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Abstract: Cartographers, in many ground control centers, need better com-
putational solutions to process planetary images for cartographic mapping of
some planets and natural satellites. In this paper, we propose a method that
allows to apply a morphological image processing while receiving a planetary
image by a bit-serial communication channel, starting the processing before the
transmission of the image has finished. Thus, this paper presents a bit-stream
morphological image processing method for planetary images. To demonstrate
the method, we implemented a library of morphological operations in hard-
ware, since hardware implementations speed up the bit-stream processing. The
achieved results are presented and they show the relevance of this method. The
success rates for the method are 100%, when borders are omitted. This method
speeds up morphological processing of images transmitted through a bit-serial
communication, for example, from a probe or landing module to a ground con-
trol center where cartographers are waiting to start cartographic mappings, but
it is not limited to this use.
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1. Introduction

Cartographic mapping of planetary surfaces is essential, for example, to decide
where landing modules can perform safety landings. Probes that orbit some
planets and natural satellites of our solar system acquire many new planetary
images that will be processed according to the desired cartographic mapping. In
ground control centers, cartographers need to wait until transmissions of plan-
etary images (usually performed through a bit-serial communication channel
from probes or landing modules, according to Nagy et al. [9]) have finished to
start the image analysis or processing necessary to the cartographic mapping.

One of the most common tasks involving the processing of planetary images
for cartographic mapping is the impact crater detection. Impact craters can be
visually detected and manually highlighted by specialists, but it demands long
time and effort. If the cartographic mapping needs to be fast, another way to
do this processing is by automation based on digital image processing [8].

There are many kinds of implementations describing the processing of plan-
etary images in the scientific literature. One of them is a software implementa-
tion that uses Mathematical Morphology (MM) [13], a very important concept
of digital image processing used in many areas of human knowledge, to pro-
cess planetary images [10]. The authors used specifically images acquired from
Mars. They have created a routine that detects impact craters on Mars surface
using MM.

Another software implementation uses an algorithm that extracts ellipsoidal
features of planetary images [15]. It is based on a combination of techniques
of image processing like Canny, Hough and Watershed. The authors extracted
important curvy structures of the images, like rocks and craters.

In other software implementation, the authors created an algorithm to iden-
tify craters in high-resolution planetary images [16]. The authors used MM for
crater detection. Scale and rotation-invariant filters were used to recognize
crescent-like regions. A supervised machine learning algorithm was used to
separate which parts of the image are craters and which ones are not craters.

Other paper describes a software implementation developed to recognize
and detect impact craters in planetary images [3]. Each image is pre-processed
(smoothing, edge detection and threshold). After that, the software extracts
the features of the image with Hough transform. Finally, an unsupervised
classification was applied to extract more features of the image.

In another paper, the authors created a new approach to detect impact
craters in images of the Mars surface [2]. They use an algorithm that starts en-
hancing contours in the image. After that, the algorithm uses template match-
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ing to detect impact craters. The borders of the craters are defined by using
watershed transform.

The aforementioned papers show the intensive use of MM to process plan-
etary images and the importance of software implementations for this kind of
scientific research. However, hardware implementations achieve better perfor-
mance than software ones. There are many implementations for image process-
ing in hardware, such as [1], [14], [17], [18].

One possibility is a customized Application-Specific Integrated Circuits
(ASIC) implementation, so we could get high-processing rates, but the dis-
advantage is that full-custom ASICs have the impossibility of reconfiguration.
An alternative and efficient solution to this problem is the implementation of
a dedicated hardware on a Field Programmable Gate Array (FPGA) [4], [5],
[6]. The most important advantage of working with FPGAs is the capacity
of reconfiguration. This way, a project can be easily reconfigured whenever
necessary.

An example of implementation using FPGA, which performs image process-
ing operations (erosion and dilation) is found in [1]. It was developed in three
different hardware description languages (HDL): Handel-C, VHDL and Verilog.
The authors have compared these three HDL and noticed that the most effi-
cient was Handel-C for basic processing operations. Unfortunately, they did
not implement operations like opening and closing.

Another implementation is presented by Tickle et al. [14]. This implemen-
tation uses FPGA to perform some image processing operations, like erosion,
dilation, opening and closing. In this case, complete Digital Signal Processing
(DSP) blocks were used and then they were transformed in VHDL code. The
simulation was relatively slow, thus this implementation is unable to accelerate
the processing of planetary images.

Despite of the previous related papers describing different software and
hardware implementations to process images, cartographers remain waiting for
new computational solutions to process planetary images for cartographic map-
pings faster than the already proposed implementations. In this paper, we pro-
pose a method that allows to apply a morphological image processing while
receiving a planetary image by a bit-serial communication channel, starting the
processing before the transmission of the image has finished. Thus, this pa-
per presents a bit-stream morphological image processing method for planetary
images.

To demonstrate the method, we implemented a library of morphological op-
erations in hardware, since hardware implementations speed up the bit-stream
processing. This library is composed by erosion, dilation, opening and closing
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operations and it is implemented on FPGA using electronic schematics. Our
method speeds up morphological processing of images transmitted through a
bit-serial communication, for example, from a probe or landing module to a
ground control center, where cartographers are waiting to start cartographic
mappings, such as the mapping of impact craters on planetary surfaces.

To clarify our proposal, this paper is organized as follows. Section 2 presents
the theoretical fundamentals. Section 3 describes the materials and methods
used to develop our library. Section 4 comments the performed experiments.
The results are shown in Section 5. Section 6 shows some discussions and
conclusions about this library.

2. Theoretical Fundamentals

Mathematical Morphology (MM) is used to extract components of an image
to represent and describe the shape of determined part of the image, like an
skeleton, a segmentation or an edge. Set theory is the basis of MM concepts.
An image is a set of pixels that are organized in a two-dimensional structure.
It’s possible to perform a lot of operations over any set of pixels of an image
by using a structuring element (SE) to get or manipulate information related
to the shape of this set. In this work, MM is applied to binary images. The
pixels of a binary image is composed by two values: one (1) for the foreground
and zero (0) for the background.

MM is based on convolution, which is an operation performed by probing
a SE over a main image or, in mathematical terms, convolution is an operation
that involves two matrix. One of them is the main (original) image (matrix A)
and the other is the SE (matrix B). The SE can represent any function and
will be applied to every pixel of the main image. When the SE passes across
the main image, a new image (matrix C), which is the resulting image from the
convolution, is created. In summary, a main image is probed by a smaller image
(SE), which has to fit within the foreground of the main image to generate the
result that is determined by the form and the size of the SE.

2.1. Erosion

Considering A as a main image, x as a point in the same image and B as a
smaller image (SE): The translation of B by x is

Bx = {b+ x : b ∈ B}; (1)
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The erosion of A by B is defined by

A⊖B = {x : Bx ⊂ A}. (2)

Erosion is the most basic operation of MM [7]. Erosion shrinks foreground
structures of the image every time the SE fits in the foreground structures
while the convolution is being performed. The resulting image after the erosion
is always a subset of the main image.

Binary erosion most common effects are: decreasing of the foreground in an
image, elimination of all foreground structures of the image smaller than the
SE, separation of near objects, increasing of the voids.

2.2. Dilation

According to Dougherty and Lotufo [7], considering A as a main image, x as
a point in the same image, B as a smaller image (SE), and Ac as the comple-
mentation of the set A, the dilation of A by B is

A⊕B = (Ac ⊖ B̆)c, (3)

where:
B̆ = {−b : b ∈ B}. (4)

Binary dilation most common effects are: increasing of the foreground in
an image, and elimination of all holes smaller than the SE in the foreground.

2.3. Opening

The opening of a binary image A by B (the SE) is defined by

A ◦B = (A⊖B)⊕B. (5)

According to Dougherty and Lotufo [7], opening is an erosion immediately
followed by a dilation using the same SE. Opening is frequently used to remove
salt noise of an image.

2.4. Closing

The closing of a binary image A by B (the SE) is defined by

A •B = (A⊕B)⊖B. (6)

According to Dougherty and Lotufo [7], closing is a dilation immediately
followed by an erosion using the same SE. Closing is frequently used to remove
pepper noise of an image.
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3. Materials and Methods

In order to demonstrate our method, we implemented a library of morpho-
logical operations in hardware, since hardware implementations speed up the
bit-stream processing. We developed our MM library usingQuartus II Web Edi-
tion FPGA design software 9.0 service pack 2. The used FPGA was Cyclone-II
EP2C70F896C6N, as part of the development kit DE2-70 of Altera Corporation.
The clock of the DE2-70 can reach up to 260 MHZ. We did the implementation
in electronic schematics, as presented by Figure 1, and the simulations using
the Quartus II Waveform Editor.

Figure 1: Part of the electronic schematic of our library

During the simulations, we used only one dataset composed by twenty digi-
tal images of the Martian surface. The size of each image was 256 X 256 pixels.
However images in different datasets can have different sizes. Therefore, our
library must be changed to match the size of images of each dataset. This is ad-
vantageous because it optimizes the performance of the library. The change is
easily performed by hardware reconfiguration, what justifies the use of FPGAs
to develop the library of Figure 1.

Our library has a main unit named basic, which is divided in three modules:
Buffer, Control Unit (CU) and Structuring Element (SE). Buffer is composed by
smaller blocks that are serially connected in the following sequence: Buffer1,
Buffer2, Shift Register and Buffer3. For this library, any buffer is a FIFO
memory. The image is inserted pixel-by-pixel (serially) in our library, according
to the clock frequency supported by the FPGA.

The library commands multiplexers to select the morphological operation
to be performed. Each row of Table 1 presents the morphological operation
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that can be processed by our library and its respective command.

Table 1: Morphological operations of the library

Operations Commands

Erosion 00

Opening 01

Closing 10

Dilation 11

For all operations, the main image needs to be converted to a binary image
before to pass through the circuit presented by Figure 1. For dilation, according
to Equation (3), pixels of the main image also need to be inverted before and
after the image processing.

In our library, the unit responsible to perform erosion or dilation (basic) is
physically duplicated and the second basic is serially connected to the first one,
as presented by Figure 1. This serial connection allows to perform opening and
closing operations at high speed. The serial connection was implemented, since
an opening is an erosion followed by a dilation, while a closing is a dilation
followed by an erosion, according to Equations (5) and (6), respectively.

Our library starts its task filling the Buffer1 pixel-by-pixel. When Buffer1
is full, each pixel of the image continues its serial path filling Buffer2. Next,
when Buffer2 is full, each pixel of the image continues its serial path filling
the Shift Register. In other words, before starting the image processing, our
library must be filled with the first two lines of the image. Finally, when Shift
Register is full, each pixel of the image continues its serial path filling Buffer3.
The Control Unit (CU) controls this serial flow of pixels through those buffers
and the image processing.

During the image processing, the CU continues filling our library with pixels
of the image (pixel-by-pixel), following the order of pixels present in the image
(from the top-left pixel to the final bottom-right pixel). This way, when an
image is being processed by our library, the SE remains static in a fixed position,
while set-by-set of pixels of the image flows below it. The image processing ends
when the last set of pixels is processed.

3.1. Buffer

Buffer is the part of the library that handles the input image. The image is
serially inserted through three FIFO memories (Buffer1, Buffer2 and Buffer3 ).
Buffer1, whose size is the same of the width of the input image, receives the
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data (pixels or bits) of the image and sends this data to Buffer2. The size of
Buffer2 is calculated by

Size Buffer2 = (Width Image)− (Size Shift Register) (7)

The output of Buffer2 is sent to a five bits shift register, part of which
represents the left, center and right pixels of the SE. A shift register behaves
similar to a FIFO memory, but it is a sequential circuit. Buffer3 has the same
size of Buffer1 and its input comes from the second more significant bit of the
shift register. The second more significant bit of the shift register is positioned
exactly below the center of the SE (considering a 3X3 cross shaped SE) and
represents the pixel currently processed (our library processes the image pixel-
by-pixel in this position).

Buffer is controlled by CU, according to clock cycles. CU controls the write
and read enable commands of each Buffer as well as their outputs. After Buffer1
and Buffer2 are both completely full, the image starts to pass below the SE
until the image ends.

3.1. Structuring Element

Structuring Element (SE) is another module of the library. The SE is a 3X3
cross shaped binary entity that remains static in a fixed position while the
image is processed. The five pixels of the SE are all equal to one. Set-by-set of
pixels of the image flows below the SE. Each set is composed by: the three most
significant bits of the Shift Register, that correspond to the west, the center and
the east of the SE respectively; the output of Buffer1, that corresponds to the
north of the SE; the output of Buffer3, that corresponds to the south of the
SE. The image processing finishes when the last set of pixels is processed under
the SE.

According to the MM theory, since all pixels of the SE are equals to one,
the SE will fit all 3X3 cross shaped sets whole composed by pixels equals to one
in the image. Therefore, in this case, the core of an erosion operation can be
performed by an and logic operation. Figure 2 shows the core of the electrical
schematic used by our library to perform erosion, using a 3X3 cross shaped
SE. The SE is composed by the three most significant bits of the buffer’s shift
register (west (shft[4]), center (shft[3]) and east (shft[4]) of the SE, respectively)
and, the outputs of Buffer1 and Buffer2 (north (si) and south (sf ) of the SE,
respectively).
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Figure 2: Core of the electrical schematic used by our library to
perform erosion, using a 3X3 cross shaped SE.

3.2. Control Unit

Control Unit (CU) has two main functions: it controls the Buffer and it controls
when the output image begins and when it ends.

To control the Buffer, the CU needs to synchronize the write and read
enables of each FIFO. CU performs this task based on the clock of the FPGA
and some counter circuits.

As a result of the MM image processing, a new image is generated. The
CU will start the image processing, generating the first pixel of this new image,
when Buffer1 and Buffer2 are both completely full with the first two rows of
the main image. The last pixel of the new image is generated when the last
pixel of the main image is being processed under the central pixel of the SE.

4. Experiments

The experiments were performed over a dataset composed by twenty digital
images of the Mars surface, obtained by the Mars Odyssey space probe, such as
the example showed by Figure 3(a). Each image was previously resized to 256 X
256 pixels and converted to a binary image before the morphological processing,
since our library was firstly developed to process binary images with this size.
However, our library can be reconfigured to process images with other sizes, as
already mentioned before. Figures 3(b), 4(a), 5(a), 6(a) and 7(a) present the
image of the Figure 3(a) resized to 256 X 256 pixels and converted to a binary
image to facilitate comparisons.

In order to perform the experiments, our library was positioned between
two RAM memories, since the transmission of the images through a bit-serial
communication channel was simulated by using a RAM as source and another
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RAM as destination of the bit-serial data. For all tested images, the morpho-
logical processing started before the transmission of each image was finished.

The simulation using RAM blocks in the Quartus II required to load the
source memory with each binary image. So, each image was firstly converted
from a .tif file to a .hex file before each processing. After each processing, the
simulator generated another .hex file in the destination memory. Each .hex file
was converted to a .tif file.

During the experiments, all images of the dataset were eroded, dilated,
opened and closed by using our library, as respectively exemplified by Figures
4(b), 5(b), 6(b) and 7(b). These morphological operations help cartographers
to perform cartographic mappings, such as the mapping of impact craters on
planetary surfaces.

Figure 3: Digital image of the Mars surface, obtained by the Mars
Odyssey space probe: (a) Gray scale view; (b) Binary view.
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Figure 4: Digital image of the Mars surface: (a) Binary view; (b)
The same image eroded by our library

Figure 5: Digital image of the Mars surface: (a) Binary view; (b)
The same image dilated by our library
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Figure 6: Digital image of the Mars surface: (a) Binary view; (b)
The same image opened by our library

Figure 7: Digital image of the Mars surface: (a) Binary view; (b)
The same image closed by our library
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5. Results

The results were achieved based on the previously commented experiments. For
binary images of planetary surfaces, geological features such as impact craters,
for example, are usually represented as foreground (white pixels) in contrast
to the flat surface represented as background (black pixels). In order to quan-
titatively validate our method applied to process binary images of planetary
surfaces, we used an adapted version of the metric presented by Prati et al.
[11] and Radke et al. [12], as follows:

PSP =
(TP + TN)

TP + FP + TN + FN
. (8)

In Equation (8), we have: PSP as the percentage of pixels successfully
processed; TP as true positives, i.e. pixels of the foreground correctly processed
by our library; TN as true negatives, i.e. pixels of the background correctly
processed by our library; FN as false negatives, i.e. pixels of the foreground
incorrectly represented as background; FP as false positives, i.e. pixels of the
background incorrectly represented as foreground.

According to Equation (8), and when borders are omitted, our library pre-
sented 100% of success, when applying erosion, dilation, opening and closing
operations for all planetary images of the dataset processed in the tests. More-
over, the time used by our library (in number of clock cycles) to erode or dilate
each image is given by Equation (9), and to open or close each image is given
by Equation (10),

CCED = 2W +WxH, (9)

CCOC = 4W +WxH. (10)

In Equations (9) and (10) we have: CCED as the number of clock cycles
used by our library to erode or dilate each image, and CCOC as the number
of clock cycles used by our library to open or close each image; W as the width
of the image (in number of pixels); H as the height of the image (in number of
pixels).

If all images of the dataset are continuously passed to our library during
the tests, without intervals among the images, the constants of Equations (9)
and (10) are considered only to the first image.

For all performed tests, our method was successful applying a morphological
image processing while receiving a planetary image by a bit-serial communica-
tion channel.
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6. Discussion

In this paper, we proposed a method that allows to apply a morphological im-
age processing while receiving a planetary image by a bit-serial communication
channel, starting the processing before the transmission of the image has fin-
ished. Thus, this paper presented a bit-stream morphological image processing
method for planetary images. To demonstrate the method, we implemented
a library of morphological operations (composed by erosion, dilation, opening
and closing) on FPGA, since hardware implementations speed up the bit-stream
processing.

Transmissions of planetary images from probes or landing modules are usu-
ally performed through bit-serial communication channels, according to Nagy
et al. [9]. Contrary to software implementations, such as [2], [3], [10], [15] and
[16], that need to wait the transmission of the images has finished before to
start the image processing, our method allows to perform the morphological
processing during the transmission of the images. Hardware implementations
speed up morphological image processing, however, contrary to our method,
implementations such as [1], [14], [17], [18] do not explore the advantage of the
bit-stream processing.

Therefore, the current work contributes: presenting a method that speeds
up morphological processing of planetary images transmitted through a bit-
serial communication; making available to cartographers a computational so-
lution to process planetary images for cartographic mapping of some planets
and natural satellites, such as the mapping of impact craters on planetary sur-
faces; providing a reconfigurable library of morphological operations to process
images with other sizes.

6.1. Conclusions

We conclude that our method allows to apply morphological image processing
while receiving planetary images by a bit-serial communication channel, starting
the processing before the transmission of the images has finished. Therefore our
method speeds up morphological processing of images transmitted this way, and
our method represents a computational solution to process planetary images
for cartographic mappings faster than the already proposed implementations.
Moreover, when borders are omitted, our library achieves 100% of success rates
when performing erosion, dilation, opening and closing.

In the future, we intend to: incorporate other morphological operations
to the library, e.g., top-hat opening and closing, and morphological gradient;
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implement the library in VHDL, so that it becomes portable; adapt the library
so that it works with other sizes and shapes of SE; perform border treatment.
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