2)‖
,

which is a contradiction.
b) For every y ∈ P define the map Gy : P → P by Gy(x) = G(x, y). Clearly,

Gy is a completely continuous map, G′
y(∞) = Gx(∞, y). Then, by Theorem

7.3 in [1], Gx(∞,∞) \ P = Gx(∞, y) \ P is a completely continuous map, So
idE−Gx(∞,∞) is closed on closed subset of P , therefore (idE−Gx(∞,∞))(S1)
is a closed set, and 0 /∈ (idE−Gx(∞,∞))(S1) by the hypothesis of the theorem.
Hence there exists a positive constant α1 such that

‖x−Gx(∞,∞)x‖ ≥ α1‖x‖ ∀x ∈ P. (2)

Choose ρ∞ > σ such that for all x ∈ P with ‖x‖ ≥ ρ∞ and y ∈ P

‖G(x, y)−Gx(∞, y)x‖ ≤ α1
‖x‖
2

.

Since Gx(∞, y)x = Gx(∞,∞)x we have for all x ∈ P with ‖x‖ ≥ ρ∞ and y ∈ P

‖G(x, y)−Gx(∞,∞)x‖ ≤ α1
‖x‖
2

. (3)

Define the map p : P × P → P by p(x, y) = x, therefore for every ρ ≥ ρ∞ and
every λ ∈ [0, 1] the map (1− λ)(Gx(∞,∞)p,H + µp2) + λF = Hλ possesses no
fixed point on ∂U1 where Rρ,σ = U1, where µ is a real number verifying

µ > sup
(x,y)∈U1

‖y −H(x, y)‖
‖p2‖

.
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Indeed, by taking into account that

∂U1 ={(x, y) ∈ P × P : ‖y‖E = σ, ‖x‖E ≤ ρ}
∪ {(x, y) ∈ P × P : ‖y‖E ≤ σ, ‖x‖E = ρ},

we distinguish two cases:
1) ‖y‖E = σ, ‖x‖E ≤ ρ.

If Hλ(x, y) = (x, y), then

(1− λ)(H(x, y) + µp2) + λH(x, y) = H(x, y) + (1− λ)µp2 = y,

which contradicts (H1);
2) ‖y‖E ≤ σ, ‖x‖E = ρ.

We get Gx(∞,∞)p(x, y) = Gx(∞,∞)x.
On the other hand

‖x− (1− λ)(Gx(∞,∞)x)− λG(x, y)‖ ≥ ‖x−Gx(∞,∞)x‖
− ‖G(x, y)−Gx(∞,∞)x‖
≥ ρ(α1 −

α1

2
)

> 0,

whence Hλ(x, y) 6= (x, y).
Then by the homotopy invariance property

iP×P (F,U1) = iP×P ((Gx(∞,∞)p,H + µp2), U1).

Next, we prove that

iP×P ((Gx(∞,∞)p,H + µp2), U1) = 0.

If it is not so, then there exists some (x, y) ∈ U1 verifying

y = H(x, y) + µp2.

So, that

µ =
‖y −H(x, y)‖

‖p2‖
,

which contradicts the definition of µ.
c) Similarly, we find a positive constants α2 and ρ′∞ satisfying

‖y −Hy(∞,∞)y‖ ≥ α2‖y‖ ∀y ∈ P,
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and for all y ∈ P with ‖y‖ ≥ ρ′∞ and x ∈ P

‖H(x, y)−Hy(∞,∞)y‖ ≤ α2
‖y‖
2

.

Define the map q : P × P → P by q(x, y) = y, therefore for every ρ ≥ ρ′∞ and
every λ ∈ [0, 1] the map (1− λ)(G+ µp1, Hy(∞,∞)q) + λF = H ′

λ possesses no
fixed point on ∂U2 where Rσ,ρ = U2 where µ is a real number verifying

µ > sup
(x,y)∈U2

‖x−G(x, y)‖
‖p1‖

.

Then, from what has already been proved

iP×P (F,U2) = iP×P ((G+ µp1, Hy(∞,∞)q), U2) = 0.

d) For a fixed ρ ≥ max{ρ∞, ρ′∞} we shall use the following notation

U3 = Rρ,ρ.

Next, we prove
iP×P (F,U3) = 1.

To see this, define the map (1− λ)(Gx(∞,∞)p,Hy(∞,∞)q) + λF = H ′′
λ which

has no fixed point on ∂U3. Indeed, by taking into account that

∂U3 ={(x, y) ∈ P × P : ‖y‖E = ρ, ‖x‖E ≤ ρ}
∪ {(x, y) ∈ P × P : ‖y‖E ≤ ρ, ‖x‖E = ρ},

we distinguish two cases:
1) ‖y‖E ≤ ρ, ‖x‖E = ρ.

We have
‖x− (1− λ)(Gx(∞,∞)x)− λG(x, y)‖ > 0.

Then, in this case H ′′
λ(x, y) 6= (x, y).

2) ‖y‖E = ρ, ‖x‖E ≤ ρ.
This case is completely analogous to case 1).

Then by the homotopy invariance property

iP×P (F,U3) = iP×P ((Gx(∞,∞)p,Hy(∞,∞)q), U3).

Next, we prove that

iP×P ((Gx(∞,∞)p,Hy(∞,∞)q), U3) = 1.
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Indeed, observe that by hypothesis (H2), the equation

(x, y)− λ(Gx(∞,∞)x,Hy(∞,∞)y) = (0, 0)

has no solution in ∂U3 for λ ∈ [0, 1]. Hence by the homotopy invariance and by
the solution property

iP×P ((Gx(∞,∞)p,Hy(∞,∞)q), U3) = iP×P ((0, 0), U3) = 1.

e) We shall use the following notation

U4 = U3 \ Ū1 ∪ Ū2 U5 = U1 \ Ū U6 = U2 \ Ū .

Therefore

U4 = {(x, y) ∈ P × P : σ < ‖x‖E < ρ, σ < ‖y‖E < ρ}.

Now, observe that if λ = 1, F = H1 = H ′
1 = H ′′

1 has no fixed point on ∂U1 ∪
∂U2 ∪ ∂U3.

Since U and U5 are disjoint open subsets of U1 such that F has no fixed
points on Ū1 \ (U ∪ U5), in fact Ū1 \ (U ∪ U5) ⊂ ∂U1 ∪ ∂U2. Therefore by the
additivity property

iP×P (F,U5) = iP×P (F,U1)− iP×P (F,U) = 0− 0 = 0.

Similarly, U and U6 are disjoint open subsets of U2 such that F has no fixed
points on Ū2 \ (U ∪ U6), in fact Ū2 \ (U ∪ U6) ⊂ ∂U1 ∪ ∂U2. Therefore by the
additivity property

iP×P (F,U6) = iP×P (F,U2)− iP×P (F,U) = 0− 0 = 0.

Finally, since (U ∪U5 ∪U6) and U4 are disjoint open subsets of U3 such that F
has no fixed points on Ū3 \ (U ∪U5 ∪U6 ∪U4), in fact Ū3 \ (U ∪U5 ∪U6 ∪U4) ⊂
(∂U3 ∪ ∂U1 ∪ ∂U2). Therefore by the additivity property

iP×P (F,U4) = iP×P (F,U3)− iP×P (F,U)− iP×P (F,U5)

− iP×P (F,U6)

= 1− 0− 0− 0 = 1.

which implies the existence of a fixed point (x1, y1) of F satisfying (2.1).
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Remark 1. Suppose, in addition, that F verifies the following hypothesis

G(0, y) = H(x, 0) = 0 ∀(x, y) ∈ E × E,

then we can prove the existence of two fixed point (x0, 0), (0, y0), of F satisfying
(1).

In fact, from G0(x) = G(x, 0), we know, G′
0(∞) = Gx(∞, 0), and by

(H2) and Lemma 13.4 in [1] there exists ρ∞ > σ such that for every ρ ≥
ρ∞, iP (G0, Pρ) = 1. On the other hand from hypothesis (H1), we have x −
G0(x) 6= λp1, ∀λ ≥ 0, ∀x ∈ Sσ, then iP (G0, Pσ) = 0 (see Lemma 12.1 in
[1]). Therefore, by the additivity property iP (G0, Pρ \ P̄σ) = 1. Consequently,
the solution property of the fixed point index implies that G0 has at least one
fixed point x0 with σ < ‖x0‖E < ρ. Now (x0, 0) is a fixed point of F .

In a similar manner we can prove the existence of (0, y0).

Remark 2. If P has nonempty interior and Gx(∞,∞) and Hy(∞,∞) are
strongly positive then it is well known that the spectral radius of Gx(∞,∞)
(or Hy(∞,∞)) is an eigenvalue to a positive eigenvector, and in fact the only
eigenvalue with this property. Then we have the following corollary.

Corollary 2. Suppose that P has nonempty interior and let F : P ×P →
P×P a completely continuous map verifying the previous hypotheses (F1)-(F2).
Moreover suppose that the right partial derivatives Gx(∞,∞) and Hy(∞,∞)
are strongly positive. Then if

(H’1)

G(x, y) � x ∀(x, y) ∈ Sσ × P

and

H(x, y) � y ∀(x, y) ∈ P × Sσ,

(H’2) r(Gx(∞,∞)) < 1 and r(Hy(∞,∞)) < 1,

F has at least one fixed points in P × P : (x1, y1) verifying (1).

Remark 3. If F supposed to be asymptotically linear along P , and if the
above hypotheses (H’1) and (H’2) are substituted by

(H”1) F (x, y) � (x, y) ∀(x, y) ∈ ∂Rσ,σ,

(H”2) r(F ′(∞,∞)) < 1,
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then (see Amann [1]) (H”1) and (H”2) imply that F has a fixed point
(x, y) ∈ P × P verifying

σ < ‖(x, y)‖E < ρ,

but some component of the fixed point (x, y) (x or y) may be trivial.

Remark 4. In [5] we have shown some results similar to Theorem 1 and
Corollary 2 but under different assumptions.

3. Application to System of Nonlinear Integral Equations

In this section we shall study the existence of positive solutions of system of
nonlinear integral equations of the form

x(t) =

∫ τ1(t)

0
f(t, s, x(t− s− l), y(t− s− l)) ds

y(t) =

∫ τ2(t)

0
g(t, s, x(t− s− l), y(t− s− l)) ds

(4)

under the following assumptions on functions f and g :
f, g : R× R× [0,+∞[−→ R are continuous functions with :

(F1) : f(t, s, 0, y) = g(t, s, x, 0) = 0 for all (t, s, x, y) ∈ R×R×[0,+∞[×[0,+∞[,

(F2) : f(t, s, x, y) ≥ 0, g(t, s, x, y) ≥ 0, ∀(t, s, x, y) ∈ R×R×[0,+∞[×[0,+∞[
and there exists a positive number w, (w > 0) such that f(t+w, s, x, y) =
f(t, s, x, y) and g(t+ w, s, x, y) = g(t, s, x, y),
∀(t, s, x, y) ∈ R× R× [0,+∞[×[0,+∞[,

(F3) : l is a nonnegative constant and τ1, τ2 : R −→ R+ are a continuous and
λ-periodic function (λ > 0) such that ω

λ
= p

q
, p, q ∈ N.

System (4) includes the system proposed by Cooke and Kaplan [4] as a
model to explain the evolution in time of two interacting species when seasonal
factors are taken into account. For more details, see [5, 4, 3].

We are interested in the existence of nontrivial, nonnegative, continuous
and qω- periodic solutions. Especially, we are interested in the existence of
coexistence states. Also the existence of semitrivial solutions of (4) may be of
interest, i.e. solutions with exactly one nontrivial component: this means that
one species may survive in the absence of the other one.
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Denote by P the cone of nonnegative functions in the real Banach space E,
of all real and continuous qω− periodic functions defined on R, where if x ∈ E

‖x‖ = max
0≤t≤qω

|x(t)|.

Define the operator F = (G,H) : P × P → P × P , by

F (x, y)(t) = (G(x, y)(t), H(x, y)(t)),

where

G(x, y)(t) =

∫ τ1(t)

0
f(t, s, x(t− s− l), y(t− s− l)) ds

and

H(x, y)(t) =

∫ τ2(t)

0
g(t, s, x(t− s− l), y(t− s− l)) ds.

It is easily to see that F is completely continuous (see [2]).
Take

min
t∈R

τ1(t) = τ1 min
t∈R

τ2(t) = τ2

and
max
t∈R

τ1(t) = τ ′1 max
t∈R

τ2(t) = τ ′2.

Theorem 3. Suppose that:

(H’1) f is bounded in bounded x−intervals
uniformly in (t, s, y) ∈ [0, qω]× [0, τ ′1]× R;

(H’2) g is bounded in bounded y−intervals
uniformly in (t, s, x) ∈ [0, qω]× [0, τ ′2]× R;

(H’3) there exists a continuous function a : R× R× R −→ R such that

lim
x→0+

f(t, s, x, y)

x
= a(t, s, y),

uniformly in (t, s, y) ∈ R× R× [0,∞[;

(H’4) there exists a continuous function b : R× R× R −→ R such that

lim
y→0+

g(t, s, x, y)

y
= b(t, s, x),

uniformly in (t, s, x) ∈ R× R× [0,∞[;
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(H’5) there exists a continuous function c : R× R −→ R such that

lim
x→+∞

f(t, s, x, y)

x
= c(t, s),

uniformly in (t, s, y) ∈ R× R× [0,∞[;

(H’6) there exists a continuous function d : R× R −→ R such that

lim
y→+∞

g(t, s, x, y)

y
= d(t, s),

uniformly in (t, s, x) ∈ R× R× [0,∞[;

(H’7) a(t, s, y) ≥ a > 0, b(t, s, x) ≥ b > 0,

∀(t, s, x, y) ∈ R× R× [0,∞[×[0,∞[.

Then if

aτ1 > 1, bτ2 > 1 (5)

r(L(τ1, c)) < 1, and r(L(τ2, d)) < 1,

F has at least four fixed points in P ×P : (0, 0), (x0, 0), (0, y0), (x1, y1) verifying
(1), where r(L(τ1, c)) means the spectral radius of the linear operator L(τ1, c) :
E −→ E defined by

L(τ1, c)x(t) =

∫ τ1(t)

0
c(t, s)x(t− s− l) ds, ∀x ∈ E,

(analogously for r(L(τ2, d)) and L(τ2, d)).

Proof. We are going to prove that all conditions of Theorem 1, Remark 1
and Remark 2 are satisfied. For it, we must observe that (E,P ) is an ordered

Banach space with
◦
P 6= ∅.

Select ε > 0 verifying

(a− ε)τ1 > 1, (b− ε)τ2 > 1. (6)

From hypotheses (H’3) and (H’4), we obtain σ(ε) > 0 such that

f(t, s, x, y) ≥ (a(t, s, y)− ε)x, ∀x ∈ [0, σ(ε)]
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for all (t, s, y) ∈ R× R× [0,∞[,

g(t, s, x, y) ≥ (b(t, s, x)− ε)y, ∀y ∈ [0, σ(ε)]

for all (t, s, x) ∈ R×R×[0,∞[. Now, taking a fixed σ ∈ (0, σ(ǫ)] and p1 = p2 = 1,
we claim that (H1) of theorem (1) is satisfied. In fact if (x, y) ∈ Sσ×P and λ ≥ 0
such that x−G(x, y) = λ. From ‖x‖ = σ > 0, we affirm that mint∈[0,qω] x(t) > 0.
To see this, suppose that x(t1) = mint∈[0,qω] x(t). Then

x(t1) =

∫ τ1(t1)

0
f(t1, s, x(t1 − s− l), y(t1 − s− l)) ds+ λ

≥
∫ τ1(t1)

0
f(t1, s, x(t1 − s− l), y(t1 − s− l)) ds

≥
∫ τ1(t1)

0
(a(t1, s, y(t1 − s− l))− ε)x(t1 − s− l) ds

≥ (a− ε)

∫ τ1(t1)

0
x(t1 − s− l) ds.

So, if x(t1) = 0, then x(t1 − s− l) = 0, ∀s ∈ [0, τ1(t1)]
or equivalently

x(s− l) = 0, ∀s ∈ [t1 − τ1(t1), t1],

which implies that

x(s) = 0, ∀s ∈ [t1 − τ1(t1)− l, t1 − l].

Iterating the procedure n times we obtain x(s) = 0, ∀s ∈ I where I is an interval
of length at least nτ1(t1) ≥ nτ1 ≥ qω and since x is qω- periodic, x must be
zero, which is a contradiction.
Once we have proved that x(t1) > 0, we have

x(t1) ≥ (a− ε)τ1x(t1)

and consequently 1 ≥ (a− ε)τ1 which contradicts (6). One may proceed in an
analogous way if ‖y‖ = σ and x ∈ P . Therefore (H1) of Theorem (1) is verified.

Now it is not hard to prove the existence of Gx(∞, y) and Hy(x,∞)(see
[5]).

In fact, for all x ∈ P and y ∈ P we have verified that

Gx(∞, y)x(t) = Gx(∞,∞)x(t) = L(τ1, c)x(t)
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and

lim
‖x‖−→∞

x∈P

G(x, y)− L(τ1, c)x

‖x‖ = 0, uniformly in y ∈ P.

Also we have

Hy(x,∞)y(t) = Hy(∞,∞)y(t) = L(τ2, d)y(t)

and

lim
y−→+∞

y∈P

H(x, y)− L(τ2, d)y

‖y‖ = 0, uniformly in x ∈ P.

Now, it is easily seen that (see the proof of Theorem (1) in [2]) L(τ1, c) and
L(τ2, d) are strongly positive. Consequently hypothesis (H2) of the Theorem is
satisfied.

Now we present an example of Theorem 3.

Example 4. Let f1 : [0,+∞) × [0,∞) → R+ be a continuous function
defined by

f1(x, y) =

{

x(1 + cos2 y), 0 ≤ x ≤ 1,≤ y ≥ 0√
x cos2 y + 1

2x+ 1
2 , x ≥ 1, y ≥ 0

and g1 : [0,+∞)× [0,∞) → R+ defined by g1(x, y) = f1(y, x).
And take d, d′ : R → R a continuous, positive and ω-periodic functions

(ω > 0) and l = 0.
Let the system of nonlinear integral equations

x(t) =

∫ τ1(t)

0
d(t− s)f1(x(s), y(s)) ds

y(t) =

∫ τ2(t)

0
d′(t− s)g1(x(s), y(s)) ds.

If
f(t, s, x, y) = d(t− s)f1(x(s), y(s))

for all (t, s, x, y) ∈ R× R× [0,+∞[×[0,+∞[ and

g(t, s, x, y) = d′(t− s)g1(x(s), y(s))

for all (t, s, x, y) ∈ R×R×[0,+∞[×[0,+∞[, hypotheses (H’1) -(H’7) of Theorem
3 are satisfied with
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a(t, s, y) = d(t−s)(1+cos2 y), b(t, s, x) = d′(t−s)(1+cos2 x), c(t, s) = 1
2d(t−s),

d(t, s) = 1
2d

′(t− s).

Consequently, if

d(t− s)min
t∈R

τ1(t) > 1 and d′(t− s)min
t∈R

τ2(t) > 1 ∀(t, s) ∈ R× R (7)

r(L(τ1, c)) < 2, r(L(τ2, d)) < 2, (8)

the above system has at least four fixed points in P×P : (0, 0), (x0, 0), (0, y0), (x1, y1)
verifying (1). Note that in the particular case where d(t) ≡ d ∈ R+ and
d′(t) ≡ d′ ∈ R+ conditions (7) and (8) are satisfied, if we take

1

d
< min

t∈R
τ1(t) ≤ max

t∈R
τ1(t) <

2

d

and
1

d′
< min

t∈R
τ2(t) ≤ max

t∈R
τ1(t) <

2

d′
.

Here we use that fact that (see [10, 2])

min
t∈R

∫ τ1(t)

0
α(t, s)ds ≤ r(L(τ1, α)) ≤ max

t∈R

∫ τ1(t)

0
α(t, s)ds

for every continuous function α : R× R → R which is ω-periodic in t.
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