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Abstract: A spreading model of computer virus on the Internet is presented
in terms of the fact that computer virus process includes two stages: free spread
stage and response stage. It is proven that the infected nodes are always in-
creasing in the free spread stage. In response stage, it is proven that the viruses
will all be cleared when the basic reproductive number is less than unity; oth-
erwise, the relative density of infected nodes will tend to a positive constant.
Numerical simulations are carried out to illustrate the main theoretical results.
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1. Introduction

Malicious computer viruses are defined as program codes that are intended to
spread among computers and perform detrimental operations, see [19]. The
computer viruses are major threats to the Internet security and privacy. Due
to the fact that the development of antivirus software always lags behind the ap-
pearance of new viruses, it is urgent to macroscopically understand the way that
computer viruses spread and to work out effective defense measures. Therefore
many researchers are addressing questions linked to virus spreading models,
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dynamics and control strategies. Noting the appealing analogy between com-
puter viruses and epidemic in the biological world, Cohen [8] and Murray [25]
inventively suggested to exploit the tools developed in epidemic dynamics of
infectious diseases to study the spreading behavior of computer viruses. From
then on, some virus models on the Internet, which is regarded as homogeneous
networks, have been proposed [12, 13, 26].

Since the modelling of the seminal works on the scale-free network, in which
the probability of p(k) for any node with k links to other nodes is distributed
according to the power law p(k) = Ck−γ (2 < γ ≤ 3), suggested by Barabási
and Albert [1], the interest in study of computer viruses on the Internet is
enhanced by the evidence that the Internet exhibit scale-free topological prop-
erties, and some interesting and novel results were also obtained, for example, a
virus process in an infinite-sized scale-free network do not possess any threshold
[20, 21]. Up to now, many epidemic models on scale-free networks have been
presented: SI models [23, 17], SIS models [20, 21, 2, 14, 5, 3, 6, 9], SIR models
[5, 28, 18], SIRS models [7], SIQRS models [24], and SIERS model [15, 10], and
so on. There is a unique positive endemic equilibrium when the basic reproduc-
tive number is more than unity, the fact is proved in these papers above. On
the other hand, numerical simulations show the positive endemic equilibrium is
globally attractive (this means the virus will persist on a positive steady level),
but the mathematical proof of the global attractivity of the endemic equilibrium
is difficult and only a few works are presented [16, 7, 10].

Considering the spread of computer viruses often experiences several stages,
Wang and Liu discuss the dynamics of a kind of piecewise model in a homoge-
neous network in [22]. In this paper, we will extend these works to ones on the
scale-free networks.

The rest of this paper is organized as following. The piecewise model is
presented in Section 2. The properties of the model in the free spread stage
and response stage are revealed in Section 3. Numerical simulations are given
to demonstrate the main results in Section 4. The paper ends with a conclusion
in Section 5.

2. Model formulation

Suppose the size of the network is a constant N during the period of virus
spreading, we also suppose that the degree of each code is time invariant. Let
Sk(t), Ik(t) and Rk(t) be the relative density of susceptible nodes, infected
nodes and recovered nodes of connectivity k at time t, respectively, where
k = 1, 2, · · · , n and n is the maximum number of contact each node. In real
world, a virus always occurs on a finite networks. The maximum connectivity
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n of any node is related to the network age, measured as the number of nodes
N [11]:

n = mN1/(γ−1)

in which m is the minimum connectivity of the network.
The spread of computer virus process on a networks is divided into two

typical stages: free spread stage and response stage, and let the dividing point
of the two phases be t0.

In free spread stage, the virus in the beginning of the free dissemination
stage will need some time to attract the attention of people. Even if the an-
tivirus mechanism to get the virus information, it also will require some time
to develop anti-virus strategy, before that the infected node can not be treated
into health state or removed state. Terminals only have two states: the suscep-
tible and the infected. The dynamical equations for the density Sk(t), Ik(t), at
the mean-field level, satisfy the following set of coupled different equations.

İk(t) = λk(1− Ik(t))Θ(t), t ≤ t0 (1)

with normalization conditions

Sk(t) + Ik(t) = 1, k = 1, 2, · · · , n,

where λ is the infection rate, and

Θ(t) = 〈k〉−1
n
∑

i=1

ϕ(i)P (i)Ii(t). (2)

The factor Θ(t) represents the probability that any given link points to an
infected node, where P (i) ≥ 0 is the connectivity distribution; 〈k〉 =

∑n
i=1 iP (i)

is the mean degree value, and ϕ(i) denotes the infectivity of nodes with degree
i. ϕ(k) has many different forms, such as ϕ(k) = k in[20, 21], ϕ(k) = A in [23],
ϕ(k) = kα, 0 < α < 1 in [27], and ϕ(k) = akα/(1 + bkα), 0 < α < 1 in [11] and
so on.

From a practical perspective, the initial conditions for system (1) satisfy

0 ≤ Ik(0) ≤ 1, Θ(0) > 0. (3)

With the increasing of infected nodes, actively measures are taken to clear
virus and prevent computers from being infected by virus again, and then it
enters response stage. During this stage, the infected nodes are cured to trans-
form into removed state, and then terminals have three states: susceptible,
infected, and removed. But although the virus is cleared and patches are in-
stalled, removed nodes still may lost immunity to become susceptible again for
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various reasons. Terminals now have three states: the susceptible, the infected
and the removed. The spread of virus is governed by the following SIRS model
on the Internet in the response stage:











Ṡk(t) = −λkSk(t)Θ(t) + γRk(t),

İk(t) = λkSk(t)Θ(t)− µIk(t),

Ṙk(t) = µIk(t)− γRk(t)

t ≥ t0 (4)

with normalization conditions

Sk(t) + Ik(t) +Rk(t) = 1, k = 1, 2, · · · , n,

where Θ(t) is defined by formulation (2), µ, γ are positive constants which rep-
resent the removing rate of infected terminals and the rate of the immunization-
lost for removed terminals.

The normalization imposes that Rk(t) = 1−Sk(t)−Ik(t) for k = 1, 2, · · · , n,
the system (4) is equivalent to the following system:

{

Ṡk(t) = −λkSk(t)Θ(t) + γ(1− Sk(t)− Ik(t)),

İk(t) = λkSk(t)Θ(t)− µIk(t),
t ≥ t0. (5)

The initial conditions for system (5) in response stage satisfy

Sk(t0) + Ik(t0) = 1, (Rk(t0) = 0), k = 1, 2, · · · , n, (6)

where Ik(t0) is the value of Ik(t) at t0 in free spread stage.

3. Global dynamics of the model

In this section, the properties of model in the free spread stage are analyzed,
and then the global dynamics of model in response stage are revealed.

Theorem 3.1. Suppose that Ik(t) (k = 1, 2, · · · , n) is a solution of (1),
then 0 < Ik(t) ≤ 1 for 0 < t ≤ t0, and lim

t→+∞
Ik(t) = 1 at an exponential rate if

t0 = +∞.

Proof. It follows from (1) and (2) that Θ(t) satisfies

dΘ(t)

dt
=

λΘ(t)

〈k〉

n
∑

i=1

iϕ(i)P (i)(1− Ii(t)), 0 < t ≤ t0 (7)
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which implies Θ(t) = Θ(0) exp
{

λ
〈k〉

∫ t
0

∑n
i=1 iϕ(i)P (i)(1− Ii(s))ds

}

. Consequ-

ently, Θ(t) > 0 due to Θ(0) > 0. From (1), it is implied that

İk(t) > −λkΘ(t)Ik(t), 0 < t ≤ t0.

Hence Ik(t) > Ik(0) exp{−λk
∫ t
0 Θ(s)ds} ≥ 0 for 0 < t ≤ t0.

The function 1− Ik(t) satisfies the following equation

d(1− Ik(t))

dt
= −λkΘ(t)(1− Ik(t)), 0 < t ≤ t0. (8)

By similar discussion, we have 1− Ik(t) ≥ 0 for 0 < t < t0.
Equation (7) implies that

dΘ(t)

dt
≥ λΘ(t)

[

〈k〉−1〈kϕ(k)〉 − nΘ(t)
]

, 0 < t ≤ t0. (9)

If t0 = +∞, one has that lim
t→+∞

Θ(t) ≥
〈kϕ(k)〉

n〈k〉
from (9). There exist a τ > 0,

such that Θ(t) >
〈kϕ(k)〉

2n〈k〉
for t > τ .

Solving (8), it follows that

0 ≤ 1− Ik(t) = (1− Ik(τ)) exp
{

−

∫ t

τ
λkΘ(s)ds

}

≤ (1− Ik(τ)) exp
{

−
λk〈kϕ(k)〉

2n〈k〉
(t− τ)

}

, t > τ.

which leads to lim
t→+∞

Ik(t) = 1. Thus, the proof is completed.

Theorem 3.1 indicates that the proportion of infected nodes with degree k is
always increasing in the first stage. All nodes will be infected with exponential
rate if no any anti-virus measure is taken.

However, with the increasing of the infected nodes, it will be noticed to
enter response stage. The main results are given in the following Theorem 3.2
and Theorem 3.3.

For convenience, we discuss the system (5) which is equivalent to system
(4), and define

R0 =
λ〈kϕ(k)〉

µ〈k〉
. (10)
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Theorem 3.2. There always exists a disease-free equilibrium E0 = {1, · · · ,
1, 0, · · · , 0} for (5), E0 is globally asymptotically stable when R0 < 1; when

R0 > 1 the system (5) is uniformly persistent, i.e. there exists an ε > 0, such
that

lim inf
t→+∞

{S1(t), · · · , Sn(t), I1(t), · · · , In(t)} ≥ ε,

where {S1(t), · · · , Sn(t), I1(t), · · · , In(t)} is any solution of (5) satisfying (6).

Proof. Obviously, E0 = {1, · · · , 1, 0, · · · , 0} is always a equilibrium of sys-
tem (5).

Define
V (t) = Θ(t).

Let G = {φ : V̇ (φ) = 0} and M is the largest set in G which is invariant with
respect to system (5). Clearly, M is not empty since E0 ∈ M .

Calculating the derivative of V (t) along solution of (5), we get

V̇ (t)
∣

∣

∣

(5)
= Θ

[

1

〈k〉

∑

k

φ(k)p(k)(λkSkΘ(t)− µIk(t)

]

≤ Θ

[

1

〈k〉

∑

k

φ(k)p(k)(λkΘ(t)− µIk(t)

]

= µ(R0 − 1)Θ(t) ≤ 0.

It follows from Sk(t)+Ik(t)+Rk(t) = 1 thatM = E0. Consequently, the disease-
free equilibrium E0 is globally attractive according to the LaSalle invariant
principle.

The Jacobian matrix of (5) in E0 is a 2n× 2n matrix as

J =

(

A11 A12

0 A22

)

in which A11 = −γIn×n, A12 = −B − γIn×n, A22 = B − µIn×n and

B =
λ

〈k〉









ϕ(1)P (1) ϕ(2)P (2) · · · ϕ(n)P (n)
2ϕ(1)P (1) 2ϕ(2)P (2) · · · 2ϕ(n)P (n)

· · · · · · · · · · · ·
nϕ(1)P (1) nϕ(2)P (2) · · · nϕ(n)P (n)









.

The characteristic polynomial can be calculated as follows.

(z + γ)n(z + µ)n−1(z + µ− λ〈k〉−1〈kϕ(k)〉) = 0.
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Note that all eigenvalue of J are negative when R0 < 1, that is to say, E0 is lo-
cally asymptotically stable, furthermore, we know E0 is globally asymptotically
stable according to global attractivity of E0.

On the other hand, there exists a unique positive eigenvalue z of J if and
only if R0 > 1, and E0 is unstable. Then, a Theorem of Lajmanovich and York
[4] implies the uniform persistence of system (5) when R0 > 1. The proof is
completed.

Theorem 3.3. If R0 > 1, system (5) has a unique endemic equilibrium

E∗ = {S∗
1 , · · · , S

∗
n, I

∗
1 , · · · , I

∗
n},

which is globally asymptotically attractivive, i.e., lim
t→+∞

{Sk(t), Ik(t)} = {S∗
k , I

∗
k}

for any solution {S1(t), · · · , Sn(t), I1(t), · · · , In(t)} of system (5) satisfying (6).

Proof. First, we discuss the existence of endemic equilibrium for system
(5). From Sk(t) + Ik(t) + Rk(t) = 1 that 0 ≤ Ik(t) ≤ 1, we have from (2) that
Θ(t) ≤ 〈k〉−1〈ϕ(k)〉

.
= ρ.

Let Ṡk(t) = 0, İk(t) = 0, a direct calculation yields

Sk =
µγ

Ak
, Ik =

λkγΘ

Ak
, (11)

where Ak = λk(µ+ γ)Θ + µγ and Θ = 〈k〉−1
n
∑

i=1
ϕ(i)P (i)Ii.

Substituting Ik obtained above into Θ, an equation of the form Θf(Θ) = 0
is obtained, where

f(Θ) = 1−
λγ

〈k〉

n
∑

k=1

kϕ(k)P (k)

Ak
.

If non-trivial solution Θ∗ exists, it satisfies f(Θ∗) = 0. Since f ′(Θ) > 0 and
f(ρ) > 0, a non-trivial Θ∗ exists if and only if f(0) = 1− R0 < 0, i.e. R0 > 1.
Substituting Θ∗ into (11), we can know that system (5) has a unique posi-
tive equilibrium (the endemic equilibrium) E∗ = {S∗

1 , · · · , S
∗
n, I

∗
1 , · · · , I

∗
n} when

R0 > 1.

Secondly, we discuss the attractivity of the endemic equilibrium.

By Theorem 3.2, there exists a constant 0 < ξ < 1
2 and a lager enough

constant T > 0 such that Sk(t) > ξ, Ik(t) > ξ. Hence one can obtain that



244 M. Sun, Q. Liu

ρξ < Θ(t) < ρ for t > T . Substituting this into the first equation of (5), it
yields

Ṡk(t) ≤ −λkρξSk(t) + γ(1− Sk(t)), t > T.

By the standard comparison theorem in the theory of differential equations,

for any given constant 0 < ξ1 <
λkρξ

2[λkρξ + γ]
, there exists a T1 > T such that

Sk(t) ≤ X
(1)
k − ξ1 for t > T1, where

X
(1)
k =

γ

λkρξ + γ
+ 2ξ1 < 1.

It then follows from the second equation of (5) that

İk(t) ≤ λkρ(1− Ik(t))− µIk(t).

Hence, for a given constant 0 < ξ2 < min{1
2 , ξ1,

µ
2[λkρ+µ]}, there exists a T2 > T1

such that Ik(t) ≤ Y
(1)
k − ξ2 for t > T2, where

Y
(1)
k =

λkρ

λkρ+ µ
+ 2ξ2 < 1.

On the other hand,

Ṡk(t) ≥ λkρSk(t) + γ(1− Sk(t)− Y
(1)
k ), t > T2.

Then, for a given constant 0 < ξ3 < min{1
3 , ξ2,

γ(1−Y
(1)
k

)

λkρ+γ }, there exists a T3 > T2

such that

Sk(t) ≥ x
(1)
k

.
=

γ(1− Y
(1)
k )

λkρ+ γ
− ξ3 > 0

for t > T4. It follows that

İk(t) ≥ λkρξx
(1)
k − µIk(t), t > T3.

For a given constant 0 < ξ4 < min{1
4 , ξ3,

λkρξx
(1)
k

µ }, there exists a T4 > T3 such
that

Ik(t) ≥ y
(1)
k

.
=

λkρξx
(1)
k

µ
− ξ4 > 0

for t > T4.
Furthermore, the inequalities 0 < x

(1)
k < Sk(t) < X

(1)
k < 1 and 0 < y

(1)
k <

Ik(t) < Y
(1)
k < 1 hold because ξ is a small constant.
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Let

θ(j) =
1

〈k〉

n
∑

i=1

ϕ(i)P (i)y
(j)
i ,Θ(j) =

1

〈k〉

n
∑

i=1

ϕ(i)P (i)Y
(j)
i ,

for j = 1, 2, · · · , n. From the discussion above, it is clear that

0 < θ(j) ≤ Θ(t) ≤ Θ(j) ≤ ρ.

Again, by (5), one has

Ṡk(t) ≤ −λkθ
(1)
k Sk(t) + γ(1− Sk(t)− y

(1)
k ), t > T4.

Hence, for any given constant 0 < ξ5 < min{1
5 , ξ4}, there exists a T5 > T4 such

that Sk(t) ≤ X
(2)
k − ξ5 for t > T5, where

X
(2)
k = min{X

(1)
k − ξ1 + ξ5,

γ(1− y
(1)
k )

λkθ(1) + γ
+ 2ξ5}.

Thus,

İk(t) ≤ λkΘ(1)X
(2)
k − µIk(t), t > T5.

So, for any given constant 0 < ξ6 < min{1
6 , ξ5}, there exists a T6 > T5 such

that Ik(t) ≥ Y
(2)
k − ξ6 for t > T6, where

Y
(2)
k

.
= min{Y

(1)
1 − ξ2 + ξ6,

λkΘ(1)

µ
X

(2)
k + 2ξ6}.

Turning back to (5), it gives that

Ṡk(t) ≥ −λkΘ(2)Sk(t) + γ(1− Sk(t)− Y
(2)
k ), t > T6.

So, for any given constant 0 < ξ7 < min{1
7 , ξ6,

γ(1−Y
(2)
k

)

λkΘ(2)+γ
}, there exists a constant

T7 > T6 such that

Ik(t) ≥ x
(2)
k

.
=

γ(1− Y
(2)
k )

λkΘ(2) + γ
− ξ7

for t > T7. Thus,

İk(t) ≥ λkθ(1)x
(2)
k − µIk(t), t > T7.

So, for any given constant 0 < ξ8 < min{1
8 , ξ7,

λkθ(1)x
(2)
k

µ }, there exists a T8 > T7

such that

Ik(t) ≥ y
(2)
k

.
=

λkθ(1)x
(2)
k

µ
− ξ8
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for t > T8. Similarly, step l (l = 3, 4, · · · ) of the calculation can be carried out
and four sequences are obtained:

X
(1)
k =

γ

λkρξ + γ
+ 2ξ1,

X
(l)
k = min

{

X
(l−1)
k − ξ4l−7 + ξ4l−3,

γ(1− y
(l−1)
k )

λkθ(l−1) + γ
+ 2ξ4l−3

}

,

Y
(1)
k =

λkρ

λkρ+ µ
+ 2ξ2,

Y
(l)
k = min

{

Y
(l−1)
k − ξ4l−6 + ξ4l−2,

λkΘ(l−1)

µ
X

(l)
k + 2ξ4l−2

}

,

x
(1)
k =

γ(1− Y
(1)
k )

λkρ+ γ
− ξ3, x

(l)
k =

γ(1− Y
(l)
k )

λkΘ(l) + γ
− ξ4l−1,

y
(1)
k =

λkρξx
(1)
k

µ
− ξ4, y

(l)
k =

λkθ(l−1)

µ
x
(l)
k − ξ4l

for l = 2, 3, 4, · · · .

Since the first two X
(l)
k , Y

(1)
k are monotone decreasing sequences and the

last two x
(l)
k , y

(l)
k are strictly monotone increasing sequences, there exists a large

positive integer M such that

X
(l)
k =

γ(1− y
(l−1)
k )

λkθ(l−1) + γ
+ 2ξ4l−3,

Y
(l)
k =

λkΘ(l−1)

µ
X

(l)
k + 2ξ4l−2,

x
(l)
k =

γ(1− Y
(l)
k )

λkΘ(l) + γ
− ξ4l−1,

y
(l)
k =

λkθ(l−1)

µ
x
(l)
k − ξ4l

(12)

for l ≥ M .

It is clear that

x
(l)
k ≤ Sk(t) ≤ X

(l)
k , y

(l)
k ≤ Ik(t) ≤ Y

(l)
k , t ≥ T4l. (13)

Hence, the sequential limits of (12) exist. Let lim
l→+∞

Ω
(l)
k , where

Ω
(l)
k ∈

{

x
(l)
k , y

(l)
k , X

(l)
k , Y

(l)
k , θ

(l)
k ,Θ

(l)
k

}
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and Ωk = {xk, yk, Xk, Yk, θ,Θ}. It follows that lim
l→+∞

ξi = 0 from 0 < ξl <
1
l .

By taking l → +∞ in the sequences of (12), a direct computation yields

xk =
γ(1− Yk)

λkΘ+ γ
, Xk =

γ(1− yk)

λkθ + γ
, (14)

where

θ = 〈k〉−1
n
∑

k=1

ϕ(k)P (k)yk,Θ = 〈k〉−1
n
∑

k=1

ϕ(k)P (k)Yk.

Further,

yk =
1

Hk
λkγθ [(λkθ + γ)µ− λkγΘ] ,

Yk =
1

Hk
λkγΘ [(λkΘ+ γ)µ− λkγθ]

(15)

in which Hk = (λkΘ+γ)(λkθ+γ)µ2−λ2k2γ2θΘ. Substituting (15) into θ and
Θ, it is obtained that

1 =
λγ

〈k〉

n
∑

k=1

ϕ(k)P (k)

Hk
k [(λkθ + γ)µ− λkγΘ] ,

1 =
λγ

〈k〉

n
∑

k=1

ϕ(k)P (k)

Hk
k [(λkΘ+ γ)µ− λkγθ] .

(16)

By subtracting the above two equations, it is obtained that

λ2γ(µ+ γ)

〈k〉
(θ −Θ)

n
∑

k=1

ϕ(k)P (k)

Hk
k2 ≡ 0.

This implies that θ = Θ. Hence〈k〉−1
n
∑

k=1

ϕ(k)P (k)(yk − Yk) = 0, which is

equivalent to yk = Yk for 0 ≤ k ≤ n. Then it follows from (13) and (14) that

lim
t→∞

Sk(t) = xk = Xk, lim
t→∞

Ik(t) = yk = Yk.

Finally, by substituting θ = Θ into (15) and (16), in view of (12) and (14), it is
easy get that xk = Xk = S∗

k , yk = Yk = I∗k . This completes the proof.

According to Theorems 3.1-3.3, when R0 < 1, the virus will be cleaned and
all terminals will become healthy; otherwise, when R0 > 1, the virus will persist
and the proportions of susceptible, infected and removed nodes will converge
to the unique stationary positive levels eventually. R0 is the basic productive
number for the spreading of virus.
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Fig. 1: The time series of system with parameter λ = 0.16, µ = 0.4, and

γ = 0.14. Then R0 = 0.6429.

Remark 1. One may find that SIRS model describing virus spread in
the response stage in [7] is similar to model (4) in this paper, the authors
investigated the global stability of the endemic equilibrium by constructing
an Lyapunov function. The main verifying tools for global attractivity of the
positive equilibrium in this paper are the comparison theorem and iteration
principle. In addition, author also try to discuss the global attractivity of the
endemic equilibrium for an SEIRS epidemic model by using the comparison
theorem and iteration principle in [10], but there are some flaws in their proof,

for example, the inequality about ξ10 and so on. One may find Y
(2)
k < 1 and

Z
(2)
k < 1, which is obtained from the construction of the sequences, does not

guarantee that the right side of inequality is positive. These flaws lead to failure
of sequences construction.

4. Numerical simulations

In this section, we present the result of numerical simulations. The following
numerical simulation are implemented based on the scale-free network with
p(k) = Ck−γ , and C satisfies

∑n
k=1 p(k) = 1.

Assume that the network is finite network, let n = 100 and r = 2.5, which
is a suitable assumption. The infectivity of nodes with degree k is choose
as ϕ(k) = akα

1+bkα , where a = 0.5, b = 0.02, α = 0.75. The dividing point
of free spread stage and response stage is t0 = 25. The initial values are
Ik(0) = 0, Sk(0) = 1 (k = 1, 2, · · · , 100, ) and I5(0) = 0.005, S5(0) = 0.995.

In Figs. 1–4, the time series of systems (1) and (4) with degree 30, 55 and
85 are manifested. But it should be noted that the time series of systems with
other degrees are analogous.

Figs. 1–2 show the outcome of (1) and (4) when R0 < 1. The virus will
disappear and all the terminals will become susceptible even if it is longer time
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Fig. 2: The time series of system with parameter λ = 0.16, µ = 0.31, and

γ = 0.14. Then R0 = 0.8296.
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Fig. 3: The time series of system with parameter λ = 0.16, µ = 0.19, and

γ = 0.11. Then R0 = 1.3536.
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Fig. 4: The time series of system with parameter λ = 0.16, µ = 0.12, and

γ = 0.11. Then R0 = 2.1432.

before taking anti-virus measures. Moreover, the smaller R0 is, the faster the
virus disappears.

Figs. 3–4 show the outcome of (1) and (4) when R0 > 1. One can see that
when R0 > 1, the virus is uniformly persistent, which means that the density of
infected nodes will converge to a stationary positive level. Further, the larger
R0 is, the faster and higher the density of infected nodes reach to the stationary
positive level and the higher the stationary positive level is.

5. Conclusion

To describe the propagation of computer virus spread, a piecewise model of
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computer virus concluding free spread stage and response stage is constructed
on the Internet. The results show that the density of infected nodes is always
increase in the free spread stage because no any anti-virus measure is taken.
In the response stage, it is proven that the disease-free equilibrium is globally
stable and so the viruses will disappear when the basic reproductive number is
less than unity. Otherwise, the endemic equilibrium is globally attractive and
so the density of infected nodes will tend to a positive constant. The main veri-
fying tools for global attractivity of the positive equilibrium are the comparison
theorem and iteration principle, and these methods may be generalized to the
other models such as SIS, SIRS models with time delay. These will be aims for
our next works.
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